
MAPFAST: A Deep Algorithm Selector for Multi Agent Path
Finding using Shortest Path Embeddings

Jingyao Ren
University of Southern California

Los Angeles, California
jingyaor@usc.edu

Vikraman Sathiyanarayanan
University of Southern California

Los Angeles, California
sathiyan@usc.edu

Eric Ewing
University of Southern California

Los Angeles, California
ericewin@usc.edu

Baskin Senbaslar
University of Southern California

Los Angeles, California
baskin.senbaslar@usc.edu

Nora Ayanian
University of Southern California

Los Angeles, California
ayanian@usc.edu

ABSTRACT
Solving the Multi-Agent Path Finding (MAPF) problem optimally
is known to be NP-Hard for both make-span and total arrival time
minimization. While many algorithms have been developed to solve
MAPF problems, there is no dominating optimal MAPF algorithm
that works well in all types of problems and no standard guidelines
for when to use which algorithm. In this work, we develop the
deep convolutional network MAPFAST (Multi-Agent Path Finding
Algorithm SelecTor), which takes a MAPF problem instance and
attempts to select the fastest algorithm to use from a portfolio of
algorithms. We improve the performance of our model by including
single-agent shortest paths in the instance embedding given to
our model and by utilizing supplemental loss functions in addition
to a classification loss. We evaluate our model on a large and di-
verse dataset of MAPF instances, showing that it outperforms all
individual algorithms in its portfolio as well as the state-of-the-art
optimal MAPF algorithm selector. We also provide an analysis of
algorithm behavior in our dataset to gain a deeper understanding
of optimal MAPF algorithms’ strengths and weaknesses to help
other researchers leverage different heuristics in algorithm designs.

KEYWORDS
Multi-Agent Path Finding; Algorithm Selection; Deep Learning

ACM Reference Format:
Jingyao Ren, Vikraman Sathiyanarayanan, Eric Ewing, Baskin Senbaslar,
and Nora Ayanian. 2021. MAPFAST: A Deep Algorithm Selector for Multi
Agent Path Finding using Shortest Path Embeddings. In Proc. of the 20th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Multi-Agent Path Finding (MAPF) is the problem of finding collision-
free paths for a team of agents traveling from start locations to goal
locations on a map. Given a map as an undirected graph, an optimal
MAPF algorithm computes paths for agents with the minimum cost,
such that no two agents occupy the same vertex or traverse the same
edge at the same timestep. MAPF is applicable to a wide variety

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

of problems, including automated warehouses, self-driving vehi-
cles, and game engines. In this work we study MAPF on 2D-grids.
Solving the MAPF problem optimally is known to be NP-Hard for
both make-span and total arrival time minimization [1, 25]. Many
types of optimal MAPF algorithms and their variants have been
proposed, including Conflict Based Search (CBS) [14], a method
based on branch-and-cut-and-price (BCP) [10], and a boolean satis-
fiability based algorithm (SAT) [19]. However, there is no optimal
MAPF algorithm that dominates the others; each algorithm may
perform well where others do poorly, and vice versa. This stems
from the inherent differences of the algorithms. For example, as we
show in Section 6.3, CBS performs well on instances where average
path lengths are small, while it performs poorly on instances where
agents need to traverse long paths since the complexity of CBS in-
creases as the number of potential conflicts between agents increase.
On the other hand, BCP performs well on instances with long path
lengths, but is outperformed by CBS when the path lengths are
small. Moreover, many real-world instances may result in both long
and short paths, increasing the difficulty of hand-picking an effi-
cient algorithm. It is also often unclear whether MAPF algorithms
have strengths or weaknesses for different map types, since they
are usually tested on a relatively small number of maps. Finally,
map features such as the density and arrangement of obstacles are
not the only factors that affect the solving speed of MAPF algo-
rithms; for example, the number and configuration of agents also
influence the performance of different algorithms. The difficulty of
hand-picking the fastest optimal MAPF algorithm for a particular
instance necessitates the development of an algorithm selector that
automatically selects the fastest optimal MAPF algorithm.

It has been shown that if a MAPF instance can be decomposed
into multiple disjoint sub-problems, solving each sub-problem in-
dependently and combining their results can be significantly faster
than solving the original problem with a MAPF algorithm [20].
Each sub-problem may have different map and agent characteris-
tics, which will affect the runtime of whatever MAPF algorithm is
chosen for each sub-problem. If it is possible to select an efficient al-
gorithm for each sub-problem, we can greatly speed up the runtime
of our overall algorithm. While many optimal MAPF algorithms
can solve instances with hundreds of agents within several min-
utes [3, 10, 11], thousands of agents in complicated maps quickly
make finding a solution intractable. Moreover, the total number of
the decomposed sub-problems may be too large, making it difficult

Main Track AAMAS 2021, May 3-7, 2021, Online

1055

and inefficient to hand-pick the best algorithms. We therefore seek
to develop an algorithm selector that can select which algorithm to
use given a MAPF instance.

In this paper, we propose MAPFAST (Multi-Agent Path Finding
Algorithm SelecTor), a novel automatic optimal MAPF algorithm
selector based on a convolutional neural network (CNN) with in-
ception modules [21]. We show that MAPFAST outperforms all
existing optimal MAPF algorithm selectors on a large dataset of
diverse MAPF instances. We propose two methods for improving
the quality of our model over previous MAPF algorithm selectors:
(1) augmenting MAPF instance encodings with single-agent short-
est paths, and (2) using supplemental loss functions to train our
model in addition to a classification loss. We empirically show that
single-agent shortest paths, regardless of map topology, contain
enough information to train an algorithm selector that outperforms
any individual algorithm in our portfolio. Compared to other ex-
isting algorithm selectors [5, 16], we introduce a more selective
and up-to-date algorithm portfolio that includes optimization, sat-
isfiability, and search based algorithms (namely BCP, SAT, CBS
and CBSH [3, 11]). We also provide insights into the certain in-
stance characteristics that may lead to algorithms to perform well
in certain environments using a dataset of more than 24,000 MAPF
instances. These insights may help researchers leverage different
heuristics in future algorithm designs.

