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Abstract—In this paper, we analyze the impact of information
freshness on supervised learning based forecasting. In these
applications, a neural network is trained to predict a time-
varying target (e.g., solar power), based on multiple correlated
features (e.g., temperature, humidity, and cloud coverage). The
features are collected from different data sources and are subject
to heterogeneous and time-varying ages. By using an information-
theoretic approach, we prove that the minimum training loss is
a function of the ages of the features, where the function is not
always monotonic. However, if the empirical distribution of the
training data is close to the distribution of a Markov chain, then
the training loss is approximately a non-decreasing age function.
Both the training loss and testing loss depict similar growth
patterns as the age increases. An experiment on solar power
prediction is conducted to validate our theory. Our theoretical
and experimental results suggest that it is beneficial to (i) combine
the training data with different age values into a large training
dataset and jointly train the forecasting decisions for these age
values, and (ii) feed the age value as a part of the input feature
to the neural network.

I. INTRODUCTION

Recently, the proliferation of artificial intelligence and cyber

physical systems has engendered a significant growth in ma-

chine learning techniques for time-series forecasting applica-

tions, such as autonomous driving [1], [2], energy forecasting

[3]–[5], and traffic prediction [6]. In these applications, a

predictor (e.g., a neural network) is used to infer the status

of a time-varying target (e.g., solar power) based on several

features (e.g., temperature, humidity, and cloud coverage).

Fresh features are desired, because they could potentially

lead to a better forecasting performance. For example, recent

studies on pedestrian intent prediction [1] and autonomous

driving [2] showed that prediction accuracy can be greatly

improved if fresher data is used. Similarly, it was found in

[4], [5] that the performance of energy forecasting degrades as

the observed feature becomes stale. This phenomenon has also

been observed in other applications of time-series forecasting,

such as traffic control [7] and financial trading [8].

Age of information (AoI), or simply age, is a performance

metric that measures the freshness of the information that a

receiver has about the status of a remote source [9]. Recent

research efforts on AoI have been focused on analyzing and
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Fig. 1: System Model.

optimizing the AoI in, e.g., communication networks [10]–

[16], remote estimation [17], [18], and control systems [19],

[20]. However, the impact of AoI on supervised learning

based forecasting has not been well-understood, despite its

significance in a broad range of applications. Recently, an

age of features concept was studied in [21], where a stream

of features are collected progressively from a single data

source and, at any time, only the freshest feature is used

for prediction. Meanwhile, in many applications, the fore-

casting decision is made by jointly using multiple features

that are collected in real-time from different data sources

(e.g., temperature readings from thermometers and wind speed

measured from anemometers). These features are of diverse

measurement frequency, data formats, and may be received

through separated communication channels. Hence, their AoI

values are different. This motivated us to analyze the per-

formance of supervised learning algorithms for time-series

forecasting, where the features are subject to heterogeneous

and time-varying ages. The main contributions of this paper

are summarized as follows:

• We present an information theoretic approach to interpret the

influence of age on supervised learning based forecasting.

Our analysis shows that the minimum training loss is a

multi-dimensional function of the age vector of the features,

but the function is not necessarily monotonic. This is a key

difference from the non-decreasing age metrics considered

in earlier work, e.g., [12], [19], [22] and the references

therein.

• Moreover, by using a local information geometric analysis,
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we prove that if the empirical distribution of training data

samples can be accurately approximated as a Markov chain,

then the minimum training loss is close to a non-decreasing

function of the age. The testing loss performance is analyzed

in a similar way.

• We compare the performance of several training approaches

and find that it is better to (i) combine the training data with

different age values into a large training dataset and jointly

train the forecasting decisions for these age values, and (ii)

add the age value as a part of the feature. This training

approach has a lower computational complexity than the

separated training approach used in [23], where the fore-

casting decision for each age value is trained individually.

Experimental results on solar power prediction are provided

to validate our findings.

II. SYSTEM MODEL

Consider the learning-based time-series forecasting system

in Fig. 1, which consists of m transmitters and one receiver.

