
PerfEstimator: A Generic and Extensible Performance

Estimator for Data Parallel DNN Training

Chengru Yang∗, Zhehao Li∗, Chaoyi Ruan∗, Guanbin Xu∗, Cheng Li∗, Ruichuan Chen†, Feng Yan‡
∗University of Science and Technology of China, Hefei, China

†Nokia Bell Labs, Stuttgart, Germany ‡University of Nevada, Reno, USA

Abstract—Understanding the performance of data parallel
DNN training at large-scale is crucial for supporting efficient
DNN cloud deployment as well as facilitating the design and
optimization of scalable DNN systems. Existing works adopt
analytical modeling, which may fall short in capturing the system
behaviors resulting from the fast evolving DNN systems and
constantly proposed optimizations. In this paper, we present
PerfEstimator, a generic and extensible estimator for accu-
rate performance estimation of large-scale data parallel DNN
training. PerfEstimator is driven by three major components,
namely, an extensible attributed graph based performance model,
a computation and synchronization profiling and simulating tool
for obtaining runtime time costs on a single machine, and
a computation-synchronization pipeline builder to derive the
scaling factors. Our evaluation highlights that PerfEstimator
can accurately predict the performance of data parallel DNN
training jobs with a prediction error of 0.2-11%.

I. INTRODUCTION

Deep neural networks (DNN) have been widely applied in

many scenarios, such as image processing, speech recognition,

recommendation systems, and search engines [4], [9]. As

large datasets and high-dimensional DNN models have quickly

exceeded the storage and computing capabilities of even the

most powerful single machine, distributing the DNN training

jobs across a cluster of machines has become the de facto
solution for scaling the DNN systems [5]. Due to resource

elasticity, deployment of cloud servers for DNN training is

becoming extensively favorable.

There are a few different parallelization strategies. For

instance, the Data Parallelism strategy partitions the whole

dataset and makes each training node collectively trains the

globally shared model by consuming its own data partition [7].

The Model Parallelism strategy splits a large model (often

cannot fit into a single device memory) and distributes model

partitions among training nodes [1], while Hybrid Parallelism
combines the aforementioned two strategies [26]. Among these

strategies, due to simplicity, the Data Parallelism strategy

is widely adopted by mainstream DNN systems such as

TensorFlow, MXNet, PyTorch, etc.

To cope with the unprecedented increase in the DNN model

complexity and datasets, the deployment of training jobs has

been pushed to extra large scale. For instance, researchers at

Chengru Yang and Zhehao Li are co-first authors. {hibiki, richardhall, rcy,
xugb}@mail.ustc.edu.cn, chengli7@ustc.edu.cn, ruichuan.chen@gmail.com,
fyan@unr.edu. Cheng Li is the corresponding author.

Sony use up to 2176 Tesla V100 GPUs to train ResNet50 [15].

However, many recent studies suggest that data parallel DNN

training faces a significant scalability problem [13], resulting

in resource inefficiency and long model convergence time.

To mitigate this problem, various optimization solutions have

been proposed to accelerate data parallel DNN training. They

all concentrate on addressing three problems, namely, im-

proving local computation resource utilization (e.g., operator

fusion [7]), reducing gradient synchronization overhead (e.g.,

gradient compression [27]), and overlapping computation-

synchronization pipeline (e.g., message scheduling and par-

titioning [17]).

Though the above optimization designs are shown to out-

perform their non-optimized counterparts, they are often tested

at relatively small scale. This makes it difficult to discover

their scalability problems, whose symptoms only surface in

large-scale deployments [23]. The common practice of under-

standing the performance implications of various optimizations

at large scale is through large scale deployments. However,

this trial-and-error approach is incredibly expensive and thus

unfavorable on the cloud. Given the high complexity of

integrating optimizations into DNN systems [17] and the high

cloud deployment cost at large scale, it is more economical and

promising to first predict its performance implications without

the actual large-scale implementation and deployment. These

performance hints can offer early-feedback to practitioners to

significantly shorten the development cycle and cost.

To offer competitive DNN training infrastructure as a ser-

vice, it is also the major cloud service providers’ intent to offer

such performance tools to facilitate efficient and easy-to-use

cloud DNN training interface. Furthermore, these tools can

help cloud service providers achieve more efficient resource

management (e.g., the trial-and-error approach challenges

resource provisioning) and enable advanced features (e.g.,

Neural Architecture Search [30] where hundreds to thousands

training jobs with different scalability are executed thus trial-

and-error performance tuning is infeasible).

