BAASH: Lightweight, Efficient, and Reliable
Blockchain-As-A-Service for HPC Systems

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

aalmamun@nevada.unr.edu,fyan@unr.edu,dzhao@unr.edu
University of Nevada, Reno
Reno, NV, USA

ABSTRACT

Distributed resiliency becomes paramount to alleviate the
growing costs of data movement and I/Os while preserv-
ing the data accuracy in HPC systems. This paper proposes
to adopt blockchain-like decentralized protocols to achieve
such distributed resiliency. The key challenge for such an
adoption lies in the mismatch between blockchain’s target-
ing systems (e.g., shared-nothing, loosely-coupled, TCP/IP
stack) and HPC’s unique design on storage subsystems, re-
source allocation, and programming models. We present
BAASH, Blockchain-As-A-Service for HPC, deployable in a
plug-n-play fashion. BAASH bridges the HPC-blockchain
gap with two key components: (i) Lightweight consensus
protocols for the HPC’s shared-storage architecture, (ii) A
new fault-tolerant mechanism compensating for the MPI to
guarantee the distributed resiliency. We have implemented
a prototype system and evaluated it with more than two
million transactions on a 500-core HPC cluster. Results show
that the prototype of the proposed techniques significantly
outperforms vanilla blockchain systems and exhibits strong
reliability with MPIL.

CCS CONCEPTS

« Computer systems organization — Availability; Re-
dundancy; Reliability; Information systems — Distribu-
ted storage; Data replication tools.

KEYWORDS

Blockchain, MPI, fault tolerance, resilience, reproducibility,
HPC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SC °21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11...$15.00
https://doi.org/10.1145/3458817.3476155

~

A

&
[(Compute Node Compute Node\

Memory I Memory
=]

w

=l

ication y "
— F ‘;{;’) In M. D /

\ n Memory Data
Application B @ N~ y _4
K1 |2 Y g

A — o W

Application C | ytilize S

e,
[remote torge
K HPC system /

Figure 1: BAASH service is useful in a typical data
movement workflow in an HPC environment.

ACM Reference Format:

Abdullah Al Mamun, Feng Yan, Dongfang Zhao. 2021. BAASH:
Lightweight, Efficient, and Reliable Blockchain-As-A-Service for
HPC Systems. In The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC *21), November
14-19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3458817.3476155

1 INTRODUCTION
1.1 Motivation

Distributed consistent caching. Exascale systems are likely
to have extreme power constraints; yet, follow an expensive
approach to move data anywhere, necessarily near the pro-
cessors. However, the problem can be mitigated by replicat-
ing [16] or caching data distributedly through a distributed
ledger. This is especially useful when the scientific workflows
are coupled, as illustrated in Figure 1, such as multi-scale,
multi-physics turbulent combustion application S3D [10],
where the data moving cost often grows exponentially. Be-
sides, performance in exascale systems will require enormous
concurrency, requiring that data on each node be in the same
state through synchronization leading to the eventual con-
sistency for readers to see data from heterogeneous sources,
which is desirable in modern large scale HPC systems [5].
Provenance tracking. On top of that, extreme-scale HPC
systems (e.g., Cori [49]) rely on data provenance to repro-
duce and verify the scientific experimental results generated
during the application executions. Essentially, data prove-
nance is a well-structured log for efficient data storage along

SC ’21, November 14-19, 2021, St. Louis, MO, USA

with an easy-to-use query interface. Data provenance is con-
ventionally implemented through file systems [47, 54] or
relational databases [21, 31]. However, none of the current
efforts exhibit the immutability property that guarantees the
reliability of the provenance history.

Data fidelity. Over and above that, data fidelity is of
prominent importance for scientific applications deployed
to HPC systems, as the data upon which scientific discovery
rests must be trustworthy and retain its veracity at every
point in the scientific workflow. Silent data corruption has
been a critical problem [14, 17] that leads to data loss or
incorrect data, impacting the application performance at an
extreme scale. Extreme-scale workflows are often long last-
ing and dependent on intermediate results collected from
a data source or other applications, as shown in Figure 1.
Therefore, those workflows typically require careful veri-
fication before caching the data in-memory or persisting
them in remote storage. There have been noticeable inci-
dents [20, 48] where the error rates grow exponentially as
the system reaches extreme scale. Besides, there have been
more than enough incidents about data falsification and fab-
rication, causing the withdrawal of scientific publications
and other consequences. To this end, developing trustwor-
thy data service for scientific computing and HPC systems
has been recently incentivized by various federal funding
agencies, such as the National Science Foundation [39] and
the U.S. Department of Energy [15].

