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Early development of specific skills can help students succeed in fields like Science,
Technology, Engineering and Mathematics. Different education standards consider
“Collaboration” as a required and necessary skill that can help students excel in these
fields. Instruction-based methods is the most common approach, adopted by teachers to
instill collaborative skills. However, it is difficult for a single teacher to observe multiple
student groups and provide constructive feedback to each student. With growing student
population and limited teaching staff, this problem seems unlikely to go away.
Development of machine-learning-based automated systems for student group
collaboration assessment and feedback can help address this problem. Building upon
our previous work, in this paper, we propose simple CNN deep-learning models that take
in spatio-temporal representations of individual student roles and behavior annotations as
input for group collaboration assessment. The trained classification models are further
used to develop an automated recommendation system to provide individual-level or
group-level feedback. The recommendation system suggests different roles each student
in the group could have assumed that would facilitate better overall group collaboration. To
the best of our knowledge, we are the first to develop such a feedback system. We also list
the different challenges faced when working with the annotation data and describe the
approaches we used to address those challenges.
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1 INTRODUCTION

Both the Next Generation Science Standards (States, 2013) and the Common Core State Standards
(Daggett and GendroO, 2010) consider “Collaboration” to be a crucial skill, that is needed to be
inculcated in students early on for them to excel in fields like Science, Technology, Engineering and
Mathematics (STEM). To instill collaborative skills, instructional methods like project-based
learning (Krajcik and Blumenfeld, 2006) or problem-based learning (Davidson and Major, 2014)
are the most common approaches adopted by teachers in K-12 classrooms. However, it can be hard
for teachers to identify specific behavioral cues that contribute to or detract from the collaboration
effort (Taggar and Brown, 2001; Loughry et al., 2007; Smith-Jentsch et al., 2008). Also, with growing
classroom sizes, monitoring and providing feedback to individual students can be very difficult. One
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can mitigate these issues by using machine-learning to develop
systems that automatically assess student group collaboration
(Soller et al., 2002; Talavera and Gaudioso, 2004; Anaya and
Boticario, 2011; Genolini and Falissard, 2011; Spikol et al., 2017;
Guo and Barmaki, 2019; Huang et al., 2019; Kang et al., 2019;
Reilly and Schneider, 2019; Alexandron et al., 2020; Vrzakova
et al., 2020).

In our previous work we designed a Collaboration Conceptual
Model (CCM) that provides an automated assessment of the
collaboration quality of student groups based on their behavioral
communication at individual and group levels (Alozie et al.,
2020a,b). CCM represents a multi-level, multi-modal
integrated behavior analysis tool and is illustrated in Figure 1.
Audio and video recordings of a student group performing a
collaborative task is passed as input to this model. Next, low level
features like facial expressions, body-pose are extracted at Level E.
Information like joint attention and engagement are encoded at
Level D. Level C describes complex interactions and individual
behaviors. Level B is divided into two categories: Level B1
describes the overall group dynamics for a given task; Level B2
describes the changing individual roles assumed by each student
in the group. Finally, Level A describes the overall collaborative
quality of the group based on the information from all previous
levels. In this paper, we focus on developing deep-learning
models that map spatio-temporal representations from Level
B2 → Level A and Level C → Level A, as indicated by the red
arrows.

Using this conceptual model as a reference, in a different paper
(Som et al., 2020) we developed simple Multi Layer Perceptron
(MLP) deep-learning models that predict a student group’s
collaboration quality (Level A) from individual student roles
(Level B2) and behaviors (Level C), indicated by the red
arrows in Figure 1. These MLP models take simple histogram
representations as input. While these simple representations and
models were sufficient for observing good classification
performance, what they lacked was explainability. When
developing such automated systems, one should focus not only
on performance but also make the model more easily explainable

and interpretable. We addressed this to some extent in another
paper (Som et al., 2021), where we used temporal representations
of student roles along with simple 1D ResNet deep-learning
models (Wang et al., 2017). This setup allowed us to use
Grad-CAM (Selvaraju et al., 2017) visualizations that help
point to important temporal instances in the task that
contribute towards the model’s decision.

In this paper, we add another level of detail and explore the
effectiveness of spatio-temporal representations of student role
and behavior annotations for estimating group collaboration
quality. We model these representations using simple 2D
CNN models. In addition to identifying important temporal
instances, this setup allows us to localize important subsets of
students in the group. This level of detail is crucial for developing
an automated recommendation system. Our proposed
recommendation system offers individual-level and group-level
recommendations. However, when developing the collaboration
assessment and feedback systems we did encounter challenges
like limited and imbalanced training data, as seen from the
distribution of Level A codes in Figure 2. Here, Level A
represents the label space for training our collaboration quality
assessment models. Also, the annotations for levels A, B2 and C
were collected in two different modality settings: Video (no
audio) and Audio + Video. We wanted to check if visual
behavioral cues alone could be used to estimate collaborative
skills. However, in our previous work (Som et al., 2020), we
observed significant differences in classification performance
between the two modality settings, with the Video modality
annotations performing more poorly than Audio + Video
annotations. In this paper, we go through the approaches
introduced in our previous work to address the above
challenges and limitations. We also discuss ways in which we
reduce the performance gap between the two modality settings.
The main contributions in this paper are summarized below.

1.1 Contributions
• We exploit the ordered nature of the label space (i.e., Level
A) and use the Ordinal-Cross-Entropy loss function, which
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FIGURE 1 | The collaboration conceptual model. This illustration was first described in (Som et al., 2020).
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imposes a higher penalty on misclassified samples during
the training process. The benefits of this loss function were
initially discussed in (Som et al., 2020).

• We address the limited and imbalanced training data
challenges by using a controlled variant of Mixup data
augmentation. Mixup is a simple approach for
generating additional synthetic data samples for

training the deep-learning model (Zhang et al., 2017).
The controlled Mixup augmentation variant was also
initially introduced in the following paper (Som et al.,
2020).

• For the collaboration assessment classification system, we
propose using a spatio-temporal representation of the
annotation data along with simple 2D CNN models to
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FIGURE 2 | Distribution of codes for levels A, B2 and C. Note, Level A was coded over each task. Level B2 codes were created over 1 min time segments. Level C
codes were coded using fluid length segments and the distribution shown here was created by sampling at every 0.1 s. The distribution of Level A codes was first
illustrated in (Som et al., 2020).
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enable better localization of important temporal instances
and student interactions.

