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Abstract: The 21st century skills and STEM learning standards include collaboration as a
necessary learning skill in K-12 science education. To support the development of collaboration
skills among students, it is important to assess and support students’ proficiency in
collaboration. We present the process of developing a tool that assesses collaboration quality
based on behavioral communication at individual and group levels. The assessment tool uses
behavior analytics comprised of multistage machine learning models built on an intricate
collaboration conceptual model and coding scheme. Our collaboration conceptual model shows
how layers of behavioral cues contribute to collaboration and serves as the foundation of an
automated assessment tool for collaboration. We present initial findings that show reliability
between our assessment of behavioral interactions with and without speech. A future automated
collaboration assessment tool will give teachers information about student collaboration and
help inform instruction that will guide and support students’ collaboration skill development.
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Objective

The world is becoming more digital and the current professional landscape increasingly requires competency in
what were once considered “soft skills,” like collaboration and communication (Van Laar, Van Deursen, Van
Dijk, & De Haan, 2017). The Next Generation Science Standards (NGSS Lead States, 2013) and Common Core
State Standards (CCSS Initiative, 2010) each call out collaboration as a practice required for successfully engaging
in STEM fields. In many K-12 classrooms, teachers use instructional methods that utilize collaboration, such as
project-based learning (Krajcik & Blumenfeld, 2006) or problem-based learning (Davidson & Major, 2014) to
facilitate developing student proficiencies in science and math. On a high level, collaboration is a process through
which a group of people constructively explore their ideas to search for solutions that extend beyond the limited
vision of one individual (Graesser, Fiore, Greiff, Andrews-Todd, Foltz, & Hesse, 2018). Incorporating
collaboration during instruction can lead to increased student learning (Sung, & Hwang, 2013), since it requires
group members to converge on thought processes, goals, and behaviors. Collaboration has been shown to be an
effective way to achieve higher levels of understanding and robust outcomes, and is a highly sought-after
professional skill (Van Laar, Van Deursen, Van Dijk, & De Haan, 2017). Since studies show the benefits of
integrating collaboration into instruction and the importance of collaboration as a critical career building skill,
teachers need to be able to support students’ development and mastery of this skill. Teachers may incorporate the
use of collaboration rubrics or peer surveys to gain additional insight about the quality of the collaboration during
group activities, but due to a wide range of behavioral cues, it may be hard to determine specific behaviors that
contribute to or detract from the collaboration process (e.g., Taggar & Brown, 2001; Loughry, Ohland & Moore,
2007).

Recent advances in technology, combined with a deep understanding of productive collaboration, have
allowed us to begin development of a breakthrough technology that can help teachers identify key nonverbal
collaborative behaviors and assess overall collaboration quality. The tool uses behavior detection to describe how
well students are collaborating at individual and group levels. This is especially relevant to working in a classroom
setting, since teachers have many students and often need to assess their students’ collaboration from across the
room or without being able to hear students clearly. In addition, focusing on behavioral cues will allow
collaboration quality to be assessed across content domains, since speech is not the focus of analysis. By training
the tool using multi-stage predictive machine learning models based on video analytics we will be able to
automatically detect and report on the overall quality of collaboration as well as on specific behaviors that students
exhibit. The tool will then be able to give teachers information about student collaboration to help inform
instruction that will guide and support students’ collaboration skill development. Our work provides descriptions
and empirical evidence of designs that support learning that can be applied to various learning spaces and
transferred to different content domains. Our design work is based on a vision of providing efficient ways to assess
collaboration and provide students feedback based on their behavioral contributions to collaborative activities.



The goal of our work is to determine whether behavioral cues can accurately assess collaboration among
middle school students. Currently, this work is not focused on student achievement or the outcomes of the
collaboration, but instead on the process of collaboration: the behavioral interactions students engage in while
they work collaboratively in groups. This work is in its early stages of development and we have chosen to first
focus on understanding how to assess student behavior when working in collaborative groups. Our current work
seeks to answer the following research question: Can visual behaviors alone be used to assess collaboration skills
and collaboration quality?

Significance

This study is designed to increase knowledge about how to use automated tools to assess complex interactions
that lead to collaboration. The eventual video-based analytics and machine learning can change how we collect
data on classroom interactions and the future landscape of research in group learning environments, providing a
new understanding of collaboration and other interpersonal interactions in learning spaces. In the future, this tool
can be used as a teacher support tool; providing teachers with information on students’ behavior in group settings
during collaborative activities and inform future instruction that supports student ability to collaborate.