Existing works on performance implications of DNN sys-

tems adopt analytical modeling based performance estima-

tion [18], [21], [29]. While these approaches are lightweight

and can capture some characteristics of the DNN system

backbones, they often fall short in capturing the behaviors

of more advanced system features, especially the various

optimizations proposed for the fast evolving DNN systems.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

To overcome the limitations of the analytical model-

ing based performance estimation, in this paper, we pro-

pose a generic and extensible performance estimator called

PerfEstimator to address the following two major prob-

lems. First, to capture the training workflow and to be ex-

tensible to incorporate new optimization features, we build

PerfModel, a performance model based on an attributed

graph, where each vertex represents an operator (e.g., forward

propagation and allreduce) and edges represent the ordering

constraints between these operators, while the attributes on

vertices indicate the time cost. This model is extensible, since

one can easily add new operator-related optimizations into the

underlying graph as well as the proper ordering constraints.

Next, to democratize large-scale estimation, we build

ProfSim, a single-machine scale-simulation framework. We

leverage the intra-job predictability [28], i.e., the time cost of

local training operators are often constant even when the clus-

ter expands, to profile the time cost of those scale-independent

operators. For synchronization, given the cost of synchro-

nizing gradients is difficult to profile without actual system

deployments due to the cost varies with respect to different

synchronization methods, cluster sizes, etc. To address this

challenge, we adopt the simulation method [12] from the HPC

community to obtain synchronization cost. PerfEstimator
then uses the profiled and simulated time cost from ProfSim
to populate the graph built by PerfModel for a given

DNN model. Finally, PerfEstimator constructs the

computation-synchronization pipeline by taking into account

the ordering constraints plus time cost, and derives the over-

lapping ratio between computation and synchronization, which

can be directly translated into scaling efficiency.

We prototype PerfEstimator and evaluate it with two

widely used DNN models: VGG13 and ResNet50. Experi-

ments primarily focus on testing PerfEstimator’s effec-

tiveness on original training flows at this early stage. Results

indicate that PerfEstimator can accurately predict the

performance of data parallel DNN training jobs with an

impressive error of 0.2-10.9%. A large-scale validation study

shows that we are able to perform the performance estimation

with up to 128 nodes and the results are consistent with

the training trend reported by literature. Finally, the gradient

compression use case study validates PerfEstimator’s

extensibility for various optimizations.

II. BACKGROUND AND RELATED WORK

A. Data parallel DNN training

In a typical data parallel training, a group of training

nodes consume disjoint data partitions and collectively train a

globally shared DNN model through multiple iterations. In

an iteration, each node takes a batch of data samples and

performs a local training computation (including both forward

and backward propagation phase) to produce the DNN model

updates (a.k.a gradients). Following that, there is a gradient

synchronization phase, in which locally produced gradients

are exchanged and aggregated among all training nodes to

compute the new model parameters, which then will be fed

into the next iteration. This training process is repeated until

the DNN model converges to a state where its loss is below a

certain threshold or the maximum number of iterations have

been performed.

The gradient synchronization can be done asynchronously

to eliminate the negative impacts of a distributed barrier at

a penalty of possibly not converging [16], [24]. Therefore,

due to its simplicity and convergence guarantee, the strongest

consistency model called Bulk Synchronous Parallel (BSP) has

become the common practice [25]. Following this, we also

align our work to BSP.

There are a family of gradient synchronization strategies

to implement the synchronous gradient synchronization phase.

One representative in this family is Parameter Server (PS) [11],

[14], where training nodes are assigned either server or worker

role. All parameter servers together keep a global copy of the

parameters of the DNN model, while each worker maintains

a local copy of the model parameters and performs neural

network computation against its data shard to update its

local parameters. Additionally, collective communication is an

important component of distributed deep learning, which is

boosted by a series of state-of-the-art technologies in High

Performance Computing [3], such as reduce, gather, scatter,

broadcast, allreduce, allgather, all-to-all, reduce-scatter, etc.

These technologies, such as Horovod [20] and NCCL [2],

which target low latency and high bandwidth, giving dis-

tributed deep learning great improvement in performance.