The system time is slotted. Each transmitter l takes measure-

ments from a discrete-time signal process sl,t. The processes

s1,t, . . . , sm,t contain useful information for inferring the

behavior of a target process Yt. Transmitter l progressively

generates a sequence of features Xl,t from the process sl,t.
Each feature Xl,t = f(sl,t−τ , sl,t−1−τ , . . . , sl,t−b+1−τ ) is a

function of a finite-length time sequence from the process

sl,t, where b is the length of the sequence and τ is the

processing time needed for creating the feature. The processes

s1,t, . . . , sm,t may be correlated with each other, and so are

the features X1,t, . . . , Xm,t. The features are sent from the

transmitters to the receiver through one or multiple channels.

The receiver feeds the features to a predictor (e.g., a trained

neural network), which infers the current target value Yt.

Due to transmission errors and random transmission time,

freshly generated features may not be immediately delivered

to the receiver. Let Gl,i and Dl,i be the creation time and

delivered time of the i-th feature of the process sl,t, respec-

tively, such that Gl,i ≤ Gl,i+1 and Gl,i ≤ Dl,i. Then, Ul(t) =
max{Gl,i : Dl,i ≤ t} is the creation time of the freshest

feature that was generated from process sl,t and has been

delivered to the receiver by time t. At time t, the receiver uses

the m freshest delivered features (X1,U1(t), . . . , Xm,Um(t)),
each from a transmitter, to predict the current target Yt. The

age of the features generated from process sl,t is defined as

Δl(t) = t− Ul(t) = t−max{Gl,i : Dl,i ≤ t}, (1)

which is the time elapsed since the creation time Ul(t) of the

freshest delivered feature Xl,Ul(t) up to the current time t. If

Δl(t) is small, then there exists a fresh delivered feature that

was created recently from process sl,t. The evolution of Δl(t)
over time is illustrated in Fig. 2.

The predictor is trained by using an Empirical Risk Min-

imization (ERM) based supervised learning algorithm, such

as logistic regression and the Least Absolute Shrinkage and

Selection Operator (LASSO). A supervised learning algorithm

consists of two phases: offline training and online testing. In

t

Δl(t)

Gl,0 Dl,0 Gl,1 Dl,1 Gl,i Dl,i

Fig. 2: Evolution of the age Δl(t) in discrete-time.

offline training phase, the predictor is trained by minimizing

an expected loss function under the empirical distribution of a

training dataset. Each entry (x1,i, . . . , xm,i, δ1,i, . . . , δm,i, yi)
of the training dataset contains m features (x1,i, . . . , xm,i),
the age values of the features (δ1,i, . . . , δm,i), and the target

yi. In Section IV, we will see that it is important to add the

age values into training data. In online testing, the trained

predictor is used to predict the target in real-time, as explained

above.

The goal of this paper is to interpret how the age processes

Δm(t) = (Δ1(t), . . . ,Δm(t)) of the features affect the per-

formance of time-series forecasting.

III. PERFORMANCE OF SUPERVISED LEARNING FROM AN

INFORMATION THEORETIC PERSPECTIVE

In this section, we introduce several information theoretic

measures that characterize the fundamental limits for the

training and testing performance of supervised learning. Based

on these information theoretic measures, the influence of

information freshness on supervised learning based forecasting

will be analyzed subsequently in Section IV.

Let Xm = (X1, . . . , Xm) represent a vector of m random

features, which takes value xm = (x1, . . . , xm) from the space

Xm = X1 × X2 × . . . × Xm. As the standard approach for

supervised learning, ERM is a stochastic decision problem

(Xm,Y,A, L), where a decision-maker predicts Y ∈ Y
by taking an action a = ψ(Xm) ∈ A based on features

Xm ∈ Xm. The performance of ERM is measured by a loss

function L : Y × A �→ R, where L(y, a) is the incurred loss

if action a is chosen when Y = y. For example, L is a

logarithmic function Llog(y, PY ) = − logPY (y) in logistic

regression and a quadratic function L2(y, ŷ) = (y − ŷ)2

in LASSO. Let PXm,Y and PX̃m,Ỹ , respectively, denote the

empirical distributions of the training data and testing data,

where X̃m and Ỹ are random variables with a joint distribution

PX̃m,Ỹ .