Methodology

Defining Collaboration

In this work, we developed a collaboration conceptual model (CCM; see Figure 1) that shows how various
behaviors work together at different levels to promote collaboration. Our research-informed domain-independednt
collaboration conceptual model delineates and reconstructs different layers of interactions that make-up
collaboration. We then created a collaboration rubric for human annotation based on the CCM that assigns non-
verbal behaviors to individual and group contributions to collaboration at each level, as well as the overall quality
of collaboration.

Collaboration is described as a process through which a groups of people constructively explore their
ideas to search for solutions that extend beyond the limited vision of one individual (Graesser, Fiore, Greiff,
Andrews-Todd, Foltz, & Hesse, 2018). To assess collaboration, we needed a precise definition of collaboration
or the ability to identify components of collaboration. However, collaboration is hard to define because there is
complexity underlying the many seemingly simple definitions. To address this complexity, our CCM consists of
tiers, or levels, of collaboration to illustrate how simple behaviors aggregate and combine into complex
interactions. Research on using machine learning and behavior analytics that identify and assess group behaviors
has helped us narrow our definition of collaboration and determine constructs in the development of our CCM
that organizes those behaviors into individual and group interactions. The CCM is based on theoretical models
that integrate research on social factors (i.e., group perceptions and personalities), cognitive science (i.e., social-
cognitive systems), and education research (i.e., problem solving strategies) that capture the iterative nature of
collaborative interactions.

We developed the CCM using studies that worked to parse out the complexity of collaboration through
the use of constructs like teamwork and cooperative learning. Teamwork refers to the structural and interpersonal
interactions between team members. Tambe (1997) devised a model for teamwork called a Shell for TEAMwork
(STEAM), built using the SharedPlans Theory (Grosz, 1996; Grosz & Kraus, 1996) and Joint Intentions theory
(Lavesque, Cohen, & Nunes, 1990) to operationalize a set of domain independent rules that describe how teams
should work together. We used models like STEAM to build Level A of the CCM, where overall group
collaboration is measured using observations of member participation and labor distribution. Cooperative learning
requires students to work in small groups to achieve a shared set of goals (Johnson & Johnson, 2008). Cooperative
learning focuses more on individualized behaviors and interactions among group members, like exchanging
resources and information and explaining or elaborating information. Johnson and Johnson (2005) base their work
on Social Interdependence Theory (Johnson & Johnson, 2008) where elements like promotive interaction and
individual accountability make up cooperative learning. Cooperative learning played an instrumental role in
defining Levels B1 and B2 of the CCM. We also integrated research in behavioral analytics examining the roles
of affect and emotion (e.g., frustration and boredom) in collaboration when defining levels B1 and B2. Level B1
provides a description of the group dynamic that is generated among the group members and Level B2 identifies
roles that each group member plays during collaborative interactions.

While the actions that make up high quality collaboration are complex, there are fine-grained nonverbal
behavioral markers associated with productive collaboration (Bamaeeroo & Shokrpour, 2017). For example,
Godwin, Almeda, Petroccia, Baker, and Fisher (2013) showed that on-task behavior is characterized by children
directing their eye gaze at the teacher, the instructional activity, or toward appropriate instructional materials, and



that off-task behavior was when a child was looking elsewhere. We used research on individual behavioral actions
that contribute to or detract from collaboration to serve as Levels C and D of the CCM. Level C delineates various
complex group behaviors and Level D names the low-level features of each group member in order to explain
how individual behaviors aggregate into complex interactions (Tamrakar et. al., 2012).

Collaboration cannot be effectively studied without addressing differences in how people interact due to
culture, learning abilities, ethnicities, and gender. Jones (2010) warned of the skewed effects created by assuming
that one data sample is as good as the next and emphasized that cultures differ in fundamental ways. Due to
potential cultural and geographic differences in how individual and group behavioral interactions may be
interpreted, we conducted a search of various research sources that describe effective collaborative behaviors and
included behaviors that were common across sources. For example, the presence of social anxiety can vary by
culture (Heinrichs, Rapee, Alde, Bogels, Hofmann, Oh, & Sakano, 2006) and can therefore interfere with how
people interact with one another in group settings. A study by Kim, Yang, Atkinson, Wolfe, and Hong (2001)
points to differences in socialization practices between boys and girls in various Asian cultures, which can
contribute to how boys and girls participate in group settings. Even with various differences among collaborators,
studies show that diversity of behaviors produces higher quality outcomes (e.g., Barjak & Robinson, 2008). The
development of the CCM incorportates these findings by surveying students about their collaboration comfort
levels, adjusting the rubric to address how students self-identified, and include literature-based behaviors that
have been validated across various populations.