• The nature of the spatio-temporal representations allows us
to create more variations in our training dataset by
permuting the order of the students in the group. For
example, each group in our dataset has a maximum of 5
students. This implies that we can make 120 variations/
permutations from one spatio-temporal representation.
This allows us to increase the size of the original dataset
by 120 times.

• We discuss our thoughts and empirical observations for
reducing the performance gap between the Video and Audio
+ Video modality settings.

• The spatio-temporal representations and the 2D CNN
models trained for collaboration quality assessment are
used for developing the proposed recommendation
system. We use a simple gradient-descent optimization
framework for designing the recommendation system. It
is capable of providing group level or individual student
level recommendations. To the best of our knowledge, we
are the first to propose such a recommendation system that
focuses on improving group collaboration quality.

1.2 Paper Outline
Section 2 discusses related work. Section 3 provides necessary
background on the different loss functions and mixup
augmentation. Section 4 describes the dataset, the different
features extracted for Levels B2 and C, and the approach for
generating synthetic spatio-temporal samples using a controlled
variant of Mixup augmentation. Section 5 describes the
experiments and results. Section 6 concludes the paper.

2 RELATED WORK

There have been several recent works that explore using machine-
learning concepts for collaboration problem-solving, analysis and
assessment. For example, Reilly et al. used Coh-Metrix indices (a
natural language processing tool to measure cohesion for written/
spoken texts) to train machine-learning models to classify co-
located participant discourse in a multi-modal learning analytics
study (Reilly and Schneider, 2019). Their multi-modal dataset
contained eye-tracking, physiological and motion sensing data.
Their study only had two collaboration quality states and focused
on evaluating the level of cooperation between novice
programmers that were instructed to program a robot. Using
the same dataset, Huang et al. used an unsupervised machine
learning approach to discover unproductive collaborative states
(Huang et al., 2019). They were able to develop a three-state
solution that showed high correlation with task performance,
collaboration quality and learning gain. Kang et al. also used an
unsupervised learning approach to study the collaborative
problem-solving process of middle school students (Kang
et al., 2019). They analyzed data collected using a computer-
based learning environment of student groups playing a serious
game. For their analysis they employed KmL, an R package for
applying k-means clustering on longitudinal data (Genolini and

Falissard, 2011). They too identified three different states using
the proposed unsupervised method. There are different layers of
collaboration that range from individual behaviors to group
dynamics to overall ability to work interdependently. The
codes defined for Level A in our CCM model describe the
“Overall ability to work together interdependently”. From
different theories on collaboration, we derived five codes or
collaboration quality states that help describe how groups tend
to work together (Alozie et al., 2020a,b). The five Level A codes
are effective, satisfactory, progressing, needs improvement and
working independently. They are used as the target label
categories in a supervised learning setup in this paper.

Other prior works include—Talavera and Gaudioso utilized
clustering methods to discover and characterize similar user
behaviors in unstructured collaboration spaces (Talavera and
Gaudioso, 2004). Spikol et al. suggested using tools from
multimodal learning analytics (MMLA) to gain insights into
what happens when students are engaged in collaborative,
project-based learning activities (Spikol et al., 2017). Soller
et al. proposed using Hidden Markov Models (HMM) to
analyze and understand how group members in an on-line
knowledge sharing conversation share, assimilate and build
knowledge together (Soller et al., 2002). Anaya and Boticario
explored unsupervised and supervised approaches to evaluate 12
quantitative statistical indicators of student interactions in a
forum (Anaya and Boticario, 2011). However, as mentioned
by them, their proposed indicators do not have any semantic
information of the message contents. For on-line collaborative
tasks, Vrzakova et al. examined unimodal data recordings (like
screen activity, speech and body movements) and respective
multimodal combinations, and tried correlating them with task
performance (Vrzakova et al., 2020).

Guo and Barmaki used a deep-learning based object detection
approach for analysis of pairs of students collaborating to locate
and paint specific body muscles on each other (Guo and Barmaki,
2019). They used a Mask R-CNN for detecting the students in the
video recordings. They claim that close proximity of group
participants and longer time taken to complete a task are
indicators of good collaboration. However, they quantify
participant proximity by the percentage of overlap between
the student masks obtained using the Mask R-CNN. The
amount of overlap can change dramatically across different
view points. Also, collaboration need not necessarily be
exhibited by groups that take a longer time to complete a
task. In this paper, the deep-learning models are based on
the systematically designed multi-level collaboration
conceptual model shown in Figure 1.

3 BACKGROUND

3.1 Cross-Entropy Loss Functions
The categorical-cross-entropy loss is the most common loss
function used to train deep-learning models. For a C-class
classification problem, let the input variables or feature
representation be denoted as x, ground-truth label vector as y
and the predicted probability distribution as p. Given a training
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sample (x, y), the categorical-cross-entropy (CE) loss is simply
defined as

CEx(p, y) � −∑
C

i�1
yi log(pi) (1)

Here, pi represents the predicted probability of the i-th class.
Here, ∑i yi � ∑i pi � 1, with both y and p representing vectors of
length C. For imbalanced datasets, the categorical-cross-entropy
loss causes the learnt weights of the model to be biased towards
classes with more number of samples in the training set. Also, if
the label space of the dataset exhibits an ordered structure, the
categorical-cross-entropy loss will only focus on the predicted
probability of the ground-truth class. It ignores how far off the
incorrectly predicted sample actually is from the ground-truth
label. These limitations can be addressed to some extent by using
the ordinal-cross-entropy (OCE) loss function (Som et al., 2020),
defined in Equation 2.

OCEx(p, y) � −(1 + w) ∑
C

i�1
yi log(pi)

w � |argmax(y) − argmax(p)|
(2)

Here, (1 + w) represents the weighting variable, argmax
returns the index of the maximum valued element and |.|
returns the absolute value. When training the model, w � 0
for correctly classified training samples, with the ordinal-cross-
entropy loss behaving exactly like the categorical-cross-entropy
loss. However, for misclassified samples the ordinal-cross-
entropy loss will return a higher loss value. The increase in
loss is proportional to how far away a sample is misclassified
from its ground-truth class label. In our previous works (Som
et al., 2020; Som et al., 2021) we found the higher loss penalization
helps improve the overall classification performance of themodel.