A. Minimum Training Loss

The objective of training in ERM-based supervised learning

is to solve the following problem:

HL(Y |Xm) = min
ψ∈Ψ

EXm,Y∼PXm,Y
[L(Y, ψ(Xm))], (2)

where Ψ is the set of allowed decision functions and

HL(Y |Xm) is the minimum training loss. We consider a case
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that Ψ contains all functions from Xm to A. Such a choice

of Ψ is of particular interest for two reasons: (i) Since Ψ is

quite large, HL(Y |Xm) provides a fundamental lower bound

of the training loss for any ERM based learning algorithm. (ii)

When Ψ contains all functions from Xm to A, Problem (2)

can be reformulated as

HL(Y |Xm)

= min
ψ(xm)∈A,
∀ xm∈Xm

∑
xm∈Xm

PXm(xm)EY∼PY |Xm=xm [L(Y, ψ(xm))]

=
∑

xm∈Xm

PXm(xm) min
ψ(xm)∈A

EY∼PY |Xm=xm [L(Y, ψ(xm))],

(3)

where, in the last step, the training problem is decomposed

into a sequence of separated optimization problems, each

optimizing an action ψ(xm) for given xm ∈ Xm. For the

considered Ψ, HL(Y |Xm) in (2) is termed the generalized

conditional entropy of Y given Xm [24]. Similarly, the

generalized (unconditional) entropy HL(Y ) is defined as [24]–

[26]

HL(Y ) = min
a∈A

EY∼PY
[L(Y, a)]. (4)

The optimal solution to (4) is called Bayes action, which is

denoted as aPY
. If the Bayes actions are not unique, one

can pick any such Bayes action as aPY
[27]. The generalized

conditional entropy for Y given Xm = xm is [24]

HL(Y |Xm = xm) =min
a∈A

EY∼PY |Xm=xm [L(Y, a)]

= min
ψ(xm)∈A

EY∼PY |Xm=xm [L(Y, ψ(xm))].

(5)

Substituting (5) into (3), yields the relationship

HL(Y |Xm) =
∑

xm∈Xm

PXm(xm) HL(Y |Xm = xm). (6)

We assume that entropy and conditional entropy discussed in

this paper are bounded. We also need to define the generalized

mutual information, which is given by

IL(Y ;Xm) = HL(Y )−HL(Y |Xm). (7)

Examples of the loss function L and the associated generalized

entropy HL(Y ) were discussed in [21], [24]–[26].

B. Testing Loss

The testing loss, also called validation loss, of supervised

learning is the expected loss on testing data using the trained

predictor. In the sequel, we use the concept of generalized

cross entropy to characterize the testing loss. The generalized

cross entropy between Y and Ỹ is defined as

HL(Ỹ ;Y ) = EY∼PỸ
[L(Y, aPY

)] , (8)

where aPY
is the Bayes action defined above. Similarly, the

generalized conditional cross entropy between Ỹ and Y given

X̃m = xm is

HL(Ỹ ;Y |X̃m = xm) = EY∼PỸ |X̃m=xm

[
L(Y, aPY |Xm=xm )

]
,

(9)

where aPY |Xm=xm is the Bayes action of a predictor that

was trained by using the empirical conditional distribution

PY |Xm=xm of the training data and PỸ |X̃m=xm is the em-

pirical conditional distribution of the testing data. Using (9),

the testing loss of supervised learning can be expressed as

HL(Ỹ ;Y |X̃m) =
∑

xm∈Xm

P̃X̃m(xm)HL(Ỹ ;Y |X̃m = xm), (10)

which is also termed the generalized conditional cross entropy

between Ỹ and Y given X̃m.

IV. IMPACT OF INFORMATION FRESHNESS ON SUPERVISED

LEARNING BASED FORECASTING

In this section, we analyze the training and testing loss

performance of supervised learning under different age values.

It is shown that the minimum training loss is a function of the

age, but the function is not always monotonic. By using a

local information geometric approach, we provide a sufficient

condition under which the training loss can be closely approxi-

mated as a non-decreasing age function. Similar conditions for

the monotonicity of the testing loss on age are also discussed.