2 RELATEDWORK
Algorithm selection is the problem of selecting the best algorithm
from a portfolio of algorithms to solve a given instance of a prob-
lem [8, 13]. Algorithm selection can be formulated as a prediction
problem, where the goal is to predict the best algorithm from a
portfolio for an input instance [17]. Such techniques have been
successfully applied to many computational problems, including
propositional satisfiability (SAT) and the traveling salesman prob-
lem (TSP) [6, 23, 24].

Although algorithm selection has been applied to many opti-
mization problems, MAPF algorithm selectors have not been well
studied in the literature. Sigurdson et al. [16] first proposed a classi-
fication model based on a convolutional neural network (CNN) by
representing the MAPF instance as an RGB image. Their model is a
version of AlexNet [9], which is modified and retrained from image
classification to try and predict the fastest solver given an image
input. Their model demonstrated that it was possible to predict
fastest algorithms for MAPF instances, although they only achieved
relatively limited performance. Kaduri et al. [5] proposed two dif-
ferent models: one based on CNNs using VGGNet [21], and the
other based on a tree-based learning algorithm named XGBoost [2].
Their work uses a MAPF algorithm portfolio that includes only op-
timal search-based algorithms. Based on our performance analysis
in Section 3.1, the best search-based algorithm in our algorithm
portfolio, namely CBSH, is the fastest algorithm for only 30% of test
cases. Thus, omitting non-search based algorithms handicaps the
performance of an algorithm selector. Their best model, XGBoost Cl,
requires hand-crafted MAPF features (e.g., number of agents, ob-
stacle density) as input to their algorithm selector. Although the
authors provide analysis of the impact of their hand-crafted fea-
tures on the performance of their model, the performance for their

algorithm selector may still be impaired by their small feature set
that may not include some important features of an instance.

3 ALGORITHM PORTFOLIO
The algorithm portfolio is a set of pre-selected candidate algorithms.
When run, an algorithm selector will select a single algorithm from
the portfolio to run on an instance and report the results of that
algorithm. Given that MAPF instances are complex and diverse, a
good algorithm portfolio must be diverse. Ideally, an algorithm in
the portfolio should have strengths that cover for the weaknesses
of the other algorithms. Many optimal MAPF algorithms are built
on top of similar approaches with different heuristics (e.g., CBS and
its variants). We seek to include optimal MAPF algorithms that are
inherently different from each other to find the best algorithms for
a variety of MAPF instances.

We select the following four algorithms for our portfolio:
• Search-based: Conflict-Based-Search (CBS) [14] and its state-
of-the-art variant with improved heuristics, CBSH [3, 11];

• Optimization-based: Branch-and-Cut-and-Price (BCP) [10],
a method based on the decomposition framework for mathe-
matical optimization;

• Satisfiability-based: A reduction of the MAPF problems to
propositional satisfiability problem (SAT) [19].

We also tested other algorithms such as EPEA* [4] and ICTS [15],
but removed them due to their limited performance compared to
the algorithms in our portfolio.

3.1 Performance Analysis
Next, we show the capabilities and different characteristics of the
algorithms in our portfolio by presenting a performance analysis
for each individual algorithm. We use three metrics to evaluate the
portfolio algorithms:

• Accuracy is the proportion of instances in which an algo-
rithm is the fastest in the portfolio.

• Coverage is the proportion of the instances that an algorithm
successfully solves within the time limit (5 minutes).

• Runtime is the overall time taken by the algorithm, in min-
utes, to solve all instances. A default value of 5 minutes is
added to the runtime when the algorithm doesn’t solve the
input instance within time limit.

Table 1: Performance analysis for portfolio algorithms on
the entire dataset

Algorithm Accuracy Coverage Runtime Solving Time

Mean Median StdDev

CBS 0.1908 0.40 77,091 3.088 5.000 2.344
CBSH 0.2953 0.91 21,380 0.856 0.133 1.530
BCP 0.5129 0.90 22,265 0.892 0.050 1.631
SAT 0.0010 0.38 85,024 3.405 5.000 2.163

Oracle 1.0 1.0 8,867 0.355 0.033 0.771

We use the MAPF Benchmarks [18] to analyze our portfolio
algorithms. Our dataset of instances contains a wide variety of
map types, including cities, video game maps, mazes, random maps
and warehouses. When generating the instances, we only keep the

Main Track AAMAS 2021, May 3-7, 2021, Online

1056

Empty Rand City Maze Game Room Ware
0.0

0.2

0.4

0.6

0.8
Ac

cu
ra
cy

CBS CBSH BCP SAT

Empty Rand City Maze Game Room Ware
0.0

0.5

1.0

Co
ve

ra
ge

Figure 1: Accuracy and coverage data for portfolio algo-
rithms with respect to different map types. Random and
Warehousemaps are labeled as Rand andWare respectively.