3.2 Mixup Data Augmentation
Class imbalance is a very common issue in most naturally
occurring datasets. For a classification problem, it refers to the
unequal representation or occurrence of samples in different class
label categories. This can happen despite best data collection
practices. If not appropriately addressed it can result in unwanted
biases creeping into the machine learning model. For example, if
the training dataset used to train the machine learning model is
more representative of some label categories, then the model’s
prediction would systematically be worse for the under-
represented categories. Conversely, over-representation of

certain classes can skew the decision towards a particular
result. Mixup augmentation is a simple technique that can be
used for imbalanced datasets (Zhang et al., 2017). Mixup helps
generate additional synthetic training samples and encourages
the machine-learning model to behave linearly in-between the
different label categories. It extends the training distribution by
incorporating the prior knowledge that linear interpolations of
input variables x should lead to linear interpolations of the
corresponding target labels y. Consider the following example,
let (x1, y1) and (x2, y2), represent two random training samples in
our imbalanced dataset. We can create additional samples from
these two samples by linearly combining the input variables and
their corresponding class labels, as illustrated in Eq. (3).

~x � λx1 + (1 − λ)x2
~y � λy1 + (1 − λ)y2 (3)

Here, (~x, ~y) represents the generated synthetic sample, with
λ ∈ [0, 1]. λ is sampled using a Beta(α, α) distribution with α ∈ (0,
∞). Figure 3 shows different Beta(α, α) distributions for α � 0.1,
0.4, 0.7, 1.0 respectively. If α approaches 0 then the λ sampled has
a higher probability of being 0 or 1. If α approaches 1 then the Beta
distribution resembles more closely to a uniform distribution.
Based on empirical findings of other researchers (Zhang et al.,
2017; Thulasidasan et al., 2019), for our experiments we set α � 0.4.
However, for doing controlled Mixup we only sample λ above a
certain threshold.Wewill discuss this inmore detail in Section 4.3.
Apart from improving the classification performance on various
image classification benchmarks (Zhang et al., 2017), Mixup also
leads to better calibrated deep-learningmodels (Thulasidasan et al.,
2019). This implies that the predicted softmax scores of a model
trained using Mixup are better indicators of the actual likelihood of
a correct prediction than models trained in a regular fashion.

4 DATASET DESCRIPTION, FEATURE
EXTRACTION AND SYNTHETIC DATA
GENERATION

4.1 Dataset Description and Analysis
Audio and video data recordings were collected from 15 student
groups, across five middle schools. Amongst these groups, 13
groups had four student participants, one group had three
students, and one group had five students. The student
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FIGURE 3 | Beta(α,α) distributions for α � 0.1, 0.4, 0.7, 1.0 respectively. Each Beta distribution plot has a different y-axis range and represents a 500-bin histogram
of 200,000 randomly sampled λs. Note, most λs for Beta(0.1,0.1) are at 0 and 1. This illustration was first described in (Som et al., 2020).
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participants first completed a brief survey to collect information
like demographic profile, languages spoken, ethnicity and
comfort levels with different science concepts. Each group was
given the objective of completing 12 open-ended life science and
physical science tasks in 1 hour, requiring them to construct
models of different science phenomena as a team. Note, each
group tried to complete as many tasks possible in the assigned
hour. This resulted in 15 hours of audio and video recordings.
They received logistic and organization instructions but received
no help in group dynamics, group organization, or task
completion.

Next, the data recordings were manually annotated by
education researchers at SRI International. For the rest of
the paper we will refer to them as coders/annotators. In the
hierarchical CCM model (Alozie et al., 2020a,b), we refer to the
collaboration quality annotations as Level A, individual student
role annotations as Level B2 and individual student behaviors as
Level C. The coding rubric for these three levels is described in
Table 1. Level A codes were assigned over each task, i.e. each
task was coded using one Level A code which indicated the
overall collaboration quality of the group. Level B2 codes were
assigned over 1 minute long segments, and Level C codes were
assigned over fluid-length segments. A primary and secondary
code was assigned for Level C, while making sure that the coder
always assigned at least the primary code. This was done
because a student could exhibit either one or multiple
simultaneous behaviors when carrying out the task. Next,
Levels A and B2 were coded by three annotators. However,
Level C was carefully coded by just one annotator. Levels A and
B2 were annotated by three annotators to provide variety in
group level behavioral characterizations. Both these levels
require a higher level of inference, and we confirmed the
interpretation of overall group quality assessment and
student role identification with a majority decision (more
details about this in the following paragraphs). However,
Level C requires less inference and the annotators can
identify demonstrable interactions and behaviors more easily.

When annotators were trained to obtain inter-rater reliability
(IRR), the low inference nature of Level C allowed for just one
annotator. Also, all annotations created went through a quality
checking process to make sure that the annotators maintained
reliability throughout the annotation process. The annotators
first manually coded each level for the Video modality and later
coded the same task for the Audio + Video modality. This was
done to prevent any coding bias resulting due to the difference
in modalities. They used ELAN (an open-source annotation
software) to annotate (Wittenburg et al., 2006). A total of 117
tasks were coded by each annotator, with the duration of each
task ranging from 5 to 24 min.

The frequency of the different codes at each level can be seen in
Figure 2. Differences in the occurrence of certain codes across the
two modality settings can be directly attributed to the availability/
lack of auditory information at the time of coding. Moderate-
agreement was observed across the coders as seen from the IRR
measurements in Table 2. The table doesn’t show IRR for Level C
as we only had one coder at this level. Notice that the IRR
measurements are very similar across the two modality settings.
However, the IRR measurement is always greater in the Audio +
Video modality setting. Note, we consider moderate-agreement
at Level B2 to be good as it implies that there is sufficient
variability in the codes/annotations observed at this level. This
allowed us to treat the Level B2 codes provided by each of the
three annotators as separate, independent data points. If the
coders were in perfect-agreement then there would less
observed variations which would have forced us to discard
several data instances as we could get away by using the codes
from just one coder.

The relationship across the different levels can be easily
visualized using co-occurrence matrices and is shown in
Figure 4. A co-occurrence matrix allows us to visualize codes
at levels B2/C that frequently occur for each code in Level A.
These visualizations can help us understand the type of patterns
the machine-learning model could potentially end up learning in
order to differentiate the different Level A classes. We notice very
subtle differences across the two modality settings for the A-B2
co-occurrence matrix. However, we see greater differences in the
case of the A-C co-occurrence matrix. In Section 5 we will see
how these difference impact the overall performance of the
different deep-learning models.