We continue to refine our collaboration conceptual model and rubric through piloting and continued
literature reviews to accommodate diverse behavioral norms. This CCM is used with behavior-based learning
analytics to train machine learning models to assess the quality of collaboration among small groups of students
in face-to-face collaboration settings. We analyzed collaboration using individual student behaviors (Levels C
and D), as well as overall collaboration and participation structures (Levels A and B). Our unit of analysis is at
both the individual and group levels, since individual behaviors impact group behavior and overall collaboration.

Stratifying the Conceptual Model for Machine Learning

Figure 1 shows how our Multimodal Integrated Behavior Analysis (MIBA) software extracts low level tracking
of human head-pose, eye gaze, facial expressions, body-pose and gestures in Level E. The low level features
from Level E are used to generate Level D descriptors like joint attention and smiling. The Level D descriptors
are used to describe more complex interactions, such as “sharing tools” or “explaining ideas”, in Level C. Complex
behaviors from Level C are used to determine the individual roles of each student, such as “follower” or “group
guide” in Level B2, and group dynamics like “social and hyperactive” in Level B1. All levels come together as
an overall collaboration code, such as “effective” or “progressing,” in Level A.
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Figure 1. The collaboration conceptual model.

Data Collection

In the spring of 2019, we collected 15 hours of video data in five middle schools. Sixty volunteer students
completed a brief survey that collected information about their demographics (e.g., languages spoken, ethnicity)
and comfort levels with collaboration and various science concepts. We videotaped and audio recorded one group
at a time. Students worked in small groups for one hour to complete up to 12 open-ended life science and physical



science tasks that required students to construct models of science phenomena. We used short, structured tasks to
localize student behaviors. We collected data by positioning three Microsoft kinect cameras in a triangular
configuration around groups of four students, providing full-body 3D motion capture, facial recognition and voice
recognition (see Figure 2). Students were given logistic and organizational instructions, but did not receive help
during the completion of the task. Students were instructed to work together for one hour or until the tasks were
completed.

We administered 2 pre-pilots in preparation for the pilot study. During pre-pilot 1.0, we collected 1 hour
of video data of students working on science tasks in a collaborative group. The tasks assigned in pre-pilot 1.0
were further refined and tested in pre-pilot 2.0. During pre-pilot 2.0, we collected another hour of video data and
tested the upgraded equipment, data collection instruments, and analysis techniques before collecting data for the
pilot study. We used the video from both pre-pilots to train the human annotators.

Table

cameras

Set-up #1 Set-up #2 Set-up #3

Figure 2. The data collection setup.

Science Task Design

Students completed up to 12 open-ended tasks in photosynthesis, cellular respiration, energy and transfer, and
ecosystems that required them to develop models or solve a scientific problem. Half of the tasks asked students
to arrange physical manipulatives (pieces of paper with images, words, or graphs on them) in addition to
developing an explanation. For example, in one modeling task, students arranged physical manipulatives that
depicted a banana peel, an orange peel, soil, bacteria, fungi, and rich soil nutrients in order to develop a model for
how decomposition happens (see Figure 3). In tasks without physical manipulatives, students analyzed graphs or
data tables, developed explanations, or drew their own models for different types of systems.
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Figure 3. The figure above shows a sample response to a modelling task.



Data Annotation

Each video recording was coded by human annotators using ELAN (an open-source annotation software). The
video recordings were segmented by task with a maximum of 12 segments per video (1 segment per task).
Collaboration tasks ranged from 5 to 25 minutes each. Video recordings were also separated into two modalities,
(1) video modality (assessing visual only), and (2) full modality (assessing visual and sound). Each video was first
manually coded at each level (levels shown in Figure 1) using our collaboration assessment rubric, by three
different education researchers in the video modality. The full modality videos were coded after the video
modality to prevent bias. The human annotators were mixed so that each video was coded by 3 different
researchers each time. The majority vote from the group of three coders was used as the gold standard for the
annotation.