A. Training Loss under Constant AoI
For ease of understanding, we start by analyzing the mini-

mum training loss under a constant AoI, i.e, Δm(t) = δm, for

all time t. The more practical case of time-varying AoI will

be studied subsequently in Section IV-B.
Markov chain has been a widely-used model in time-series

analysis [28]–[30]. Define Xm
t−τm = (X1,t−τ1 , . . . , Xm,t−τm)

for τm = (τ1, . . . , τm), where Xl,t−τl is the feature generated

from transmitter l at time t−τl. If Yt ↔ Xm
t−τm ↔ Xm

t−τm−μm

is a Markov chain for all μm, τm ≥ 0 (assume the Markov

chain is also stationary), then by using the data processing

inequality [25], one can show that the minimum training

loss HL(Yt|Xm
t−δm) is a non-decreasing function of the age

vector δm. However, practical time-series signals are rarely

Markovian [31]–[34] and, as a result, the minimum training

loss HL(Yt|Xm
t−δm) is not always a monotonic function of δm.

To develop a unified framework for analyzing the minimum

training loss HL(Yt|Xm
t−δm), we consider a relaxation of

the Markov chain model, called ε-Markov chain, which was

proposed recently in [21].

Definition 1. ε-Markov Chain: [21] Assume that
PY |X(y|x) > 0 for all x ∈ X and y ∈ Y . Given
ε ≥ 0, a sequence of random variables Y,X, and Z is said
to be an ε-Markov chain, denoted as Y

ε←→ X
ε←→ Z, if

EX,Z∼PX,Z
[Dχ2(PY |X,Z ||PY |X)] ≤ ε2, (11)

where Dχ2(PY ||QY ) is Neyman’s χ2-divergence, given by

Dχ2(PY ||QY ) =
∑
y∈Y

(PY (y)−QY (y))
2

QY (y)
. (12)
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The inequality (11) can be also expressed as

Iχ2(Y ;Z|X) ≤ ε2, (13)

where Iχ2(Y ;Z|X) is the χ2-conditional mutual information.

If ε = 0, then Y
ε←→ X

ε←→ Z reduces to a Markov chain.

Hence, ε-Markov chain is more general than Markov chain.

For ε-Markov chain, a relaxation of the data processing

inequality is provided in the following lemma:

Lemma 1 (ε-data processing inequality). [21] If Y ε←→ X
ε←→

Z is an ε-Markov chain and HL(Y ) for the loss function L
is twice differentiable in PY , then we have

IL(Y ;Z|X) = O(ε2), (14)

HL(Y |X) ≤ HL(Y |Z) +O(ε2). (15)

By using Lemma 1, the training loss performance of su-

pervised learning based forecasting is characterized in the

following theorem. For notational simplicity, the theorem is

presented for the case of m = 2 features, whereas it can be

easily generalized to any positive integer value of m.

Theorem 1. Let {(X1,t, X2,t, Yt), t ≥ 0} be a stationary
stochastic process.

(a) The minimum training loss HL(Yt|X1,t−δ1 , X2,t−δ2) is a
function of δ1 and δ2, determined by

HL(Yt|X1,t−δ1 , X2,t−δ2) = f1(δ1, δ2)− f2(δ1, δ2), (16)

where f1(δ1, δ2) and f2(δ1, δ2) are two non-decreasing
functions of δ1 and δ2, given by

f1(δ1, δ2)

=HL(Yt|X1,t, X2,t)

+

δ1−1∑
k=0

IL(Yt;X1,t−k, X2,t−δ2 |X1,t−k−1, X2,t−δ2)

+

δ2−1∑
k=0

IL(Yt;X1,t, X2,t−k|X1,t, X2,t−k−1), (17)

f2(δ1, δ2)

=

δ1−1∑
k=0

IL(Yt;X1,t−k−1, X2,t−δ2 |X1,t−k, X2,t−δ2)

+

δ2−1∑
k=0

IL(Yt;X1,t, X2,t−k−1|X1,t, X2,t−k). (18)

(b) If HL(Y ) is twice differentiable in PY , and

Yt
ε←→ (X1,t−τ1 , X2,t−τ2)

ε←→ (X1,t−τ1−μ1
, X2,t−τ2−μ2

)

is an ε-Markov chain for all μl, τl ≥ 0, then f2(δ1, δ2) =
O(ε2) and hence

HL(Yt|X1,t−δ1 , X2,t−δ2) = f1(δ1, δ2) +O(ε2). (19)

Due to space limitation, all the proofs are relegated to our

technical report [35].