Recall that Level A codes represent the target label categories
for our classification problem. To determine the ground-truth
Level A code, the majority vote (code) across the three
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TABLE 1 | Coding rubric for levels A, B2 and C. The coding rubric for levels B2 and C was first discussed in (Som et al., 2020).

Level A Codes Level B2 Codes Level C Codes

Effective Group guide/Coordinator Talking Recognizing/Inviting other’s contributions Joking/Laughing
Satisfactory Contributor (Active) Reading Setting group roles and responsibilities Playing/Horsing around/Rough housing
Progressing Follower Writing Comforting, encouraging others/Corralling Excessive difference to authority/Leader
Needs Improvement Conflict resolver Using/Working with materials Agreeing Blocking information from being shared
Working Independently Conflict instigator/Disagreeable Setting up the physical space Off-task/Disinterested Doing nothing/Withdrawing

Off-task/Disinterested Actively listening/Paying attention Disagreeing Engaging with outside environment
Lone solver Explaining/Sharing ideas Arguing Waiting

Problem solving/Negotiation Seeking recognition/Boasting

TABLE 2 | Inter-rater reliability (IRR) measurements.

Level Average agreement Cohen’s Kappa

Video Audio + Video Video Audio + Video

A 0.6606 0.7046 0.4756 0.4908
B2 0.6426 0.6741 0.4942 0.5459
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annotators was used as the ground-truth. For cases where a clear
majority was not possible, we used the median of the three codes
as the ground-truth, based on the ordering depicted in Table 1.
For example, if the three coders assigned Satisfactory,
Progressing, Needs Improvement for the same task then
Progressing would be used as the ground-truth label. Note,
we did not observe a majority Level A code for only two tasks in
each modality setting. For learning mappings from Level B2 →
Level A we had access to only 351 data samples (117 tasks × 3
coders). However, we only had access to 117 data samples
(117 tasks coded) for training the machine learning models
to learn mappings from Level C → Level A. This makes it an
even more challenging classification problem. However, we
address the limited data issue by permuting the order of the
students and by using the controlled variant of Mixup
augmentation. These are discussed in more detail in Section
4.2.3 and Section 4.3.

4.2 Feature Extraction
In this section we go over the evolution of the different feature
representation types extracted from our dataset. We start with the
simple histogram representation that was discussed in (Som et al.,
2020), followed by the temporal representation that was
introduced in (Som et al., 2021). Next, we discuss how these
two representation types influenced our decision to explore
spatio-temporal representations. Finally, we end this section by
describing how to increase and balance out the training dataset
by permuting the student order in the spatio-temporal
representation and using the controlled variant of Mixup
augmentation.

4.2.1 Histogram Representation
As mentioned earlier, Level B2 was coded using fixed-length
1 min segments and Level C was coded using variable-length
segments. This is illustrated in Figure 5. A simple yet effective
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FIGURE 4 | Co-occurrence matrix visualization between Level A and Level B2; Level A and Level C, for the two modality settings.

FIGURE 5 | Histogram feature generation for Level B2 and Level C. Different colors indicate different codes assigned to each segment. A B2 histogram was
generated for each task by compiling over all the codes, from all the students in the group. Similarly, level C histogramwas generated by compiling all the codes, sampled
at every 0.1 s over the duration of the task. This illustration was first described in (Som et al., 2020).
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way to summarize and represent all the information in the task is
by generating histogram representations of all the codes observed
during the task. Figure 5 illustrates the histogram generation
process. We first described this process in the following paper
(Som et al., 2020). It is quite straightforward to generate
histograms for Level B2. However, in the case of Level C we
compile all the codes observed after every 0.1 s for generating
the histogram. Once the histogram is computed we normalize it
by the total number of codes observed in the histogram.
Normalizing helps remove the temporal aspect associated
with the task. For example, if one group took 10 min to
finish a task and another group took 30 min to solve the
same task, and both groups were assigned the same Level A
code despite the first group having finished the task sooner. The
raw histogram representations of both these groups would seem
different due to the difference in number of coded segments.
However, the normalized histograms would make them more
easier to compare.

4.2.2 Temporal Representation
In our dataset, the longest task recorded was little less than 24 min
long. For this reason we set the maximum length for all tasks to
24 min. Due to the fixed-length nature of the segments in Level
B2, we assigned an integer value to each B2 code. This means that
the seven B2 codes shown in Table 1 were assigned integer values
from 1 to 7. The value 0 was used to represent empty segments,
i.e., segments that were not assigned a code. For example, in the
B2 temporal representation shown in Figure 6, we see a group
containing four students that complete a task in 4 min. The
remaining 20 min and the 5th student is assigned a value zero,
represented here by the gray colored cells. Thus for each task, the
Level B2 temporal feature will have a shape 24 × 5, with 24
representing the number of minutes and 5 representing the
number of students in the group.

We only evaluated Level B2 temporal representations with 1D
ResNet models in our previous paper (Som et al., 2021). In this
paper we extend our analysis and explore the predictive
capabilities of Level C temporal representations. We use 1D
ResNet models here as well. However, despite our best efforts
it was impossible to directly reuse the process described to
generate Level B2 temporal features and use it for Level C. In
addition to the variable-length segments, the annotators were
instructed to assign a primary and a secondary code for each
student. Also, the duration of the assigned primary and secondary
codes can be different, further adding to the complexity. To make
things simple, we divided the task into fixed-length, non-
overlapping time windows of length T. Within each window,
we compiled all the primary and secondary codes observed after
every 0.1 s and computed a histogram representation for each
student. This process is similar to the histogram generation
process described in the previous section. However, now we
generate histograms over fixed-length segments for each
student separately. The overall process is clearly illustrated in
Figure 6. Finally, we concatenate the generated histograms. Thus,
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FIGURE 6 | Level B2 and Level C temporal representation for a group containing four students. Colored cells represent the different codes listed in Table 1, and the
gray cells represent empty or unassigned codes.