Analysis & Findings

Analysis 1: IRR for visual behaviors of collaboration

To establish interrater reliability (IRR) and for code refinement, the human annotators participated in multiple
training sessions over approximately 3 months using data from 2 pre-pilot sessions for coding the A and B levels.
The video recordings from the pre-pilot sessions were used to train the human annotators and the annotators were
not allowed to access the pilot video-recordings during that time. During training, human annotators were assigned
a segment of video from the pre-pilot data to code individually, then the annotators discussed their codes in a
group. Through discussions about IRR, each code was refined to increase accuracy and agreement in behavior
identification. At the end of the training, the A and B level codes were evaluated for rater agreement (i.e. majority
votes) and a Cohen’s Kappa score. Cohen’s Kappa IRR for impoverished coding of levels A and B was calculated
to reduce effects of any agreement that could have occurred due to random chance. Table 1 shows that the rater
agreement score for the training data (RAgreementrr) was between 0.5-0.66 and a Cohen’s Kappa score
(Kappatr) of 0.27-0.4, showing fair agreement (Landis & Koch, 1977; Viera & Garrett, 2005).

After training, each pilot video was independently coded 3 times to account for annotation bias in the
video modality. IRR was calculated for levels A, B1, and B2 (refer to Table 2 for details), which required the
human annotators to assess collaboration at higher levels, involving the culmination of complex behaviors and a
nuanced understanding of human-human interactions without the use of sound. The pilot data had a rater
agreement range (RAgreementvideo) between 0.63-0.68 and a Cohen’s Kappa range (Kappavidgeo) of 0.47 - 0.49,
showing an increase to moderate agreement. We also determined the Cohen’s Kappa scores for interrater
reliability of the full modality data to establish validity with the collaboration conceptual model and collaboration
coding rubric. Using the pilot data, we were able to establish that the annotator codes were consistent with the
collaboration conceptual model. Because the annotators were coding with sound, they achieved a higher Cohen’s
Kappa IRR ranging from 0.5 - 0.56. Moderate agreement for IRR calculation is comparable to other machine
learning research that calculates IRR for human annotations using sound (e.g., Lubold and Pon-Barry, 2014;
Richey, D'Angelo, Alozie, Bratt, & Shriberg, 2016). Periodically, codes were checked for accuracy by non-
annotators against the collaboration rubric to monitor validity. This step is critical for the accuracy of the
collaboration conceptual model and for comparisons between video and full modality coding.

Table 1: The inter-rater agreement results in the form of rater agreement (RA) and Cohen’s Kappa scores for
training data (TR) (video modality)

Collaboration skill level RAgreement;y | Kappa rg
A-Level: Collaboration Quality 0.55 0.41
Bl-Level: Group dynamics 0.66 0.27
B2-Level: Individual role/ 0.55 0.40
participation

Table 2: The inter-rater agreement results in the form of rater agreement (RA) and Cohen’s Kappa scores for
pilot data (video and full modalities)

Collaboration skill level RAgreementy,;;., | RAgreementy,;; | Kappa yii.. Kappa
A-Level: Collaboration 0.675 0.709 0.49 0.5
Quality




B1-Level: Group dynamics 0.680 0.715 0.47 0.53
B2-Level: Individual role/ 0.639 0.689 0.48 0.56
participation

Analysis 2: Data distribution

Pilot data consisted of 60 middle school students collaborating in small groups of 3 or 4. Students were recruited
from schools in a suburban area surrounding a major city in the United States and were from high performing
schools, showing above state average standardized test scores. Student surveys showed that 50% of all
participating students perceived themselves as very comfortable with collaboration, while there was mixed
comfort with the science concepts. Additionally, a significant majority of Asian male students volunteered for the
study, and attended schools where the student population is over 80% Asian, thereby introducing bias to the data.
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Figure 4. The figure above shows the distribution of annotations at the A-Level.

After calculating interrater agreement for video data, we analyzed the distribution of the annotations
across modalities (video only vs video and sound) of the pilot data. In the pilot study, a total of 117 tasks were
annotated by the education researchers. Our initial analysis was a comparison between the video and full modality
annotations at the A (overall collaboration quality) and B1 (group dynamics) levels. We show a distribution of
the annotations (A-Level codes shown in Figure 4) comparing video and full modality codes and found them to
be comparable for most of the overall collaboration quality assessment codes. Figure 4 shows the number of tasks
that were assigned specific codes for the A-Level (the overall quality of collaboration) in video modality (left bar)
and full modality (right bar). We excluded 2 tasks due to lack of majority in agreement (Note: due to non-
disclosure agreements, we are unable to provide the names of the codes at this time). The far left of the graph
represents the lowest quality of collaboration and the far right represent the highest qualities of collaboration.
Most students were coded as needing support in learning how to collaborate. Very few students were found to be
effective collaborators, regardless of their willingness to participate in the study. It is worth noting that the lack
of audio in the video modality had little to no impact on the assessments of lower quality group collaborations,
compared with using both video and audio.