Table 2: Accuracy and coverage data for game maps

Map Accuracy Coverage

CBS CBSH BCP SAT CBS CBSH BCP SAT

brc202d 0.1059 0.4677 0.4264 0 0.1719 0.9917 0.7318 0.1499
orz900d 0.1073 0.5181 0.3746 0 0.1677 0.9940 0.5755 0.0997
den312d 0.1378 0.2350 0.6272 0 0.3922 0.8379 0.9951 0.4668
den520d 0.1033 0.4813 0.4154 0 0.3091 0.9862 0.7608 0.2835
lak303d 0.1785 0.2714 0.5501 0 0.2459 0.8871 0.9508 0.3461
ost003d 0.1191 0.4839 0.3970 0 0.2208 0.9739 0.8102 0.2792

game 0.1185 0.3908 0.4906 0 0.2704 0.9271 0.8275 0.2757

Figure 2: Maps in Table 2. Left to right, first row: brc202d,
orz900d, den312d; second row: den520d, lak303d, ost003d.

instances that at least one algorithm from the portfolio can solve
within the time limit (5 minutes). We generate 24967 solvable in-
stances with varying number and distribution of agents. The results
of the performance analysis are shown in Table 1. We also include
the mean, median, and standard deviation of the time needed (in
minutes) for different algorithms to solve the instances. BCP and
CBSH are successful in solving 90% of the instances. However, BCP,
the algorithm that is fastest more often than any other algorithms
in our portfolio, is only the fastest algorithm for 51% of instances.

(a) (b) (c)

Figure 3: (a) MAPF instance marked only with start (green
circles) and goal (blue squares) locations. (b)(c) Two different
mappings of the start and goal locations with respect to the
map in (a). Planned paths are marked in colored lines.

(a) (b)

Figure 4: Encoding an instance map with (a) start and goal
locations and (b) single-agent shortest paths.

Selecting only BCP to solve all the instances would take more than
twice as long as selecting the best performing algorithm for each
instance (shown as Oracle in Table 1). This further justifies the
claim that there is no dominating optimal MAPF algorithm.

To answer whether a specific algorithm always performs well in
certain types of maps, we present accuracy and coverage data with
respect to the map types in Fig. 1. We also present the accuracy and
coverage data for a subset of gamemap instances in Table 2. Overall,
BCP has the highest accuracy in the game maps. However, neither
BCP nor CBSH show dominant performance over each other for
the instances on these individual maps. CBSH outperforms BCP in
brc202d, orz900d, den520d, ost003d but the gaps for accuracy are
small. For den312d and lak303d, BCP is significantly better than
CBSH in terms of accuracy. Even for the maps that have similar
topology (e.g., den321d and den520d), the fastest algorithms can
still be different.

Based on this data, we do not find a clear relationship between
map types and algorithm performance. Some of the maps in Fig. 2
have both narrow corridors and open spaces, making it challenging
to manually choose the algorithm that works well on a certain
map types (e.g., use CBS for maps with narrow corridors). Owing
to the fact that map topologies are usually non-homogeneous, it
is necessary to analyze MAPF instances on a case-by-case basis
instead of categorizing them by map types.

4 INSTANCE ENCODING
Existing MAPF algorithm selectors encode instances using either
hand-crafted features [5] or a 2D map with each cell marked as
having a start or goal location or not [16]. Encoding an instance
using hand-crafted features cannot capture as much information
as feeding the full map into a deep learning model. However, repre-
senting a variable number of agents and goals on a map is challenge.
Sigurdson et al. [16] encode agents and goals as binary features

Main Track AAMAS 2021, May 3-7, 2021, Online

1057

for each cell, meaning a node either has an agent/goal or does not.
This method cannot distinguish between different permutations of
agent start and goal positions: different assignments of start and
goal locations to agents may lead to drastically different algorithmic
performance. Take for instance the map shown in Fig. 3a and two
permutations of agents and goals in Fig. 3b and Fig. 3c. CBS takes
0.02 s and BCP takes 0.03 s to solve the instance in Fig. 3b. With a
different mapping for start and goal locations as shown in Fig. 3c,
CBS doesn’t finish within the five-minute time limit, but BCP suc-
cessfully solves the instance in only 0.33 s. Any model trained on
binary encodings of agents and goals will not be able to differentiate
between these two very different instances. We can improve the
performance of our models by encoding into our inputs a mapping
between agents and goals. We will further justify this claim in the
Section 6.2.

We propose a newway of encodingMAPF instances that encodes
a mapping between agents and their goals. In addition to marking
the start and goal locations, we include another marking in our
input which encodes single-agent shortest paths from each agent
to its goal. A single-agent shortest path is an optimal path for an
agent without considering collisions with other agents (Fig. 4b).
For every agent, we add only a single shortest path, despite the fact
there may be many distinct shortest paths for every agent to its
goal. We encode the shortest paths on our map where each cell is
marked if it lies on a shortest single-agent path.

We initially encoded our MAPF instance into a tensor with four
layers. Each layer encoded a binary feature for each map cell: ob-
stacle, agent, goal, shortest path. Models trained on this encoding
performed relatively poorly in all metrics, perhaps requiring more
training data than we generated. We then encoded our features in
a different manner into a tensor with three layers by annotating
every cell in our map with:

• [0, 0, 0] if the cell contains an obstacle
• [1, 0, 0] if the cell lies on a shortest path from any agent to
their goal

• [0, 1, 0] if the cell is the starting location of an agent
• [0, 0, 1] if the cell is the goal location of an agent
• [0, 1, 1] if the cell is both a start and goal location
• [1, 1, 1] if the cell is empty

Note that since every cell with a start/goal location is guaranteed
to lie on a shortest path, we only mark that these cells contain a
start/goal, we do not mark that they also lie on a shortest path
since it is already implied by the presence of a start/goal. This is
the encoding we use for our CNN-based models.