FIGURE 7 | Illustration of a spatio-temporal data sample. Black colored
cells indicate the code that was assigned to each student during the task.
Colored boxes indicate the different codes at levels B2 and C.
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Level C temporal representation consists of dynamically varying
set of histograms for each student. In addition to the 23 codes
listed in Table 1, we also include an unassigned or empty code for
instances when no code was assigned by the annotator, as shown
by the gray colored segments in Figure 6. Let us consider the
following example: When T � 60 s, the Level C temporal feature
will have a shape 24 × 120, where 120 corresponds to the 24-bin
histogram (23 Level C codes and 1 unassigned/empty code)
computed for each of the 5 students and 24 corresponds to
the total number of minutes.

4.2.3 Spatio-Temporal Representation
To mitigate the challenges and limitations faced in designing the
histogram and temporal representations, in this section we
describe the spatio-temporal feature generation process and
discuss the benefits that come from this type of representation.
As illustrated in Figure 7, the spatio-temporal representation
design is inspired from both the histogram and temporal feature
generation processes. Its appearance is exactly the same as the
Level C temporal feature. However, now we extend this design to
Level B2 as well. The 2D representation space allows us to use
various 2D CNN deep-learning models that have been carefully
designed and validated. Also, this representation makes it easier
to generate additional training samples using the controlled
Mixup augmentation technique. Mixup augmentation was not
possible in the case of B2 temporal features, as we had used
integer values to represent each code. The spatio-temporal
representation also allows us to generate more data samples by
permuting the order of students in the group. This was also
possible in the case of the temporal representation but was not
explored in our previous paper. Since we observe a maximum of 5
students in our dataset, through permutation we can generate 120
variations/permutations from a single spatio-temporal sample.
This alone allows us to increase the size of our dataset by 120
times, without any Mixup augmentation.

The black colored cells in Figure 7 indicate which codes were
assigned to each student at every minute in the task. For Level B2
only one code was assigned over fixed-length 1 minute segments.

However, for Level C there could be multiple codes observed over
the defined period of time (T). With that said, the underlying
process to generate the spatio-temporal representation still
remains the same for both levels. The only main difference in
the case of Level C is that for each student, the histogram
computed over time window T is normalized such that all its
elements sum to 1. Other than that, all the above mentioned
advantages still hold true for both levels B2 and C.

4.3 Controlled Mixup Augmentation
We know that our dataset has an imbalanced label distribution, as
seen from the distribution of Level A codes in Figure 2.
Conventional Mixup selects a random pair of samples and
linearly interpolates them using a λ that is sampled from a
Beta distribution. However, this does not help address the
class imbalance problem. We want to be able to generate a
fixed number of samples for a specific label category. We do
this by first limiting the range of λ, i.e., λ ∈ [τ, 1], with τ
representing the desired threshold. Figure 8 shows a Beta
(0.4,0.4) distribution where we only sample λ above threshold
τ. Next, we generate additional samples for a specific class
by pairing that class with its adjacent or neighboring classes.
Let us use the following denotation: (primary-class, [adjacent-
class-1, adjacent-class-2]), where primary-class represents the
class for which we want to generate more samples; adjacent-
class-1 and adjacent-class-2 represent its immediate class
neighbors. Using this convention we create the following
pairs: [Effective, (Satisfactory, Progressing)]; [Satisfactory,
(Effective, Progressing)]; [Progressing, (Satisfactory, Needs
Improvement)]; [Needs Improvement, (Progressing, Working
Independently)]; and [Working Independently (Progressing,
Needs Improvement)]. The final step involves generating n
samples for the primary-class using Mixup. We do this by
randomly pairing samples from the primary-class with
samples from its adjacent-classes. This process is repeated n
times to create n synthetic samples. Note, λ is always
multiplied with the primary-class sample and (1—λ) is
multiplied with the adjacent-class sample. We used controlled
Mixup augmentation for the first time in (Som et al., 2020), where
we used it to generate additional samples for the under-
represented classes for the histogram representations. Here too
we apply controlled Mixup on spatio-temporal representations
after increasing the training set by permuting the samples. Here,
we set τ � 0.9 and n � 25000.

5 EXPERIMENTS

5.1 Network Architecture
We used a simple 5-layer Multi Layer Perceptron (MLP) model
for the histogram representations and a temporal/1D ResNet
model for the temporal representations. Detailed description of
the architecture design for these two models can be found in the
following papers (Som et al., 2020; Som et al., 2021). The spatio-
temporal representation was specifically designed for it to be
easily plugged into various 2D CNN models, that have been
widely used and validated in other research works. However, in
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FIGURE 8 | Illustration of a Beta(α, α) distribution with α � 0.4. Using
Mixup we generate additional data samples, where the λ selected is always
above threshold τ.
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this paper we limited ourselves to a very light and simple 2D CNN
architecture design. Our model consists of an input layer that
takes in the spatio-temporal representation; one 2D convolution

layer containingm filters of shape h ×w; one batch-normalization
layer; one ReLU activation layer; followed by a global-average-
pooling layer and a softmax layer. Filter parameters h,w represent
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TABLE 3 |Weighted precision, weighted recall and weighted F1-score Mean ± Std measurements for the best MLP, ResNet and 2D CNN models under different settings.
These models were evaluated on different feature representations extracted for Level B2.

Feature Classifier Video Audio + Video

Weighted
precision

Weighted
recall

Weighted
F1-Score

Weighted
precision

Weighted
recall

Weighted
F1-Score

B2 Histogram
Som et al., (2020)

SVM 74.60 ± 11.27 62.67 ± 9.42 63.84 ± 11.18 84.45 ± 13.43 73.19 ± 16.65 76.92 ± 15.39
MLP—Cross-Entropy Loss 76.90 ± 12.91 73.95 ± 11.02 72.89 ± 13.22 83.72 ± 16.50 86.42 ± 10.44 84.40 ± 13.85
MLP—Cross-Entropy Loss + Class-
Balancing

77.08 ± 13.03 73.84 ± 13.27 74.12 ± 13.59 83.93 ± 17.89 85.29 ± 14.37 84.16 ± 16.23

MLP—Ordinal-Cross-Entropy Loss 81.51 ± 13.44 79.09 ± 13.62 79.11 ± 13.96 86.96 ± 14.56 88.78 ± 10.36 87.03 ± 13.16
MLP—Ordinal-Cross-Entropy Loss
+ Class-Balancing

80.78 ± 14.12 78.70 ± 11.98 77.93 ± 14.05 86.73 ± 14.43 88.20 ± 9.66 86.60 ± 12.54