B. Existing performance modeling work

Understanding performance of data parallel DNN training

at large-scale is crucial for not only advising the hardware

configurations for deploying DNN training jobs on the cloud,

but also guiding the design and implementation of scalable

DNN systems as well as various optimizations.

Recently, there are many related work that focus their

interests on the performance modeling of data parallel DNN

training. For example, Feng Yan et al. have proposed a

performance model for estimating the scalability of distributed

DNN training [29], primarily targeting Parameter Server. This

model is further used to power a scalability optimizer that

determines the optimal distributed system configuration that

minimizes training time. Pelao [18] is another analytical

performance model for the lean consumption of resources

during the training of DNNs. It builds a mathematical analysis

to compute the time cost of layer-wised computation, and

embraces a simple communication model to predict the per-

formance of synchronizing gradients via three strategies other

than Parameter Server. Most recently, Shi et al. have combined

both analytical and experimental analysis to understand the

performance gaps among four state-of-the-art deep learning

frameworks [21]. DNNMem [8] is an accurate estimation tool

for GPU memory consumption of DNN models to reduce

out-of-memory failures by also leveraging the iterativeness of

DNN computation.

PerfEstimator is a generic, framework-independent

and extensible performance estimator for large-scale data

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of PerfEstimator.

parallel DNN training. Our solution significantly differs from

all the above mentioned existing work as we do not rely

on any analytical model to capture the system behaviors,

which may not be scalable and extensible to handle the

evolution of current DNN systems and various newly proposed

optimizations. In more details, we have the following nice

properties: 1) we leverage the intra-job predictability of DNN

training [28], where the computation cost is often stable w.r.t

the cluster size increases. Therefore, instead of proposing a

mathematical performance analysis for predicting computation

cost, we take advantage of profiling tools to obtain the time

cost for all DNN operators for avoiding accuracy loss; 2) we

are neither targeting a particular deep learning frameworks

nor a specific synchronization strategy. Instead, we rely on

network simulator to predict network behaviors, which enables

to specify existing or new synchronization strategy; and 3) we

allow to extend our performance model to incorporate new

optimization features for exercising new design choices.

III. DESIGN OF PERFESTIMATOR

To achieve accurate performance prediction for large-scale

data parallel training, we build PerfEstimator with the

following key system components: 1) PerfModel, a graph-

based performance model that captures the training workflow

and is extensible to incorporate new optimization features; and

2) ProfSim, a single-machine scale-simulation framework

for profiling the time cost of training-related operators and

simulating the gradient synchronization cost by taking into

account the synchronization strategies and cluster size; and

3) Estimator combines the graph model and collected

statistics to estimate the actual training performance without

real deployments.

Figure 1 illustrates the high-level architecture and workflow

of PerfEstimator. First, the required input configurations

of PerfEstimator are: 1) neural network structures, 2)

network configurations, e.g., the topology of network, the max-

imum bandwidth and link latency; and 3) device information,

e.g., maximum FLOPS speed.

Once these parameters are in-place, ProfSim starts com-

putation profiling and synchronization simulation both on a

single machine. For computation profiling, ProfSim trains

the target DNN model for a limited number of iterations to

collect time costs of each training-related operator. Regarding

synchronization simulation, ProfSim launches SimGrid [6],

a simulator built in the HPC community, with user-specified

network configurations and synchronization strategy. It is

worth mentioning that ProfSim can be applied to both

local clusters and clouds, since the cloud infrastructure has

Fig. 2. An illustration of ADAG of a typical simple 3-layer CNN (conv: con-
volution layer, ac: activation layer, fc: fully connected layer, ng: negotiation).

been evolving to become the optimal option for running

HPC and AI workloads. At the end, PerfEstimator will

use the profiled and simulated time cost from ProfSim to

populate the graph built by PerfModel for any given DNN

model. Following that, PerfEstimator will construct the

computation-synchronization pipeline by taking into account

the ordering constraints plus time cost, and finally compute the

overlapping ratio between computation and synchronization,

which can be directly translated into scaling efficiency.