5 MODELS
We introduce the following algorithm selectors in this section:
(1) CNNClass, which naively treats algorithm as a classification task,
(2) MAPFAST, an augmented version of CNNClass that achieves
significantly better results, and (3) G2V, a graph-embedding based
model that offers insights into what information is required to
perform algorithm selection on MAPF instances.

5.1 CNNClass
In this work, we model algorithm selection as a classification task
using a CNN. Our model takes as input an encoding of a MAPF

instance and returns a prediction for the fastest algorithm in the
portfolio. Inception modules are used to improve training speed
and allow for a much deeper network than architectures like VG-
GNet [21]. Moreover, since the inception module contains multiple
sizes of convolution kernels (Fig. 5), there is no need to decide the
exact kernel size for each layer as the network learns which kernel
to use.

The input to the model is a 320 × 320 × 3 tensor of the encoding
described in Section 4 (smaller instances are padded with additional
obstacles around the original map to make them 320 × 320). The
input is passed through three inception modules in our CNN (Fig. 5).
Each of the inception modules is followed by a max-pooling layer
(kernel size 3 × 3 with stride 3), a batch normalization layer and a
rectified linear unit (ReLu) activation layer. Since the pre-trained
inception network [21] uses the image size of 224 × 224 and our
map size is 320 × 320, we cannot use the pre-trained weights, thus
we train from scratch with the Adam optimizer [7].

After the three inception modules, the network outputs a feature
vector of size 15488. This is connected to a fully connected layer
which outputs 200 learned features. This learned representation
is then fed through a fully connected layer with a softmax acti-
vation function, which is the output of our model. The output is
a prediction of which algorithm in the portfolio solves the input
instance the fastest. We compute our classification loss 𝐿𝐶𝑙𝑎𝑠𝑠 using
categorical cross-entropy between our predictions and the ground
truth fastest algorithm. This model is referred to as CNNClass, as it
is only trained with 𝐿𝐶𝑙𝑎𝑠𝑠 .

5.2 MAPFAST
To improve the quality of our predictions, we further augment our
training process with two additional supplemental loss functions.
We add a second output layer using four neurons with a sigmoid
activation function to predict, for every algorithm, whether it will
finish within the time limit or not. We compute our completion loss
𝐿𝐶𝑜𝑚𝑝 using cross-entropy loss between our second output layer
and the ground truth algorithm completions.

We add an additional third output layer to predict pairwise rela-
tive performance of algorithms on an input instance. This is done
using six output neurons. The first three output neurons predict
whether BCPwill be faster than CBS, CBSH, and SAT. The following
two neurons predict whether CBS will be faster than CBSH and SAT.
The final neuron predicts whether CBSH will be faster than SAT.
Again, we compute our pairwise loss 𝐿𝑃𝑎𝑖𝑟 using cross-entropy. We
train a model with the total loss 𝐿𝑇𝑜𝑡 = 𝐿𝐶𝑙𝑎𝑠𝑠 +𝐿𝐶𝑜𝑚𝑝 +𝐿𝑃𝑎𝑖𝑟 and
refer to this combined model as MAPFAST (shown in Fig. 5).

5.3 G2V
For the previous models, we encode our MAPF instance as a tensor
that contains information about the map as well as single-agent
shortest paths. We now demonstrate that the single-agent paths
alone, regardless of map topology, contain enough information to
outperform any individual algorithm in our portfolio. We utilize
graph embedding techniques to convert the single-agent shortest
paths for an instance into an embedding and train a model to make
an algorithm prediction from this embedding.

Main Track AAMAS 2021, May 3-7, 2021, Online

1058

Figure 5: The CNN architecture of MAPFAST.

For aMAPF instance, we construct our graph encoding as follows.
First, we compute a single-agent shortest path for every agent. We
then construct a graph consisting of only nodes which lie on these
shortest paths. We add edges to all nodes which are adjacent in
our MAPF instance. This (possibly disjoint) graph serves as the
encoding of the MAPF instance. The size of our graph encoding
is often significantly smaller than the size of the original instance
map, as our graph encoding only contains nodes which lie along
shortest paths.

After encoding our MAPF instance as a graph, we use the un-
supervised graph embedding algorithm Graph2Vec [12] to embed
our graph into a vector. Graph2Vec takes as input a set of graphs
and outputs a fixed-size vector representation for each graph. We
feed Graph2Vec the graph representation of every instance in our
dataset and it produces a vector of size 128 for each instance. While
Graph2Vec requires access to every graph in our dataset (including
the test set) apriori, it does not have access to information on algo-
rithm performances while generating embeddings and can be seen
as a data preprocessing step. We train an XGBoost [2] classifier on
the embeddings generated from maps in our training set to predict
the fastest algorithm in our portfolio. This model is referred to as
G2V in our results and is using only 𝐿𝑐𝑙𝑎𝑠𝑠 , the cross-entropy loss
to optimize the classification accuracy.

The drawback of this approach is that Graph2Vec needs all
graphs before any embedding is calculated. This means that, once
trained, the model cannot be used to create a new graph embedding
for an unseen instance. Therefore, it is not a deployable algorithm
selector in any reasonable sense. However, we believe the results
from this model are very informative. Our G2Vmodel performs well
despite only having access to nodes on shortest paths, potentially
a very small fraction of the total number of nodes in the instance.
In the shortest paths, there is no explicit information on map type,
obstacle density, or map size, heuristics which have previously
been used to select algorithms [5, 20]. Despite this lack of map
information, our G2V model performs quite well, better than any
single algorithm in our portfolio and close in performance to our
CNN-based models, which have access to much more information.
This suggests that just information on single-agent shortest paths

may be enough to distinguish the performances of our portfolio
algorithms.