MLP—Cross-Entropy Loss + Mixup 81.61 ± 12.81 73.56 ± 10.31 76.40 ± 11.00 88.51 ± 12.32 83.58 ± 14.14 85.64 ± 13.23
MLP—Ordinal-Cross-Entropy Loss
+ Mixup

83.30 ± 10.06 76.57 ± 9.42 79.06 ± 9.66 89.59 ± 10.15 84.93 ± 13.20 86.09 ± 12.94

B2 Temporal
Som et al. (2021)

ResNet—Cross-Entropy Loss 69.78 ± 18.79 66.84 ± 11.56 65.74 ± 15.39 84.75 ± 13.21 83.10 ± 11.92 82.72 ± 12.74
ResNet—Cross-Entropy Loss +
Class-Balancing

68.63 ± 16.05 67.21 ± 12.66 65.44 ± 14.15 84.03 ± 15.13 83.28 ± 11.42 82.97 ± 12.84

ResNet—Ordinal-Cross-Entropy
Loss

71.16 ± 20.75 71.09 ± 14.53 68.70 ± 18.69 85.24 ± 15.68 87.23 ± 10.52 85.56 ± 13.38

ResNet—Ordinal-Cross-Entropy
Loss + Class-Balancing

74.65 ± 13.71 72.60 ± 12.56 71.11 ± 13.18 84.34 ± 15.75 87.88 ± 11.22 85.68 ± 13.58

B2 Spatio-
Temporal

CNN—Ordinal-Cross-Entropy Loss
+ Mixup + Permutation

75.90 ± 13.57 62.37 ± 8.73 66.57 ± 9.57 88.55 ± 12.09 81.01 ± 12.54 83.56 ± 12.25

TABLE 4 |Weighted precision, weighted recall and weighted F1-score Mean ± Std measurements for the best MLP, ResNet and 2D CNN models under different settings.
These models were evaluated on different feature representations extracted for Level C.

Feature Classifier Video Audio + Video

Weighted
precision

Weighted
recall

Weighted
F1-score

Weighted
precision

Weighted
recall

Weighted
F1-score

C Histogram
Som et al., (2020)

SVM 59.27 ± 27.00 42.76 ± 20.69 46.85 ± 22.26 72.33 ± 20.33 60.15 ± 19.45 63.25 ± 17.96
MLP—Cross-Entropy Loss 63.24 ± 20.78 65.73 ± 16.34 60.46 ± 17.57 81.15 ± 16.90 84.16 ± 11.67 81.70 ± 14.41
MLP—Cross-Entropy Loss +
Class-Balancing

63.82 ± 22.08 64.77 ± 18.51 60.64 ± 19.89 80.44 ± 18.11 84.88 ± 11.70 81.67 ± 15.06

MLP—Ordinal-Cross-Entropy Loss 68.16 ± 27.13 72.59 ± 17.88 67.88 ± 23.01 86.05 ± 14.11 86.90 ± 11.43 85.33 ± 13.07
MLP—Ordinal-Cross-Entropy Loss
+ Class-Balancing

71.74 ± 24.34 74.10 ± 16.75 70.37 ± 20.94 85.24 ± 13.54 86.11 ± 11.65 84.94 ± 12.52

MLP—Cross-Entropy Loss +Mixup 72.27 ± 23.29 64.45 ± 19.55 66.02 ± 20.35 84.25 ± 13.78 81.91 ± 13.68 81.82 ± 13.93
MLP—Ordinal-Cross-Entropy Loss
+ Mixup

75.11 ± 21.63 69.54 ± 18.64 70.03 ± 20.01 82.94 ± 14.63 81.91 ± 14.68 81.63 ± 14.46

C Temporal ResNet—Cross-Entropy Loss 70.52 ± 23.18 71.75 ± 19.90 70.19 ± 21.73 82.41 ± 18.70 84.76 ± 13.58 82.02 ± 16.58
ResNet—Cross-Entropy Loss +
Class-Balancing

75.00 ± 19.29 73.09 ± 17.98 72.12 ± 18.81 80.53 ± 17.85 84.99 ± 12.93 81.95 ± 16.04

ResNet—Ordinal-Cross-Entropy
Loss

74.26 ± 18.07 73.17 ± 16.85 71.65 ± 18.18 84.20 ± 19.69 84.57 ± 17.19 83.50 ± 18.55

ResNet—Ordinal-Cross-Entropy
Loss + Class-Balancing

78.18 ± 18.56 76.59 ± 14.44 75.21 ± 17.23 81.98 ± 13.69 84.86 ± 13.69 82.64 ± 15.48

C Spatio-
Temporal

CNN—Ordinal-Cross-Entropy Loss
+ Mixup + Permutation

76.30 ± 12.96 60.54 ± 20.73 63.68 ± 17.70 85.24 ± 14.35 78.63 ± 16.66 80.48 ± 16.57
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the filter height and width along the temporal (along time) and
spatial (across students) axis respectively. Here, w � 5 (#of codes
at Level B2/C). We variedm � 1, 6, 24, 96; h � 1, 2, 4, and reported
results for the best performing case. The filters were made to
stride only along the temporal axis, with the stride-length set to 1.
Based on these parameter settings, the number of trainable
parameters ranged from 53 to 16133 for B2 spatio-temporal
features and 133 to 46853 for C spatio-temporal features. The
number of trainable parameters here is significantly smaller than
the MLP and ResNet models we explored in our previous studies.

5.1.1 Training and Evaluation Protocol
All models were developed using Keras with TensorFlow backend
(Chollet, 2015). We used the Adam optimizer (Kingma and Ba,
2014) with the Ordinal-Cross-Entropy loss function and trained
the 2D CNNmodels for 100 epochs. The batch-size, patience and
minimum-learning-rate hyperparameters to 64, 10, and 0.0001
respectively. The learning-rate was reduced by a factor of 0.5 if the
loss did not change after a certain number of epochs, indicated by
the patience hyperparameter. We saved the best model that gave
us the lowest test-loss for each training-test split. We used a
round-robin leave-one-group-out cross validation protocol. This
means that for our dataset consisting of g student groups, for each
training-test split we used data from g—1 groups for training and
the left-out group was used as the test set. This was repeated for all
g groups and the average result was reported. For our experiments
g � 14 though we have temporal representations from 15 student
groups. This is because all samples corresponding to the Effective
class were found only in one group. Due to this reason and
because of our cross-validation protocol we do not see any test
samples for the Effective class in the Audio + Video modality
setting and for the Working Independently class in the Video
setting. We also used the leave-one-group-out protocol for
training the MLP and ResNet models. Please refer to the
following papers for a detailed description of the different
hyperparameter settings used in the MLP and ResNet models
(Som et al., 2020; Som et al., 2021). Also, all models were
evaluated on the original test set, that was not subjected to
any augmentation.