Blockchain-as-a-service for HPC. We argue that all of
the aforementioned services could be built upon or improved
by a decentralized consensus protocol—the very core techni-
cal innovation by blockchains. In essence, a blockchain can
enable data synchronization in HPC systems with strong
reliability in an autonomous fashion. The Oak Ridge Na-
tional Laboratory has released a white paper [1] discussing
a wide range of potential applications that can benefit from
blockchains on the Oak Ridge Leadership Computing Fa-
cility. Recent studies [2-4, 12, 33, 34, 42, 43] showed that
blockchains could be leveraged to provide a variety of ser-
vices on HPC systems.

1.2 Challenges

While blockchains have drawn much research interest in
many areas such as cryptocurrency [19, 22, 28] and smart
government [40], the HPC and scientific computing com-
munities, although regarding resilience as one of their top
system design objectives, have not taken blockchains into
their ecosystems due to various (both technical and admin-
istrative) reasons, but most notably on the following two
challenges: the shared-storage system infrastructure of HPC
systems and the MPI programming model for scientific appli-
cations. By contrast, all the mainstream blockchain systems

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

and frameworks assume the underlying systems are shared-
nothing clusters with the TCP/IP network stack (rather than
MPI and ranks).

Specifically, although blockchain itself exhibits many re-
search and application opportunities (comprehensive reviews
available from [13, 53]), one of the most impelling challenges
for employing blockchains into HPC systems lies in the con-
sensus protocols for the unique I/O subsystem. Existing con-
sensus protocols used in mainstream blockchains are either
based on intensive computation (the so-called proof-of-work,
or POW, for instance) or intensive network communication
(e.g., practical Byzantine fault tolerance, PBFT), which are
inappropriate for HPC in terms of both performance and
cost as shown in Table 1.

Nonetheless, some of the efforts [3, 4], recently attempt
to resolve some of the challenges to adopt blockchain or
blockchain-like data caching in the HPC ecosystem. How-
ever, these systems either follow conventional POW [3];
hence, not appropriate for permissioned environment like
HPC, or are not yet equipped with the most desired essential
features as shown in Table 1, for instance, (i) extensive com-
putation or communication free scalable consensus mech-
anism to establish trustworthiness among the distributed
cached data, (ii) full-competent HPC protocol account for
both the compute nodes and the remote storage account-
ing for the parallel file system (e.g., [45]) with reasonable
overhead; (iii) parallel block processing, (iv) parallel con-
sistency in the distributed ledger with lower latency, and
lastly, (v) fault-tolerance support addressing MPI node failure
that strengthens consistency in distributed ledger across the
nodes. Hence, the state-of-the-art systems yet suffer from a
lightweight strategy to deploy the blockchain-like resiliency
in HPC infrastructure.

Although MPI brings a lot of opportunities to facilitate par-
allel processing in scientific computing, deploying blockchain
with MPI is a very challenging job. In MPIL, one rank failure
brings down the entire communicator; hence, it raises a crit-
ical issue for a blockchain service: one single failure would
crash the entire blockchain service. Several fault-tolerance
approaches [8, 24] (mostly through software exception han-
dlers) have been designed to address MPI failures. How-
ever, no work exists to address the unique requirement of
blockchains: a crashed blockchain node has to restart from
scratch and verify all the hash values between every adjacent
pair of blocks (i.e., there is no such a concept of checkpoint,
unfortunately).

1.3 Our Contributions

In this work, we design a new blockchain framework for HPC
environments, deployed as a middleware, namely BAASH,

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

SC 21, November 14-19, 2021, St. Louis, MO, USA

Table 1: Summary of limitations of present blockchain-based provenance systems.

Features

ProvChain [34] SmartProv [42] LineageChain [43] IMB [3] SciChain [4] BAASH ‘

Support for diskless nodes X X

X

Lightweight computation

Free of message broadcast

Fully compatible to MPI

Parallel block processing

Parallel ledger resiliency

Realtime fault monitoring

XIX|X|X| X[\ X
XIX|X|X| X[\ X

Scalability on 500+ cores

XXX X[X]|<X]|N
XXX x| x| NS

SNENENENENENENEN

as illustrated in Figure 1. BAASH serves as a distributed trust-
worthy ledger fully compatible with the shared-storage in-
frastructure of HPC systems. The proposed framework over-
comes the shortcomings of the state-of-the-art blockchain
systems by completely eliminating the resource-intensive re-
quirements through a set of specially crafted protocols. More-
over, BAASH is equipped with a parallel processing layer
compatible with MPI, which enables BAASH to deliver low-
overhead and scalable performance. The protocols assure
parallel resiliency and account for both the compute nodes
and the remote storage (e.g., [45]) with reasonable over-
head. Therefore, a system implementing the proposed pro-
tocols can be smoothly deployed to an HPC infrastructure.
On top of that, the realtime fault monitor co-designed with
BAASH takes care of MPI’s rank failures and thus supports
the highly-desired (eventual) consistent caching across the
compute nodes.