6 SIMULATION RESULTS
We evaluate the three models presented in the previous section:
CNNClass, MAPFAST, and G2V. Of the 24967 instances generated
from the MAPF Benchmarks [18] for our evaluation, we used 80%
for training, 10% for validation and 10% for testing. Before data
collection, we built wrappers for the algorithms in our portfolio
so that all the algorithms use a common method to read the input
instances. The code can be found at this link. We train our model
for 5 epochs with a learning rate of .001, both determined by mea-
suring performance on the validation set. All metrics reported in
the following sections for algorithms and models are reported for
the test set. Training takes two hours using an RTX 2070 GPU.

Table 3: Simulation results

Algorithm Accuracy Coverage Runtime

CBS 0.1888 0.41 7,714
CBSH 0.2810 0.90 2,211
BCP 0.5294 0.91 2,256
SAT 0.0008 0.38 8,548

XGBoost Cl 0.6711 0.95 1,694
CNNClass 0.7118 0.95 1,560
G2V 0.7130 0.95 1,548
MAPFAST 0.7689 0.97 1,339

Oracle 1.0 1.0 917

We use the classification outputs of the models to select the
fastest algorithm. To select an algorithm we take the argmax of the
classification output, and select the corresponding algorithm (if the
chosen algorithm fails to solve the instance, another algorithm is
not selected).

As mentioned in Section 3.1, we use accuracy, coverage, and
runtime to evaluate the performance of portfolio algorithms. These

Main Track AAMAS 2021, May 3-7, 2021, Online

1059

https://github.com/USC-ACTLab/MAPFAST

metrics can also be used to analyze the performance of algorithm
selectors, but with slightly different definitions.

The Accuracy metric gives the proportion of instances that the
algorithm selector correctly selects the fastest algorithm. Coverage
is the proportion of instances where the algorithm selector selects
an algorithm that solves the instance within the time limit. Runtime
is the overall time taken for the selected algorithms, in minutes, to
solve all the problems in the test set. A default value of 5 minutes
was added to runtime when the algorithm didn’t solve the input
instance within time limit.

Table 3 shows the results from evaluating our models on the
2484MAPF instances in the test set. In the first four rows, we report
results for using a single algorithm on all input instances. Our ex-
periments show that BCP and CBSH were successful in solving 90%
of the input instances. However, BCP, the best individual algorithm
in accuracy and coverage, is the fastest for only 53% of instances
and takes more than twice as long as selecting the fastest algorithm
for each instance (shown as Oracle in Table 3).

The second part of the table shows the comparison of a state-
of-the-art MAPF algorithm selector, XGBoost Cl [5], and our ap-
proach. To generate these results, we train XGBoost Cl with our
algorithm portfolio and dataset. MAPFAST successfully selects the
fastest algorithm for 77% of the input instances and had coverage
of 97%, outperforming XGBoost Cl, which had 67% accuracy and
95% coverage. Our Model G2V had a performance comparable to
our CNNClass model, with 71% accuracy and 96% coverage, also
outperforming XGBoost Cl.

The total runtime for the algorithms chosen by our models are
significantly less than using the same algorithm for every instance.
On average, it takes 1 second to annotate one input instance with
single-agent shortest paths and 0.01 second for the trained model
to select the fastest algorithm, which are negligible to the average
runtime of the best portfolio algorithm (i.e., CBSH has an average
runtime of 53 seconds). Our models also have a remarkable im-
provement of accuracy compared to all of the individual algorithms,
further justifying our approach.

Table 4: Actual and predicted coverage for MAPFAST

CBS CBSH BCP SAT

Actual Coverage 0.41 0.90 0.91 0.38
Predicted Coverage 0.42 0.89 0.87 0.40
Recall 0.90 0.95 0.95 0.91
Correctness 0.91 0.93 0.92 0.91

We use the following method to further analyze the performance
of the four output neurons in MAPFAST that use 𝐿𝐶𝑜𝑚𝑝 loss to
predict if an algorithm solves a given input instance or not. Let T
be the set of all test instances. For a particular algorithm, let S be
the set of test instances that it can solve within the time limit, and Q
be the set of test instances it cannot solve within the time limit such
that {S,Q} is a partition of T . Let S̃ be the set of test instances our
model predicts as solvable by the algorithm within the given time
limit, and Q̃ be the instances that our model predicts as not solvable
by the algorithm within the given time limit. {S̃, Q̃} is another

partition of T . The first row of Table 4 shows the actual coverage
of the algorithms in the portfolio, i.e. |S |

|T | . The second row shows

the predicted coverage of our model for each algorithm, i.e. | S̃ |
|T | .

The third row lists the recall of our model, which is the fraction of
solvable instances that our model predicts as solvable: |S∩S̃ |

|S | . The
final row lists the correctness of our model, which is the fraction of
correct outputs: | (S∩S̃)∪(Q∩Q̃) |

|T | . Our model predicts whether an
algorithm solves an instance or not with at least 91% correctness
for each algorithm. This suggests that the neural network learns
the inherent behavior of algorithms for the given MAPF instances.