5.2 Performance Comparison Across
Different Feature Representations
Here we compare the performance between the 2D CNN, ResNet
and MLP models. Based on F1-Score performance, Tables 3 and 4
summarize the best performing models under the different feature-
classifier settings for levels B2 and C respectively. The histogram
feature results were first presented in Som et al. (2020). The temporal
feature results for Level B2 in the Audio + Video modality setting
were discussed in Som et al. (2021). In this paper we extend that
analysis and show results for Level B2 temporal features in the Video
modality setting and Level C temporal features in both modality
settings. In the case of Level B2, for both modality settings the F1-
Score performance tends to decrease as we go from the histogram
representation towards the spatio-temporal representation. This
could be attributed to the discrete nature of the data as we try to
add more nuanced details to better represent and model Level B2

information. However, we see a different trend in the case of Level C.
We notice that Level C temporal features perform significantly better
than their histogram and spatio-temporal counterparts. One could
expect the temporal and spatio-temporal representations at Level C to
show similar performance since the underlying feature generation
process is the same. The difference could be attributed to the type of
deep-learning model used to model each feature type.

Ideally we want high precision and high recall. However, in
realistic cases and when working with limited, imbalanced test sets,
we should strive for a higher precision than recall. Luckily, our 2D
CNN models across both levels exhibit a higher precision that is
comparable to or even better than the highest precision MLP and
ResNet models. Another thing to note is that our 2D CNNmodels
are one to four orders of magnitude smaller than the ResNet and
MLP models used in our previous studies. This is reassuring as it
implies that there is still scope for improvement by using more
sophisticated 2D architecture models. The reason for using such a
small model was two-fold: First, we wanted to quickly check the
ability of very simple 2D CNN models in estimating collaboration
quality and their utility in the proposed recommendation system
design; Second, we wanted to reduce the overall training time. We
were able to create a large training set thanks to permuting
the students and controlled Mixup augmentation. However, the
larger training set resulted in longer training times. Use of more
sophisticated models would entail training several thousand or
million parameters. This could make the whole training
process even slower. Thus, we decided to keep the deep-
learning model simple.

5.3 Performance Across Modality Settings
From the summarized result shown in Tables 3 and 4, one can
immediately notice the huge difference in classification
performance across the two modality settings. This is true
irrespective of the level or the representation type. Our initial
hypothesis for the lower performance of Video modality features
leaned towards the possibility of recording noisy annotations. This
could be due to the absence of audio information at the time of
coding. Note, annotations for levels A, B2 and C were first created
under the Video modality setting and then in the Audio + Video
setting. This was done to prevent any coding bias that could result
due to the difference in modality conditions. If our hypothesis is
true then that would entail that the codes created in the Video
setting do not accurately capture events in the Video recording. To
test this, we trained our deep-learning models to map features
from the Video setting to ground-truth labels in the Audio +
Video modality setting. For convenience, we will refer to this
setting as the Cross-modal setting. To our surprise, models trained
in this protocol showed a significant improvement in their F1-
Score classification performance, thereby rejecting our initial
hypothesis. Figures 9, 10 compare the F1-Score performance
across the Video, Audio + Video and the new Cross-modal
setting. Here, H1-H6 represent the different histogram-classifier
settings; T1-T4 represent the different temporal-classifier settings;
and ST1 represents the spatio-temporal-classifier setting. Except
for H5 and H6 in the case of Level B2, in all other cases we observe
the Cross-modal setting perform close to and at times better than
the Audio + Video modality setting.
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This is an important finding as it implies that for the lower
levels in CCM model (like B2, C), visual cues alone can help
capture important details in the video recording. However,
complex, higher level information like group collaboration
requires both Audio and Video information for it to be
accurately coded. We do not deny that Audio information is
important even for the lower levels, but we believe that we can get
away with a reasonably good deep-learning model in the

situations where audio recording is not available. This is also
similar to practical real-world setup. Teachers often have to assess
non-verbal cues to determine the state of each student and the
level of collaboration between members of the group.

5.4 Recommendation System
So far we discussed the collaboration assessment performance of
the different feature representations under different modality
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FIGURE 9 | Weighted F1-score performance of the different Level B2 features in the Video, Cross-modal and Audio + Video modality settings.

FIGURE 10 | Weighted F1-score performance of the different Level C features in the Video, Cross-modal and Audio + Video modality settings.
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FIGURE 11 | Illustration of group level and individual student level recommendations for Level B2.
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settings. Based on the graphs and tables seen so far, one could be
inclined to use either histogram or temporal representations for
effectively estimating student collaboration quality. We have no
reservations about this thought. In fact, we feel that if the purpose
of the automated system is only to predict collaboration quality
then the histogram or temporal representation should suffice.
However, if one wants to develop an automated feedback or
recommendation system, then spatio-temporal representations
should be the way to go. Spatio-temporal representations along
with the simple 2DCNNmodels proposed in this paper allow us to
identify important temporal instances and isolate import student
subsets at those instances. This level of detail is necessary in order
to effectively provide recommendations.

The recommendation system proposed in this paper follows a
stochastic-gradient-descent optimization framework. Stochastic-
gradient-descent is the underlying mechanism on which all
current state-of-the-art deep-learning systems are based on.
Traditionally, the weights of the deep-learning model are
optimized by minimizing a loss function. The loss function
can be the cross-entropy or the ordinal-cross-entropy loss, as
it is used to compute the error between the predicted and ground-
truth labels. Next, back-propagation is used to calculate the
gradient of the loss function with respect to each weight in the
model. Finally, the gradient information is used by an
optimization algorithm to update the model weights.