According to Theorem 1, the minimum training loss

HL(Yt|Xm
t−δm) is a function of the age vector δm. In ad-

dition, HL(Yt|Xm
t−δm) is the difference between two non-

decreasing functions of δm. Furthermore, the monotonicity of

HL(Yt|Xm
t−δm) is characterized by the parameter ε in the ε-

Markov chain Yt
ε←→ Xm

t−τm
ε←→ Xm

t−τm−μm . If ε is small,

then the empirical distribution of training data samples can be

accurately approximated as a Markov chain. As a result, the

term f2(δ
m) is close to zero and HL(Yt|Xm

t−δm) tends to be

a non-decreasing function of δm. On the other hand, for large

ε, HL(Yt|Xm
t−δm) is unlikely monotonic in δm.

As depicted later in Figs. 3-4, the training loss can indeed

be non-monotonic on δm. This finding suggests that it is

beneficial to investigate non-monotonic age penalty functions,

which are more general than the non-decreasing age penalty

metrics studied in, e.g., [12], [19], [22].

B. Training Loss under Dynamic AoI

In practice, the AoI Δm(t) varies dynamically over time,

as shown in Fig. 2. Let PΔm denote the empirical distribution

of the AoI in the training dataset and Δm be a random vector

with the distribution PΔm . In the case of dynamic AoI, there

are two approaches for training: (i) Separated training: the

Bayes action for the AoI value Δm = δm is trained by only

using the training data samples with AoI value δm [23]. The

minimum training loss of separate training for Δm = δm is

HL(Yt|Xm
t−δm), which has been analyzed in Section IV-A. (ii)

Joint training: the training data samples of all AoI values are

combined into a large training dataset and the Bayes actions

for different AoI values are trained together. In joint training,

the AoI value can either be included as part of the feature,

or be excluded from the feature. If the AoI value is included

in the training data (i.e., as part of the feature), the minimum

training loss of joint training is HL(Yt|Xm
t−Δm ,Δm). If the

AoI value is excluded from the training data, the minimum

training loss of joint training is HL(Yt|Xm
t−Δm). Because

conditioning reduces the generalized entropy [24], [25], we

have

HL(Yt|Xm
t−Δm ,Δm) ≤ HL(Yt|Xm

t−Δm). (20)

Hence, a smaller training loss can be achieved by including

the AoI in the feature. Moreover, similar to (6), one can get

HL(Yt|Xm
t−Δm ,Δm) =

∑
δm

PΔm(δm)HL(Yt|Xm
t−δm). (21)

Therefore, the minimum training loss of joint training is

simply the expectation of the training loss of separated

training. Our experiment results show that joint training can

have a much smaller computational complexity than separated

training (see the discussions in Section V-D). Therefore, we

suggest to use joint training and add AoI into the feature.

The results in Theorem 1 can be directly generalized to the

scenario of dynamic AoI. In particular, if the age processes

of two experiments, denoted by subscripts c and d, satisfy a
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sample-path ordering1

Δm
c (t) ≤ Δm

d (t), ∀ t, (22)

then, similar to (19), one can obtain

HL(Yt|Xm
t−Δm

c
,Δm

c ) ≤ HL(Yt|Xm
t−Δm

d
,Δm

d ) +O(ε2). (23)

Next, we show that (23) can be also proven under a weaker

stochastic ordering condition (26).

Definition 2. Univariate Stochastic Ordering: [36] A random
variable X is said to be stochastically smaller than another
random variable Z, denoted as X ≤st Z, if

P (X > x) ≤ P (Z > x), ∀x ∈ R. (24)

Definition 3. Multivariate Stochastic Ordering: [36] A set
U ⊆ R

m is called upper if zm ∈ U whenever zm ≥ xm and
xm ∈ U . A random vector Xm is said to be stochastically
smaller than another random vector Zm, denoted as Xm ≤st

Zm, if

P (Xm ∈ U) ≤ P (Zm ∈ U), for all upper sets U ⊆ R
m.