6.1 Custom Scoring
We also use an additional metric, the speed award [22], which pro-
vides more information about relative performance among differ-
ent algorithms, to further analyze our models. This metric gives
a greater reward for solving tasks that not every algorithm solves
and a smaller reward to fast algorithms when every algorithm takes
around the same amount of time. For different algorithm selectors,
it gives greater rewards for the models that correctly choose the
fastest algorithm when other models fail to do so. It therefore pro-
vides more information on the relative performance of algorithms
and algorithm selectors than the accuracy and the cumulative run-
time.

To calculate the speed award, we first compute the speed factor:

speedFactor (𝑝, 𝑎𝑖) =
300

1 + timeUsed (𝑝, 𝑎𝑖)
,

where timeUsed (𝑝, 𝑎𝑖) is the time taken by the algorithm 𝑎𝑖 to solve
instance 𝑝 and 300 is the time limit for each instance. The speed
factor shows how fast an algorithm can solve an instance. The faster
an algorithm is, the higher the speed factor will be. If algorithm 𝑎𝑖
fails to solve the instance 𝑝 , the speed factor is set to 0.

Once we have the speed factor of all algorithms for a problem
instance 𝑝 , we compute the speed award for each algorithm 𝑎𝑖 to
solve instance 𝑝 as follows:

speedAward (p, ai) =
speedFactor (𝑝, 𝑎𝑖)∑

𝑎 𝑗 ∈algorithms speedFactor (𝑝, 𝑎 𝑗)
.

Here, algorithms = {BCP, CBS, CBSH, SAT, XGBoost Cl, G2V,
CNNClass, CNNAgents, MAPFAST, Oracle}. The speed award for an
algorithm has a higher value if the algorithm solves the instance
faster than other algorithms.

The final score for an algorithm on a set of problem instances is
given by

score(ai) =
∑
∀𝑝

speedAward (𝑝, 𝑎𝑖) . (1)

The custom score metric provides more information about the
relative performance between different algorithms selectors than
just using runtime metric. In particular, if the algorithms selected
by different algorithm selectors have very similar runtime, then
similar scores will be granted to these algorithm selectors instead
of giving all the credits to the fastest algorithm.

The calculated custom scores are shown in Table 5. Oracle is the
model that always selects the fastest algorithm. CNNAgents is used
for model validation which will be introduced in Section 6.2.

Main Track AAMAS 2021, May 3-7, 2021, Online

1060

Table 5: Custom score results

Algorithm SAT CBS CBSH BCP CNNAgents XGBoost Cl CNNClass G2V MAPFAST Oracle

Custom Score 28.23 78.93 222.26 280.41 287.50 288.12 296.11 299.99 320.43 382.03

Table 6: Ablation study for CNN models

Algorithm Accuracy Coverage Runtime

CNNAgents 0.6710 0.93 1,796
CNNClass, Pair 0.7061 0.96 1,605
CNNPair, Comp 0.7061 0.96 1,483
CNNClass 0.7118 0.95 1,560
CNNPair 0.7154 0.94 1,757
CNNClass, Comp 0.7335 0.96 1,471
MAPFAST 0.7689 0.97 1,339

Oracle 1.0 1.0 917

The best model should have the highest custom score. Based on
the results in Table 5, all of the algorithm selectors outperform the
portfolio algorithms. Moreover, all of our models outperform the
state-of-the-art model, XGBoost Cl. MAPFAST is ranked as the best
algorithm selector by speedAward.

6.2 Model Validation
We performed an ablation study to analyze architectural and design
choices in our network by training variants of our model with differ-
ent combinations of our loss functions. We denote the loss functions
we used as subscripts to our model, for example CNNClass, Comp is
our model trained with only the classification loss 𝐿𝐶𝑙𝑎𝑠𝑠 and the
completion loss 𝐿𝐶𝑜𝑚𝑝 . Note that with this notation, MAPFAST is
equivalent to CNNClass, Pair, Comp, but we refer to it asMAPFAST for
simplicity. For models that have classification outputs, we select the
algorithm with the highest value in the classifier output. For models
that have pairwise comparison outputs and are trained with the
pairwise performance loss 𝐿𝑃𝑎𝑖𝑟 , but don’t have classifier outputs,
we select an algorithm according to the predicted relative perfor-
mance of each algorithm. We do not evaluate a model that only
uses 𝐿𝐶𝑜𝑚𝑝 as there is not a reasonable way to select an algorithm
from predictions of algorithm completion. Additionally, we trained
a model that only used agents’ start and goal locations and did not
include single-agent shortest paths, referred to as CNNAgents. The
CNNAgents takes the same input encoding as [16], however due
to our different map size, we trained a new model from scratch.
Additionally, we saw a performance increase by using inception
modules rather than their model architecture, so we present results
for CNNAgents with the same model architecture as MAPFAST, but
with different instance encoding. Our results for all models are
presented in Table 6.

All models in Table 6 outperform each individual algorithm in
our portfolio (cf. Table 3). Training the model to predict algorithm
completion has mixed impact on accuracy, but improves coverage
and runtime scores. Interestingly, combining 𝐿𝐶𝑙𝑎𝑠𝑠 and 𝐿𝑃𝑎𝑖𝑟 de-
creases accuracy, until 𝐿𝐶𝑜𝑚𝑝 is also added to make MAPFAST,

which causes accuracy to increase 5%. Our model MAPFAST, using
all three loss functions, has best performance in all three metrics.

We have two possible explanations for why the additional loss
functions improved performance of MAPFAST: (1) The classifica-
tion loss function can be noisy, since sometimes the difference
between solution times of the two fastest algorithms is quite small.
The additional loss functions may smooth out this noise and prevent
the model from reaching a local minima. (2) 𝐿𝑐𝑜𝑚𝑝 helps the model
avoid selecting algorithms that do not finish by predicting whether
an algorithm finishes within the time limit or not. 𝐿𝑝𝑎𝑖𝑟 encodes
more about the entire ordering, not just the fastest algorithm. Both
can be seen as a means of extracting more information from each
instance than using classification accuracy alone.