We use the process described above in a slightly different way
for developing the recommendation system. Instead of
optimizing the model’s weights, we now optimize the input
spatio-temporal sample for which we want to generate
recommendations. To do this we first use a pre-trained 2D
CNN model that was trained using the spatio-temporal
representations. The weights of the pre-trained model are
frozen and not updated in the recommendation system. Next,
we use the same loss function that was used to train the model,
i.e., the ordinal-cross-entropy loss. However, a different loss
function could also be used in this step. Next, we use
back-propagation to calculate the gradient of the loss function
with respect to each element in the spatio-temporal data sample.
Finally, we use the gradient information to update important
regions in the spatio-temporal sample that will help minimize the
loss function error.

The final step described above can be done in many different
ways. Using the gradient information we could update
information of all the students in the spatio-temporal sample,
which would result in a group level recommendation. We could
also restrict the optimization process to only one student or a
subset of students, which results in individual student level
recommendations. Figure 11 shows an example of our
recommendation system providing group level and individual
student level recommendations for Level B2. In both cases the
target label was set to Effective. The original sample only contains
Level B2 information of four students (Student-3 is empty) and its
collaboration quality was predicted as Needs Improvement. For
group level recommendation, our recommendation system
optimizes over the entire valid region of the sample (i.e., only
for students present in the group and for the original task
duration) till the generated sample is predicted as Effective.

We observe that the softmax probabilities of Needs
Improvement was initially high; followed by the Progressive
code and finally settling at Effective. We also notice that the
ordinal-cross-entropy loss becomes zero once the sample is
predicted as Effective. Since the pre-trained model was trained
usingMixup augmentation, our recommendation system tends to
update the sample by following the ordered nature of the label
space during the optimization process. During the optimization
process the recommendation system in most cases is able to
optimize and suggest a new role with high confidence or retains
the same role at each time instance for each student. However,
sometimes the system can get confused between multiple roles as
illustrated at minutes 11 and 14 for student 1, minute 11 for
student 2 and minute 12 for student 5 under the group level
recommendation example in Figure 11. This implies that the
system suggests a weighted combination of multiple roles in such
cases. One can easily address such cases by simply doing a post-
processing step and only consider the role that has the highest
confidence.

In Figure 11 we also show an example of individual student
recommendation. Here, we only optimize and provide
recommendations for Student-1. The optimization space now
is significantly less than the previous case. Due to this the
recommendation system is only able to update the spatio-
temporal sample that has a higher confidence in being
Progressive. For the same reason the ordinal-cross-entropy
loss function does not get minimized all the way to zero. This
is similar to a realistic scenario, since it is very unlikely or rather
very difficult to offer a recommendation to one student that will
drastically improve the overall collaboration quality of the group.

In addition to providing positive feedback and
recommendations, our system is also capable of showing
scenarios of bad student roles that can further hamper the
overall collaboration quality. For example, by simply setting
the target label to Working Independently, our
recommendation system can update the sample to show a
scenario of either everyone or specific students in the group
exhibiting poor individual roles. An important thing to note here
is that the recommendations generated by our system is entirely
dependent on how well the pre-trained classification model is
trained. Biases learnt by the model can be reflected in the
recommendations provided by the system. Also, the patterns
for the recommendations generated are similar to the patterns
observed in the co-occurrence matrices illustrated in Figure 4.

6 CONCLUSION

In this paper we proposed using simple 2D CNN models with
spatio-temporal representations of individual student roles and
behaviors, and compared their performance to temporal ResNet
and MLP deep-learning architectures for student group
collaboration assessment. Our objective was to develop more
explainable systems that allow one to understand which instances
in the input feature space and which subsets of students
contributed the most towards the deep-learning model’s
decision. We compared the performance of spatio-temporal
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representations against their histogram and temporal
representation counterparts (Som et al., 2020; Som et al.,
2021). While histogram and temporal representations alone
can help achieve high classification performance, they do not
offer the same key insights that we get using the spatio-temporal
representations.

In our paper we also help bridge the performance gap between
the Video and Audio + Video modalities by proposing the Cross-
modal setting. In this setting we use feature representations from
the Video modality and map it to labels collected in the Audio +
Video modality. This setup can help reduce the cost, energy and
time taken to collect, annotate and analyze audio recordings
pertaining to student roles and behaviors. Through our empirical
experiments we also found the importance of using both Audio
and Video recordings to create more accurate overall student
group collaboration annotations/codes. Group collaboration is a
far more complicated process and might not be effectively
captured with Video recordings alone, as suggested by the
classification performance in the Video modality setting where
both input features and target labels were obtained using only
Video recordings.

Using the spatio-temporal representations and 2D CNN
models we also proposed an automated recommendation
system. This system is built on top of the 2D CNN model that
was trained for assessing overall group collaboration quality. We
considered both teachers and students as the target users when
developing the system and demonstrated how it can be used for
providing group level or individual student level
recommendations of improved student roles. Teachers can
first visualize the recommendations provided by the system
and communicate it with the students or the students
themselves can check the recommendations and approach the
teacher for more insight.

6.1 Limitations and Future Work
The analysis and findings discussed in this paper can help guide
and shape future work in this area. Having said that our approach
of using 2D CNN models with spatio-temporal features can be
further extended and improved in several ways. For starters, we
can explore more complex and sophisticated deep-learning
models to further push the performance of the spatio-
temporal representations. The spatio-temporal representation
design assumes that we have prior knowledge of the
maximum task length. We can search for alternative
representation designs that offer robustness to this requirement.

The proposed recommendation quantitatively behaves the
way we expect it to. However, evaluating the quality of the
recommendations is beyond the scope of this paper. In the
future we plan to evaluate the recommendation quality by
working closely with teachers. We also intend to check the
usefulness of the recommendations by using surveys to ask
students to rate the recommendations they received and
whether it benefited them at different periods during the
school year. For the recommendation system we can also

search for more innovative ways to optimize the
recommendations. We could use tools like LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017) to aid in the
recommendation process. These packages compute the
importance of the different input features and help towards
better model explainability and interpretability. Another
possible research direction could be to use information from
teachers or the student’s profile as prior information to better
assist the recommendation process. We could also have teachers
modify the recommendations provided by our system in an
active learning setting which will help fine-tune the machine
learning model and correct future recommendations. In this
paper we only focused on mapping deep learning models from
individual student roles and behaviors to overall group
collaboration. In the future we intend on exploring other
branches in the collaboration conceptual model, as described
in Figure 1.
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