(25)

Theorem 2. If {(Xm
t , Yt), t ≥ 0} is a stationary random

process, Yt
ε←→ Xm

t−τm
ε←→ Xm

t−τm−μm is an ε-Markov chain
for all μm, τm ≥ 0, HL(Y ) is twice differentiable in PY ,
and the empirical distributions of the training datasets in two
experiments c and d satisfy

Δm
c ≤st Δ

m
d , (26)

then (23) holds.

According to Theorem 2, if Δm
c is stochastically smaller

than Δm
d , then the minimum training loss of joint training in

Experiment c is approximately smaller than that in Experiment

d, where the approximation error is of the order O(ε2).

C. Testing Loss under Dynamic AoI

Let PY denote the space of distributions on Y and

relint(PY ) denote the relative interior of PY .

Definition 4. β-neighborhood: [37] Given β ≥ 0, the β-

neighborhood of a reference distribution QY ∈ relint(PY) is
the set of distributions that are in a Neyman’s χ2-divergence
ball of radius β2 centered on QY , i.e.,

NY
β (QY ) =

{
PY ∈ PY : Dχ2(PY ||QY ) ≤ β2

}
. (27)

Theorem 3. Let {(Xm
t , Yt), t ≥ 0} be a stationary stochastic

process.

(a) If the empirical distributions of training data and testing
data are close to each other such that

Dχ2

(
PX̃m

t−Δ̃m ,Δ̃m ||PXm
t−Δm ,Δm

)
≤ β2,

Dχ2

(
PỸt,X̃m

t−Δ̃m ,Δ̃m ||PYt,Xm
t−Δm ,Δm

)
≤ β2,

1We say xm ≤ zm, if xl ≤ zl for every l = 1, 2, . . . ,m.

then the testing loss is close to the minimum training loss,
i.e.,

HL(Ỹt;Yt|X̃m
t−Δ̃m , Δ̃m) =HL(Yt|Xm

t−Δm ,Δm) +O(β),

(28)

(b) In addition, if HL(Y ) is twice differentiable in PY ,
Yt

ε←→ Xm
t−τm

ε←→ Xm
t−τm−μm is an ε-Markov chain

for all μm, τm ≥ 0, and the empirical distributions of
the testing datasets in two experiments c and d satisfy
Δ̃m

c ≤st Δ̃
m
d , then the corresponding testing loss satisfies

HL(Ỹt;Yt|X̃m
t−Δ̃m

c
, Δ̃m

c ) ≤HL(Ỹt;Yt|X̃m
t−Δ̃m

d

, Δ̃m
d )

+O(max{ε2, β}). (29)

As shown in Theorem 3, if the empirical distributions of

training data and testing data are close to each other, then the

minimum training loss and testing loss have similar growth

patterns as the AoI grows.

V. CASE STUDIES

We provide several case studies using a real-world solar

power prediction task. A Long Short-Term Memory (LSTM)

neural network is used as the prediction model. Four cases

are studied: (i) training loss under constant AoI, (ii) sensitivity

analysis of input sequence length b under constant AoI, (iii)

training loss under dynamic AoI, and (iv) testing loss under

dynamic AoI.

A. Experimental Setup

1) Environment: We use Tensorflow 2 [38] on Ubuntu

16.04, and a server with two Intel Xeon E5-2630 v4 CPUs and

four GeForce GTX 1080 Ti GPUs to perform the experiments.

2) Dataset: A real-world dataset from the probabilistic

solar power forecasting task of the Global Energy Forecasting

Competition (GEFCom) 2014 [39] is used for evaluation.

The dataset contains 2 years of measurement data for 13

signal processes, including humidity, thermal, wind speed and

direction, and other weather metrics, as explained in [39].

Feature Xl,t = (sl,t, . . . , sl,t−b+1) of signal l is a time

sequence of length b. The task is to predict the solar power at

an hourly level. We have used two different AoI values δ1 and

δ2, where 6 features are of the AoI δ1 and 7 features are of the

AoI δ2. In jointly training, we use an aggregated dataset with

samples of constant AoI δ1 = δ2 ranging from 1 to 48 (hours).

The first year of data is used for training and the second year

of data is used for testing. During preprocessing, both datasets

are normalized such that the training dataset has a zero mean

and a unity standard derivation.