The data distribution for level B1 (group dynamics) was similar to the A-Level data distribution;
annotations between video and full modality codes were comparable. At the B1-Level. As mentioned earlier, the
data was biased towards high performing students who volunteered to be in the study, shifting the annotations
toward codes that show the group dynamics as focused, calm, and work oriented. However, the similarity in the
distribution of data does not imply high agreements at a task-level or feasibility of using either modality for
automated assessment. Therefore, we further analyzed the annotations at the task level empirically in Analysis 3.

Analysis 3: How does impoverished modality compare to the full modality?

In order to develop an automated tool that could assess collaboration skills using visual behaviors, we needed to
test whether visual behaviors alone could be used to estimate collaboration skills and quality. To compare
annotations for the video modality with the full modality, we assigned the same set of videos to the same
annotators. Annotators coded the video modality prior to coding the full modality, and a period of multiple months
elapsed between the video modality coding and the full modality coding. The interrater agreement comparison
for audio and video modality on a per annotator basis is shown in Table 3 below.



Table 3: The table below shows the inter-rater agreement results comparing video modality vs full (audio and

video) modality

Collaboration skill level RAgreementr,yigeo Kappa puupideo
A-Level: Collaboration Quality 0.56 0.29
B1-Level: Group dynamics 0.63 0.40
B2-Level: Individual role/ participation 0.66 0.51

When we compared the video and full modality codes, we found Cohen’s Kappa score to be fair at the
A-level (i.e. 0.29) and moderate at Bl and B2 levels, ranging from 0.40 — 0.51. Possible reasons for the wide
range of kappa scores are 1) A-level annotations require a higher level of contextual knowledge and inference
than B1 and B2 level annotations, 2) the number of groups in our pilot data set was too small to show enough
variation, and 3) the data sameples were from a select group of volunteer students and biased the annotations to a
narrow selection of annotation options, increasing the possibility of agreement by chance. This can lower the
kappa score significantly. Although this test shows promise in feasibility, it also shows the need for diverse data.

Conclusions and Next Steps

Our initial work with the MIBA system shows successful calibration and synchronization of high-quality
information from audiovisual and sensory input. Using MIBA, the collaboration conceptual model has the ability
to capture behavioral cues associated with collaboration with reliability and validity. Our initial analyses shows
that there is potential for assessing the quality of collaboration using behavioral cues alone. We showed that the
human annotations of video using sound was in moderate agreement with human annotations using no sound,
indicating robustness and steadiness in our collaboration conceptual model and refinement in our collaboration
coding rubric. The distribution of A and B1- Level codes indicates that most students in the study are progressing
toward being proficient collaborators; where they exhibit behaviors that contribute to good collaboration. This
preliminary finding indicates that many students would benefit from increased instructional support that would
help them develop effective collaboration behaviors. We are currently in the process of continuing the reliability
testing between modalities for levels C and D. As of now, our rater agreement for video data, using a single task
with 3 coders each, (RAgreementvideo) is 0.85 and Cohen’s Kappa (Kappavideo) is 0.81, showing substantial
agreement (when unlinked annotations are excluded from the calculation, thereby overestimating reliability). The
completion of all collaboration levels will create opportunities to understand how low-level human behaviors
contribute to high level interactions patterns that contribute to collaboration. Our current analysis for A, B1 and
B2 codes is based on 15 hours of video data and requires more data to improve our reliability scores. Moving
forward, we will collect additional data to further refine and validate our collaboration conceptual model and
coding scheme, increase reliability, and make further comparisons between impoverished and full modality
annotations.

Our current student sample did not represent a diverse student body. Our sample requires a diverse group
of students to capture a variety of interaction patterns. The future development of the machine learning models
depends on large amounts of diverse data to be applied to a wide range of students. Student diversity will help
increase the validity of the machine learning models we will develop upon demonstrating the ability to use
behavioral cues to assess collaboration quality.

Our immediate next steps following this study will be to test our data analysis in authentic classroom
settings with students working on the science tasks designed for this project in groups assigned by their teachers,
and explore the relationship between the quality of collaboration and the quality of student artifacts. Over time,
we plan to perform impact studies in classrooms and other learning spaces to determine the kind of effect the tool
has on group work, student artifact development, student productivity, and inclusion among group members. We
will also explore instructional resources, such as dashboards, to support teachers in the use of this tool. These
steps will initiate studying technology development and its role in measurement and improving teaching and
learning.