The custom score of CNNAgents in Table 5 further shows its
limitation and the necessity of using shortest path embedding.
Albeit having the same model architecture, the score for MAP-
FAST (320.43) is remarkably higher than CNNAgents (287.50), which
shows the significant enhancement that the shortest path embed-
ding can bring.

6.3 Dataset Analysis
In order to gain a deeper understanding of our MAPF algorithm
portfolio, we analyze the performance of each algorithm for all the
MAPF instances we generated for training and testing the algorithm
selector. Although interpreting why MAPFAST chooses a certain
algorithm is beyond the scope of this paper, we aim to provide more
insight on when a specific algorithm might work well for a certain
scenario.

Since the input for MAPFAST contains the single-agent shortest
paths, there may be some corresponding patterns of these paths
for the test cases that have the same fastest algorithms. Here we
define SpaceRatio, which is equal to the number of map cells that
are on the single-agent shortest paths divided by the number of
the map cells that have no obstacles in it. The SpaceRatio not only
represents how much free map space is used by the single-agent
shortest paths, but also how spread the start and goal locations are
in a map. We present the scatter plots for average length of single-
agent shortest paths with respect to SpaceRatio of two different
maps in Fig. 6a and 6c. Each data point is colored by the algorithm
that solves the corresponding instance fastest. The distributions
of the average single-agent shortest path lengths and SpaceRatio
with respect to each algorithm are also shown on the top and right
sides of the figures. We see that CBS tends to perform better than
CBSH and BCP for the test cases having shorter average length
of single-agent shortest path and smaller SpaceRatios. CBSH and
BCP have similar performance on different average single-agent
shortest path lengths. However, CBSH performs better than BCP
on the test cases with higher SpaceRatios. Since the SpaceRatio is
also affected by the total number of agents, we further present the
scatter plots for the number of agents with respect to SpaceRatios

Main Track AAMAS 2021, May 3-7, 2021, Online

1061

0 100 200 300
Avg. single-agent shortest path

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sp
ac

eR
at

io

Berlin CBS
CBSH
BCP

(a)

0 100 200 300 400
Agents

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sp
ac
eR

at
io

Berlin

CBS
CBSH
BCP

(b)

0 100 200 300
Avg. single-agent shortest path

0.0

0.1

0.2

0.3

0.4

Sp
ac

eR
at

io

den520d CBS
CBSH
BCP

(c)

0 50 100 150 200 250 300
Agents

0.0

0.1

0.2

0.3

0.4

Sp
ac
eR

at
io

den520d

CBS
CBSH
BCP

(d)

(e) CBS (f) CBSH (g) BCP (h) CBS (i) CBSH

low

high

(j) BCP

Figure 6: (a)-(d) The scatter plots for average single-agent shortest path length and number of agents with respect to SpaceRatio.
(e)-(j) Heat maps of the single-agent shortest paths with respect to different algorithms for (e) - (g) Berlin and (h) - (j) den520d.

in Fig. 6b and Fig. 6d. When there are fewer agents in the map,
CBS works better for smaller SpaceRatios while BCP and CBSH
dominate the test cases with larger SpaceRatios.

In Fig. 6e - 6j, we show the heat maps of the single-agent shortest
paths for all of the test cases where a certain algorithm is ranked
as the fastest one. The more a map cell is used by a single-agent
shortest path, the brighter it is. The heat maps for CBS (Fig. 6e
and 6h) have lots of scattered shortest paths compared to BCP and
CBSH. This is because the solving speed of CBS is determined by
the number of conflicts found during the search phase. The test
cases with longer single-agent shortest paths tends to result in more
potential conflicts, thus making CBS slower. On the other hand, the
heat maps for CBSH and BCP are mostly dominated by the longer
paths. Although it seems that the heat maps for CBS have occupied
more map space than CBSH and BCP, it has no correlation with
the SpaceRatio since the heat maps contain paths from different
test cases. The notable differences of CBS’s heat maps with other
algorithms also demonstrate our motivation of adding single-agent
shortest paths as an input tensor for MAPFAST. The differences in
the heat maps are so readily apparent that a human can manually
decide whether or not to use CBS without the help of an algorithm
selector. However, the heat maps alone do not lead to any obvious
suggestion about when to use BCP or CBSH. These two algorithms
have very similar performance on test cases with different numbers
of agents and SpaceRatios. Although the test cases in Fig. 6 indicate
that CBSH works better for higher SpaceRatios, we have observed
similar results for BCP in other maps which are not shown here.

Based on the dataset analysis, one interesting future work is
to develop hybrid MAPF algorithms that combine the strength of
different algorithms. For instance, one can use the number of agents
or SpaceRatio as an additional heuristic to help decide whether to

use the basic version of an algorithm such as CBS or an improved
version such as CBSH.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we present MAPFAST, a deep learning based optimal
MAPF algorithm selector that outperforms the current state-of-
the-art model. We also introduce a new encoding method for the
MAPF instances by using the single-agent shortest paths. In addi-
tion to just using classification loss in the CNNmodel, we show that
adding multiple supplemental loss functions such as completion
loss and pair-wise loss further improves the performance of the
algorithm selector. The performance for MAPFAST is evaluated and
analyzed with a large and diverse dataset of MAPF instances. We
empirically show that the single-agent shortest paths, even without
map topology, contain enough information to train a model that
outperforms all portfolio algorithms as well as the state-of-the-art
model. Also, we provide insight on the inherent features of MAPF
problems that may help future researchers improve their MAPF
algorithm designs.