3) Prediction Model: A Long Short-Term Memory (LSTM)

neural network is used for prediction. It composes of one

input layer, one hidden layer with 32 LSTM cells, and one

fully-connected (dense) output layer. The object of training is

to minimize the expected quadratic loss under the empirical

distribution of the training samples. In other words, empirical

mean square error (MSE) 1
K

∑K
i=1(yi − ŷi)

2 is minimized,

where K is the number of training data entries, yi is the actual
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Fig. 3: Training loss vs. AoI δ1 = δ2 = δ, where
the input length is b = 6, 12, and 24.

Fig. 4: Training loss vs. AoI δ2, where the input
length is b = 24 and δ1 =3, 5, 7, and 9 hours.

Fig. 5: Training loss vs. input length b, where the
AoI is δ1 = δ2 =2, 4, 8, and 16 hours.

Fig. 6: Training loss under dynamic AoI Δ1(t) = Δ2(t), where the input length is b = 12 and 24.
Three training approaches are illustrated: (i) separated training, (ii) joint training with AoI as part of
feature, and (iii) joint training without using AoI as part of feature.

Fig. 7: Testing loss and training loss vs. dynamic
AoI Δ1(t) = Δ2(t), where the input length is
b = 12.

label, and ŷi is the predicted label. All the experimental results

are averaged over multiple runs to reduce the randomness that

occurs during the training of LSTM. This training setting and

the hyper-parameters of Tensorflow 2 training algorithm are

consistently used across all evaluations. Note that in theoretical

analysis, we have considered that Ψ consists of all possible

functions from Xm to A. In practice, neural networks cannot

represent such a large function space and the trained weights

of the neural network may not be globally optimal. Hence, the

training loss (MSE) in the experimental study is larger than

the minimum training loss analyzed in our theory, but their

patterns should be similar.

B. Training Loss under Constant AoI

We start with the scenario of separated training, where the

AoI is the same across all input features, i.e., δ1 = δ2 = δ. As

shown in Fig. 3, the training loss is not a monotonic function of

AoI δ. Moreover, with the increase of input sequence length b,
the training loss becomes close to a non-decreasing function.

However, with the increase of input sequence length b, the

training loss tends to be close to a non-decreasing function.

This phenomenon can be interpreted by using Shannon’s high-

order Markov model for information sources [40]. Specifically,

the feature process Xl,t can be approximated as a Markov

chain model with order b, where the approximation error

reduces as the order b grows. Because of this, the training

loss is far away from an increasing function of the AoI when

b = 6 or 12, and is nearly an increasing function of the AoI

when b = 24.

Next, we consider a more general case where δ1 and δ2
can have different values. The results are shown in Fig. 4,

where both δ1 and δ2 affect the training loss in accordance to

Theorem 1.

C. Sensitivity Analysis of Input Sequence Length b Under
Constant AoI

With the increase of input length sequence b, the training

loss is expected to decrease, because conditioning reduces the

generalized conditional entropy. To show this, we evaluate the

training loss for a wide range of input lengths, as shown in

Fig. 5. The observations are two-folded. First, for a given AoI

value, the training loss is a non-increasing function of the input

length b. Second, even with the increase of input length, a

larger AoI leads to a larger training loss. The observed pattern

agrees with our theoretical analysis.

D. Training Loss under Dynamic AoI

In the separated training method considered above, one

predictor (i.e., an LSTM neural network) is trained for every

AoI value. Hence, a number of predictors are needed. Training

these predictors may incur a huge computational cost, which

would be impractical for prediction tasks with huge datasets.
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As discussed in Section IV-B, joint training is a better ap-

proach, where a single predictor is trained by jointly using

the input samples of different AoI values. As plotted in Fig.

6, if the AoI is excluded from the feature, joint training has

a significant performance degradation compared to separated

training as described in (20). However, with AoI as a part of

the input feature, joint training has comparable performance

as separated training, which agrees with the relationship in

(21). For a wide range of AoI values, the performance of

joint training is slightly better than separated training because

it uses all training data where separated predictor can only

be trained on the data with certain AoI. This phenomenon is

in alignment with data augmentation [41]. In current training

dataset for jointly training, we mainly focus on small AoIs

so the joint model may not be as good as separated training

for very large AoI values. But such long AoI is rare in real-

world applications. Thus, the idea of appending AoI to the

input features is a good idea for time-varying AoI.