A. PerfModel formalization

PerfModel models the overall training process of a given

job including both local computation (forward and backward

propagation) and global synchronization (e.g., allreduce). We

first formulate the performance model PerfModel as an

attributed directed acyclic graph (ADAG), where each ver-

tex represents the operators, e.g., forward propagation and

allreduce, and edges represent ordering constraints between

these operators, while the attributes on vertices indicate the

time cost. This model is extensible, since one can easily add

new operator-related optimizations into the underlying graph

as well as the proper ordering constraints. Such abstraction

will be proven useful and generic to facilitate later analysis

and prediction of scalability of training jobs.

Figure 2 shows the ADAG of a simple 3-layer CNN, in

which operators at the first and third layer in the backward

propagation phase generate two gradients, respectively. As

follows, we will introduce the necessary ordering constraints

among operators, which cannot be violated during execution

and play a key role in determining the degree of parallelism

of data parallel DNN training.

First, as the operators in the forward propagation phase are

executed sequentially from one layer to another. Thus, we

have Oconv
fp → Oac

fp → Ofc
fp, where O denotes operators, →

represents happened-before orderings, “fp” stands for forward

propagation, while conv, ac and fc correspond to operators

of the three DNN layers. Upon the completion of the forward

phase, the backward propagation phase will start immediately,

and all its operators are also executed in a sequence but in

a reversed order of the forward phase. Therefore, we have

Ofc
fp → Ofc

bp , and Ofc
bp → Oac

bp → Oconv
bp , where “bp” stands

for backward propagation.

In the backward propagation phase, when conv and fc layer

produce gradients, the synchronization step will be triggered,

including a negotiation operator (ng) and an allreduce oper-

ator, where the latter operator is used to globally aggregate

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An illustration of computation-synchronization pipeline, the axis at
bottom is timeline.

gradients and broadcast new results, while the former operator

is used to coordinate this process. Therefore, we have Ofc
bp →

Ofc
ng → Ofc

allreduce, and Oconv
bp → Oconv

ng → Oconv
allreduce.

Unlike all the above ordering constraints, there are some

operators that can run in parallel, e.g., the gradient syn-

chronization of a layer and the backward propagation of the

preceding layer (i.e., Ofc
ng‖ Oac

bp and Ofc
allreduce‖ Oac

bp).

B. Profiling and simulation
Then, we annotate vertices of the above graph model with

“time cost” attributes. First, for computation-related operators,

PerfEstimator takes full advantage of existing built-

in profilers in mainstream DNN systems to measure their

costs throughout a limited number of training iterations on

a single machine, for a given DNN model. Second, with

regard to the synchronization cost involving network commu-

nication, we adopt SimGrid [6], a simulation framework for

MPI applications, which works with collective communication

primitives that are widely used in data parallel training. The

major changes we introduce to SimGrid are the real codes of

synchronization strategies, and network configurations of the

target deployments (e.g., on the cloud). Then, the codes are

actually executed by SimGrid and the predicted latencies will

be reported when simulation is done.

C. Computation-synchronization pipeline
Finally, as the key step, PerfEstimator will project

all operators in the ADAG built by PerfModel into a

conceptional timeline, which corresponds to the pipeline of

computation and synchronization of a single iteration of

distributed DNN training. Figure 3 shows the computation-

synchronization pipeline projected from the ADAG in Fig-

ure 2, where each box represents one operator, and the box

length indicates the time cost. This pipeline begins with conv
of the forward propagation phase and ends with allreduce for

synchronizing gradients produced by conv of the backward

propagation phase. The ordering constraints defined in the

ADAG are all preserved in this pipeline. However, negotiation

and allreduce operators can be executed in parallel with some

backward propagation operators. Note that there is a gap

between the negotiation and allreduce operator of the gradient

produced by conv, since we assume the underlying network

device has a single port and message sends are serialized.
To predict performance, we define scaling factor (α) as:

α =
Ol1

bp.end ts−Ol1
fp.start ts

Ol1
allreduce.end ts−Ol1

fp.start ts
,

where l1 stands for the first NN layer, while start ts and

end ts are timestamps. This scaling factor describes the

TABLE I
STATISTICS OF TRAINED MODELS.

Name total size max gradient #gradient
VGG13 [22] 507.54MB 392MB 26

ResNet50 [10] 97.46MB 9MB 155

overlapping ratio of computation and synchronization. The

value higher, the scalability of the corresponding setup better.