We propose the following problems for future work: (1) utilizing
graph-based learning techniques to extend to MAPF on general
graphs, (2) incorporating our algorithm selection model into MAPF
problem decomposition to select an efficient solver for each sub-
problem, and (3) incorporating sub-optimal MAPF algorithms into
our portfolio and training a model that selects fast solvers with
near-optimal cost.

ACKNOWLEDGMENTS
This researchwas supported byNSF awards IIS-1553726, IIS-1724392,
IIS-1724399, and CNS-1837779 as well as a gift from Amazon.

Main Track AAMAS 2021, May 3-7, 2021, Online

1062

REFERENCES
[1] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. 2017. Intractability of

Time-Optimal Multirobot Path Planning on 2d Grid Graphs with Holes. IEEE
Robotics and Automation Letters 2, 4 (2017), 1941–1947.

[2] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proc. of the 22nd ACM SIGKDD Intl Conf on Knowledge Discovery and
Data Mining. 785–794.

[3] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, TK Satish Kumar,
and Sven Koenig. 2018. Adding Heuristics to Conflict-Based Search for Multi-
Agent Path Finding. In Proc. of the Intl Conf on Automated Planning and Scheduling,
Vol. 28. 83–87.

[4] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan Sturtevant,
Robert C Holte, and Jonathan Schaeffer. 2014. Enhanced Partial Expansion A.
Journal of Artificial Intelligence Research 50 (2014), 141–187.

[5] Omri Kaduri, Eli Boyarski, and Roni Stern. 2020. Algorithm Selection for Optimal
Multi-Agent Pathfinding. In Proc. of the Intl Conf on Automated Planning and
Scheduling, Vol. 30. 161–165.

[6] Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger H Hoos, and Heike Traut-
mann. 2018. Leveraging TSP Solver Complementarity ThroughMachine Learning.
Evolutionary Computation 26, 4 (2018), 597–620.

[7] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[8] Lars Kotthoff. 2016. Algorithm Selection for Combinatorial Search Problems: A
Survey. In Data Mining and Constraint Programming. Springer, 149–190.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems. 1097–1105.

[10] Edward Lam, Pierre Le Bodic, Daniel Damir Harabor, and Peter J Stuckey. 2019.
Branch-and-Cut-and-Price for Multi-Agent Pathfinding. In Proc. of the Intl Joint
Conf on Artificial Intelligence. 1289–1296.

[11] Jiaoyang Li, Ariel Felner, Eli Boyarski, HangMa, and Sven Koenig. 2019. Improved
Heuristics for Multi-Agent Path Finding with Conflict-Based Search.. In Proc. of
the Intl Joint Conf on Artificial Intelligence. 442–449.

[12] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. Graph2Vec: Learning Distributed
Representations of Graphs. arXiv preprint arXiv:1707.05005 (2017).

[13] John R Rice. 1976. The Algorithm Selection Problem. In Advances in Computers.
Vol. 15. Elsevier, 65–118.

[14] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219
(2015), 40–66.

[15] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The Increasing
Cost Tree Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 195
(2013), 470–495.

[16] Devon Sigurdson, Vadim Bulitko, Sven Koenig, Carlos Hernandez, and William
Yeoh. 2019. Automatic Algorithm Selection in Multi-Agent Pathfinding. arXiv
preprint arXiv:1906.03992 (2019).

[17] Kate A Smith-Miles. 2009. Cross-Disciplinary Perspectives on Meta-Learning for
Algorithm Selection. ACM Computing Surveys (CSUR) 41, 1 (2009), 1–25.

[18] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. Symposium on Combinatorial Search (SoCS) (2019), 151–158.

[19] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. 2016. Efficient SAT
Approach to Multi-Agent Path Finding Under the Sum of Costs Objective. In Proc.
of the European Conf on Artificial Intelligence. 810–818.

[20] Jiri Svancara and Roman Bartak. 2019. Combining Strengths of Optimal Multi-
Agent Path Finding Algorithms. In Proc. of the Intl Conf on Agents and Artificial
Intelligence - Vol. 1. 226–231.

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In Proc. of the IEEE Conf on Computer Vision
and Pattern Recognition. 1–9.

[22] Allen Van Gelder, Daniel Le Berre, Armin Biere, Oliver Kullmann, and Laurent
Simon. 2005. Purse-Based Scoring for Comparison of Exponential-time Programs.
Eighth Intl Conf on Theory and Applications of Satisfiability Testing (2005).

[23] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2012. Evaluat-
ing Component Solver Contributions to Portfolio-Based Algorithm Selectors.
In International Conference on Theory and Applications of Satisfiability Testing.
Springer, 228–241.

[24] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla:
Portfolio-Based Algorithm Selection for SAT. Journal of Artificial Intelligence
Research 32 (2008), 565–606.

[25] Jingjin Yu and Steven M LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In Twenty-Seventh AAAI Conf on Artificial
Intelligence. 1444–1449.

Main Track AAMAS 2021, May 3-7, 2021, Online

1063

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm Portfolio
	3.1 Performance Analysis

	4 Instance Encoding
	5 Models
	5.1 CNNClass
	5.2 MAPFAST
	5.3 G2V

	6 Simulation Results
	6.1 Custom Scoring
	6.2 Model Validation
	6.3 Dataset Analysis

	7 Conclusions and Future Work
	Acknowledgments
	References