E. Testing Loss under Dynamic AoI
Training loss and testing loss are compared in Fig. 7 for joint

training under dynamic AoI. One can observe that the testing

loss is not monotonic in AoI, but it has a growing trend that

is similar to the training loss. In addition, the testing loss is

larger than the training loss, which is caused by the difference

between the empirical distributions of training and testing

datasets. Such a difference is quite normal in machine learning,

which occurs, for instance, if the datasets for training/testing

are not sufficiently large or if there is concept shift [42].

VI. CONCLUSION

In this paper, we have presented a unified theoretical frame-

work to analyze how the age of correlated features affects the

performance in supervised learning based forecasting. It has

been shown that the minimum training loss is a function of

the age, which is not necessarily monotonic. Conditions have

been provided under which the training loss and testing loss

are approximately non-decreasing in age. Our investigation

suggests that, by (i) jointly training the forecasting actions

for different age values and (ii) adding the age value into

the input feature, both forecasting accuracy and computational

complexity can be greatly improved.

REFERENCES

[1] B. Liu, E. Adeli, Z. Cao, K.-H. Lee, A. Shenoi, A. Gaidon, and J. C.
Niebles, “Spatiotemporal relationship reasoning for pedestrian intent
prediction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3485–3492, 2020.

[2] T. Do, M. Duong, Q. Dang, and M. Le, “Real-time self-driving car navi-
gation using deep neural network,” in 2018 4th International Conference
on Green Technology and Sustainable Development (GTSD), 2018, pp.
7–12.

[3] T. Hong and P. Pinson, “Energy forecasting in the big data world,”
International Journal of Forecasting, vol. 35, no. 4, pp. 1387–1388,
Jan. 2019.

[4] D. Kaur, S. N. Islam, M. A. Mahmud, and Z. Dong, “Energy forecasting
in smart grid systems: A review of the state-of-the-art techniques,” 2020,
https://arxiv.org/abs/2011.12598.

[5] A. Dobbs, T. Elgindy, B.-M. Hodge, A. Florita, and J. Novacheck,
“Short-term solar forecasting performance of popular machine learning
algorithms,” National Renewable Energy Laboratory, 2017.

[6] C. Zhang, J. J. Q. Yu, and Y. Liu, “Spatial-temporal graph attention
networks: A deep learning approach for traffic forecasting,” IEEE
Access, vol. 7, pp. 166 246–166 256, 2019.

[7] H. Dia, “An object-oriented neural network approach to short-term traffic
forecasting,” European Journal of Operational Research, vol. 131, no. 2,
pp. 253 – 261, 2001.

[8] T. Gao, Y. Chai, and Y. Liu, “Applying long short term momory neural
networks for predicting stock closing price,” in 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
2017, pp. 575–578.

[9] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM, 2012, pp. 2731–2735.

[10] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[11] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of in-
formation in vehicular networks,” in 8th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, 2011, pp. 350–358.

[12] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-
linear age functions,” Journal of Communications and Networks, vol. 21,
no. 3, pp. 204–219, 2019.

[13] B. Zhou and W. Saad, “Optimal sampling and updating for minimizing
age of information in the internet of things,” in IEEE Global Commu-
nications Conference (GLOBECOM), 2018, pp. 1–6.

[14] A. Arafa, K. Banawan, K. G. Seddik, and H. V. Poor, “On timely channel
coding with hybrid ARQ,” in 2019 IEEE Global Communications
Conference (GLOBECOM), 2019, pp. 1–6.

[15] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in IEEE International Symposium on Information Theory (ISIT),
2015, pp. 3008–3012.

[16] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information
minimization with an energy harvesting source,” IEEE Transactions on
Green Communications and Networking, vol. 2, no. 1, pp. 193–204,
2018.

[17] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process
for remote estimation over a channel with random delay,” IEEE Trans-
actions on Information Theory, vol. 66, no. 2, pp. 1118–1135, 2020.

[18] T. Z. Ornee and Y. Sun, “Sampling for remote estimation through
queues: Age of information and beyond,” in International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOPT), 2019, pp. 1–8.
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