Following this, we can estimate the performance pn of a

data parallel DNN training job across n training nodes as

pn = p1×n×α, where p1 stands for the single-node training

performance.

IV. PRELIMINARY EVALUATION

In this section we present the preliminary evaluation of

PerfEstimator, which only demonstrates its efficiency

on original training flows with no optimization features. We

leave the extensibility validation in future work. First, we

evaluate the accuracy of PerfEstimator by comparing

its results against testbed measurements of actual deploy-

ment. Second, we perform a large-scale validation study for

PerfEstimator by checking whether it can predict correct

performance trends when the training scale is very large.

A. Experimental setup

We run ProfSim on a single server with 512 GB DRAM,

two 16-core Intel(R) E5-2620 v4 processors and 1 NVIDIA

Geforce GTX 1080 Ti GPU. The time cost of local training

operators and synchronization operators are profiled by the

built-in profiler of MXNet and the SimGrid simulation frame-

work(3.18), respectively. We only specify MPI allreduce for

synchronizing gradients in SimGrid, and leave the examination

of other strategies, such as NCCL, as our future work.

For prediction references, as shown in Table I, we train

two widely-used DNN models, VGG13 and ResNet50, with

the ImageNet dataset [19], over a cluster of 12 physical

nodes, each of which has the identical configuration as above

but smaller DRAM (64GB). They are connected via 10Gbps

Ethernet. Each node runs CentOS7.6, CUDA 10.1, cuDNN

7.5.1, OpenMPI 3.1.2, MXNet 1.6.0, and Horovod 0.19.4.

Though not replicating experiments with clouds like AWS,

we align the configurations of our local machines to those of

the EC2 p3.2xlarge instance, e.g., 10Gbps network, 1GPU per

machine, for performance references.

B. Accuracy validation of PerfEstimator

1) Validation with VGG13: VGG13 [22] contains 10 convo-

lution layers and 3 fully connected layers. One of the important

features of VGG13 is that the communication overhead of

VGG13 in distributed training is high because it requires large

size gradient to be transmitted in the network. Therefore,

the communication operators play an important role in the

operator execution pipeline of VGG13.

First, we profile the computation cost of each computation

operator on a single GPU using MXNet [7] profiler and

Chrome tracing tool, setting batch size to be 32. Then, we

use the SimGrid simulation framework [6] to get the predicted

time cost of allreduce operators of VGG13.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Computation-synchronization pipeline of VGG13 over 12 nodes.

TABLE II
REAL VS. PREDICTED ITERATION TIME OF VGG13

#node real(s)
Our

predicted(s)
Paleo

predicted(s)
Our
error

Paleo
error

4 1.307 1.283 1.317 -1.84% 0.77%
8 1.498 1.466 1.908 -2.14% 27.37%

12 1.562 1.534 2.500 -1.79% 60.05%

Table IV shows the comparison between simulated time cost

and real time cost of allreduce operators when the cluster size

is 12. The errors between real and simulated allreduce duration

range from 2% to 10%. We think the network fluctuation in

real time, and the overhead of SimGrid may be the reasons

that lead to this network simulation error. Allreduce simulation

for gradients with small message may suffer more from these

reasons than large size gradients. For large size messages, the

simulator performs well, e.g., the allreduce simulation result

of gradient fc0 weight has error around 5%. Considering this

gradient occupies more than 70% of the total size of this

model, error of total transmission time prediction is mainly

impacted by errors of allreduce simulation of large gradients.

With the above results, based on PerfModel, we visualize

the computation-synchronization pipeline of VGG13, drawn in

the same way with Figure 3, as Figure 4 shows. One thing to

note here is that we also take the operator switch time into

account, which is set to be 10us based on real profiled results.

From the pipeline, we can easily get the predicted itera-

tion time and scalability factor using formula proposed in

section III. First, we compare in Table II the real iteration time

against the predicted iteration time from 4 to 12 nodes, with

batch size being 32. Results show PerfEstimator achieves

less than 3% prediction error for VGG13. Here, we also com-

pare our results with Paleo [18]. With a four-node deployment,

the predicted iteration time costs by both systems are almost

equally accurate. However, when the cluster size increases,

the prediction accuracy of Paleo keeps decreasing, while the

one of PerfEstimator remains roughly unchanged. This

is because that Paleo totally relies on theoretical analysis,

and fails to accurately capture network behaviors at large

scale. Furthermore, to validate the correctness of scalability

factor α, we compare the real training performance with the

predicted training performance using formula in section III,

and predictions with α achieve less than 3% error with results

shown in table III.