References
Bambaeeroo, F., & Shokrpour, N. (2017). The impact of the teachers’ non-verbal communication on success in
teaching. Journal of advances in medical education & professionalism, 5(2), 51



Barjak, F., & Robinson, S. (2008). International collaboration, mobility and team diversity in the life sciences:
impact on research performance. Social Geography, 3(1), 23-36.

Common Core State Standards Initiative. (2010). Common Core State Standards for English language arts &
literacy in history/social studies, science, and technical subjects. Retrieved from
http://www.corestandards.org/ELA-Literacy/

Davidson, N., & Major, C. H. (2014). Boundary crossings: Cooperative learning, collaborative learning, and
problem-based learning. Journal on excellence in college teaching, 25.

Godwin, K., Almeda, V., Petroccia, M., Baker, R., & Fisher, A. (2013). Classroom activities and off-task
behavior in elementary school children. In Proceedings of the Annual Meeting of the Cognitive
Science Society (Vol. 35, No. 35).

Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the
science of collaborative problem solving. Psychological Science in the Public Interest, 19(2), 59-92.

Grosz, B. J. (1996). Collaborative systems (AAAI-94 presidential address). Al magazine, 17(2), 67-67.

Grosz, B. J., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 86(2),
269-357.

Heinrichs, N., Rapee, R. M., Alden, L. A., Bogels, S., Hofmann, S. G., Oh, K. J., & Sakano, Y. (2006). Cultural
differences in perceived social norms and social anxiety. Behaviour research and therapy, 44(8), 1187-
1197.

Johnson, R. T., & Johnson, D. W. (2008). Active learning: Cooperation in the classroom. The annual report of
educational psychology in Japan (47), 29-30.

Johnson, D. W., & Johnson, R. T. (2005). New developments in social interdependence theory. Psychology
Monographs, 131, No. 4.

Johnson, D. W., & Johnson, R. T. (2008). Social interdependence theory and cooperative learning: The teacher's
role. In The teacher’s role in implementing cooperative learning in the classroom (pp. 9-37). Springer,
Boston, MA.

Jones, D. (2010, June). A WEIRD view of human nature skews psychologists' studies. Science, 328(5986), 1627

Kim, B. S., Yang, P. H., Atkinson, D. R., Wolfe, M. M., & Hong, S. (2001). Cultural value similarities and
differences among Asian American ethnic groups. Cultural Diversity and Ethnic Minority Psychology,
7(4), 343.

Krajcik, J. S., & Blumenfeld, P. C. (2006). Project-based learning (pp. 317-34).

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics,
159-174.

Levesque, H. J., Cohen, P. R., & Nunes, J. H. (1990, July). On acting together. In Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI-90), Vol. 1, pp. 94-99, Boston, MA.

Loughry, Ohland & Moore, 2007

Lubold, N., & Pon-Barry, H. (2014, November). Acoustic-prosodic entrainment and rapport in collaborative
learning dialogues. In Proceedings of the 2014 ACM workshop on Multimodal Learning Analytics
Workshop and Grand Challenge (pp. 5-12). ACM.

NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington, DC: The
National Academies Press.

Richey, C., D'Angelo, C., Alozie, N., Bratt, H., & Shriberg, E. (2016, January). The SRI Speech-Based
Collaborative Learning Corpus. In INTERSPEECH (pp. 1550-1554). Bambaeeroo, F., & Shokrpour, N.
(2017). The impact of the teachers’ non-verbal communication on success in teaching. Journal of
advances in medical education & professionalism, 5(2), 51.

Sung, H. Y., & Hwang, G. J. (2013). A collaborative game-based learning approach to improving students'
learning performance in science courses. Computers & education, 63, 43-51.

Taggar, S., & Brown, T. C. (2001). Problem-solving team behaviors: Development and validation of BOS and a
hierarchical factor structure. Small Group Research, 32(6), 698-726.

Tambe, M. (1997). Towards flexible teamwork. Journal of artificial intelligence research, 7, 83-124.

Tamrakar, A., Ali, S., Yu, Q., Liu, J., Javed, O., Divakaran, A., Cheng, H., & Sawhney, H. (2012, June).
Evaluation of low-level features and their combinations for complex event detection in open source
videos. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3681-3688). IEEE.

Van Laar, E., Van Deursen, A. J., Van Dijk, J. A., & De Haan, J. (2017). The relation between 21st-century
skills and digital skills: A systematic literature review. Computers in human behavior, 72, 577-588.

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med,

37(5), 360-363.