Finally, Table IV compares the simulated time costs of allre-

duce operators against those of real tests w.r.t different gradient

sizes. The simulated results look similar to the real numbers

TABLE III
REAL VS. PREDICTED SCALING PERFORMANCE OF VGG13

#(node)
real

#(batch/s)
α

predicted
#(batch/s)

error

1 5.040 1 Ø Ø
4 3.060 0.155 3.118 +1.87%
8 5.340 0.135 5.457 +2.18%
12 7.684 0.129 7.823 +1.83%

TABLE IV
COMPARISON BETWEEN REAL AND SIMULATED ALLREDUCE DURATION

OF VGG13, NUMBER OF NODES = 12.

gradient size(KB) real(ms) simulated (ms) error
conv0 weight 6.75 0.332 0.350 +5.42%

conv0 bias 0.25 0.289 0.307 +6.23%
conv1 weight 144 1.953 1.904 -2.51%

conv4 bias 1 0.457 0.414 -9.41%
fc0 weight 401408 974.067 1026.463 +5.38%

TABLE V
REAL VS. PREDICTED ITERATION TIME OF RESNET50.

#(node) real(s) predicted(s) error
4 0.329 0.365 +10.94%
8 0.439 0.440 +0.23%

12 0.529 0.511 -3.40%

TABLE VI
REAL VS. PREDICTED SCALING PERFORMANCE OF RESNET50.

#(node)
real

#(batch/s)
α

predicted
#(batch/s)

error

1 6.262 1 Ø Ø
4 12.158 0.438 10.959 -9.86%
8 18.223 0.363 18.182 -0.23%
12 22.684 0.313 23.483 +3.52%

with prediction errors ranging from 2.51 to 9.41%. This says

that the accurate simulation of gradient synchronization leads

to the accurate overall performance prediction.

2) Validation with ResNet50: ResNet501 [10] contains 53

convolution layers, 53 batch normalization layers and 1 fully

connected layers. The gradients to be transmitted during

training of ResNet50 are much smaller than VGG13’s, but

the number of gradients to be transmitted is much larger than

VGG13’s. We repeat the same progress as what we have done

with VGG13 to get the performance prediction of ResNet50

using Mxnet [7] and SimGird [6]. Part of the simulation

time, ResNet50 prediction result and scalability factor α’s

validation are listed in Table V, and Table VI, respectively.

The error of iteration time prediction (Table V) and the error

of scalability factor prediction (Table VI) are both below 11%,

which verifies that PerfEstimator is accurate. Prediction

of ResNet50 shows to be more unstable than VGG13. This

is mainly caused by the large number of small gradients of

ResNet50. While the simulated communication time cost of

these small gradients remains almost the same, the real time

cost of these gradients shows to be unstable and deviates from

the theoretical value because of network fluctuation, which is

reflected by the instability of prediction error.

1Here, among all variants, we use ResNet50v1.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Performance prediction of VGG13 and ResNet50 on large clusters.
Linear line is the best performance in theory that all optimizations would
target.

C. Performance study at large-scale

We use PerfEstimator to predict training speed for

VGG13 and ResNet50 at large scales with 32, 64, 96, 128

nodes, via the single-machine simulation. As shown in Fig-

ure 5, the prediction by PerfEstimator correctly reflects

the performance trend of distributed VGG13 and ResNet50. It

is worth mentioning that in the prediction, we find the training

performance of VGG13 has a small drop when the number of

nodes is 4, which matches the real situation. This observation

indicates that PerfEstimator can be applied in practice to

guide the configuration of distributed DNN systems.

Extensibility study. We use gradient compression, a

common solution to eliminate communication bottlenecks

of data-parallel DNN training, as a use case to study

PerfEstimator’s extensibility. Here, we profile our inter-

nal implementation of TernGrad [27], one of representative

gradient compression algorithms, and extend the VGG13’s

ADAG and pipeline to incorporate such feature. As the

light blue curve in Figure 5 shows, the predicted training

scaling performance when TernGrad is used is better than

the original training process, since it largely reduces the

amount of gradients exchanged per iteration basis. However,

our simple simulation also tells that the improving factor

drops when scale becomes extremely large (validated by

our internal deployments), which further suggests that the

stand-alone gradient compression is not sufficient and perhaps

needs to be combined with other optimizations, e.g., better

synchronization strategies other than Ring-allreduce.

V. CONCLUSION

PerfEstimator is a generic framework and extensible

performance estimator for large-scale data parallel DNN train-

ing. It is driven by an attributed graph based performance

model, a computation and synchronization profiling and sim-

ulating tool for obtaining runtime time costs on a single

machine, and a computation-synchronization pipeline builder.

Results show that PerfEstimator can accurately predict

the performance of data parallel DNN training using popular

benchmarks VGG13 and ResNet50. Throughout large-scale

checks, it reports expected performance trends.

ACKNOWLEDGMENT

We sincerely thank all anonymous reviewers for their

insightful feedback. This work was supported in part by

National Nature Science Foundation of China 61802358,

“USTC Research Funds of the Double First-Class Initia-

tive” YD2150002006, and National Science Foundation CCF-

1756013, IIS-1838024.

REFERENCES

[1] Mesh tensorflow - model parallelism made easier. https://github.com/tensorflow/
mesh, 2020.

[2] Nvidia collective communications library. https://developer.nvidia.com/nccl/, 2020.
[3] Open MPI. https://www.open-mpi.org/, 2020.
[4] Anelia Angelova, Alex Krizhevsky, and Vincent Vanhoucke. Pedestrian detection

with a large-field-of-view deep network. In ICRA 2015.
[5] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep

learning: An in-depth concurrency analysis. arXiv, 2018.
[6] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric

Suter. Versatile, scalable, and accurate simulation of distributed applications and
platforms. JPDC 2014.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems. arXiv, 2015.

[8] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin,
and Mao Yang. Estimating gpu memory consumption of deep learning models. In
ESEC/FSE ’20, 2020.

[9] Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Pedro J Moreno, and Joaquin
Gonzalez-Rodriguez. Frame-by-frame language identification in short utterances
using deep neural networks. Neural Networks 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR 2016.

[11] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li,
Yuying Guo, and James Cheng. Flexps: Flexible parallelism control in parameter
server architecture. VLDB 2018.

[12] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V Kale.
Evaluating hpc networks via simulation of parallel workloads. In SC’16.

[13] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin
Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In EuroSys 2019.

[14] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In OSDI 2014.

[15] Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U.-Chupala, Yoshiki Tanaka, and
Yuichi Kageyama. Imagenet/resnet-50 training in 224 seconds. ArXiv, 2018.

[16] Benoı̂t Patra. Convergence of distributed asynchronous learning vector quantization
algorithms. Journal of Machine Learning Research, 2011.

[17] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. A generic communication scheduler for distributed dnn
training acceleration. In SOSP 2019.

[18] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. Paleo: A performance model for
deep neural networks. In ICLR 2017.

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. IJCV 2015.

[20] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. arXiv, 2018.

[21] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Performance model-
ing and evaluation of distributed deep learning frameworks on gpus. In
DASC/PiCom/DataCom/CyberSciTech 2018.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv, 2014.

[23] Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O. Suminto, Huan Ke, Jef-
frey F. Lukman, Wei-Chiu Chuang, Shan Lu, and Haryadi S. Gunawi. Scalecheck:
A single-machine approach for discovering scalability bugs in large distributed
systems. In FAST 2019.

[24] Ye Tian, Ying Sun, and Gesualdo Scutari. Asy-sonata: Achieving linear conver-
gence in distributed asynchronous multiagent optimization. In Allerton 2018.

[25] Leslie G Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, 1990.

[26] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting very large models
using automatic dataflow graph partitioning. In EuroSys 2019.

[27] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Terngrad: Ternary gradients to reduce communication in distributed deep
learning. In NIPS 2017.

[28] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective cluster scheduling for deep learning. In OSDI
2018.

[29] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. Performance
modeling and scalability optimization of distributed deep learning systems. In
KDD 2015.

[30] Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, and
Lidong Zhou. Retiarii: A deep learning exploratory-training framework. In OSDI,
2020.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 28,2021 at 06:54:58 UTC from IEEE Xplore. Restrictions apply.