To summarize, this paper makes the following contribu-
tions:

e We design a set of HPC-specific scalable consensus
protocols to facilitate a parallel block processing to pro-
vide a lightweight distributed in-memory and shared-
storage resiliency support;

e We develop a reliable fault monitoring mechanism to
ensure consistent BAASH service that can tolerate MPI
rank failures to ensure the availability of the BAASH
service;

e We implement a system prototype of the proposed
consensus protocols and parallelization approaches
with OpenMP and MPI; and

e We carry out an extensive evaluation of the system
prototype with millions of transactions on an 500-core
HPC platform and experimentally demonstrate the
effectiveness of BAASH.

Shared Storage

T3

Distributed [|[| Parale!
ile
Shared Grie
Ledger ¥
Compute Node | — |
A Shared Storage
Local II Ledger II
loc E—
[Parallel Consensus J £ T Message Exchange
[T oloek J 2 c Exit Routine
F =
Parallel Block Process o e
BAASH Parallel Processing Layer

Figure 2: Overall architecture of BAASH on HPC sys-
tems.

2 BAASH DESIGN
2.1 Architecture

Figure 2 illustrates the high-level overview of our envisioned
distributed BAASH system, which is deployed to a typical
HPC system. Note that some customized HPC systems may
have node-local disks, although this paper assumes that the
compute nodes are diskless. For instance, a top-10 supercom-
puter called Cori [49] located at Lawrence Berkeley National
Laboratory does have local SSD storage, namely, the burst
buffer. However, the burst buffer is not a good candidate
for ledgers because it is not designed for long-term data
archival; its only purpose is to alleviate the I/O pressure for
those I/O-intensive applications by caching the intermedi-
ate data locally. Besides, because scientific applications do
not time-share the resources, the ledgers stored on the local
storage (e.g., burst buffer) are usually purged after the job
execution (for both performance and security reasons). In

SC ’21, November 14-19, 2021, St. Louis, MO, USA

other words, even if a ledger can be technically persisted
to local disk in some scenarios, that persistence is not per-
manent, which motivates us to come up with a secondary
ledger and validator on the remote storage. Specifically, four
key modules of our envisioned system are highlighted in
Figure 2: a resilient distributed ledger, a parallel consensus
protocol, a parallel processing layer, and a fault monitor. We
will discuss each of them in more detail in the following.

2.1.1 Resilient distributed ledger. The first module is a re-
silient distributed ledger implementation optimized for high-
performance interconnects (e.g., InfiniBand) and protocols
(RDMA) across compute nodes. Because all compute nodes
fetch and update the ledger with few latest blocks only in
volatile memory (or, in persistent local storage but with a
short lifetime—purged after the job is complete) with mini-
mum overhead, there has to be at least one permanent, per-
sistent storage (which cannot be compromised) to store back
the ledger replicas in case of catastrophes (e.g., more than
50% of compute nodes crash and lose their ledgers). Note
that the memory-only compute nodes are not necessarily
less reliable than those with persistent storage; yet, the data
stored on memory would get lost if the process that initiates
the memory is killed. It should be noted that remote storage
is a cluster of nodes in a typical high-performance computing
ecosystem that makes the shared blockchain highly reliable
against any unexpected catastrophe.

2.1.2 Scalabale in-memory & shared-storage consensus pro-
tocol. The second module is a consensus protocol that sup-
ports attaining consensus in parallel (neither costly compu-
tational overhead nor extensive network communication) to
achieve the highest possible throughput through in-memory
blockchain support of the compute nodes and the resilient
remote ledger. In BAASH, a block is validated with two con-
secutive steps. First, the block is validated through a paral-
lel mechanism with in-memory blockchain support in each
node. To minimize the block validation time, we avoid any
traditional serialized block processing mechanism followed
by state-of-the-art blockchain systems. Second, if the major-
ity of the compute nodes (i.e., at least 51%) are unable to
reach a consensus about the validity of a block, the remote
storage then participates in the block validation process with
reasonably minimum overhead. We discuss more details in
Section 2.2.

2.1.3 Parallel processing layer. The third module is the par-
allel processing layer between the diskless compute nodes
and the remote persistent storage. The layer has three pur-
poses: (i) It injects the parallel distribution mechanism for
disseminating independent blocks with transactions into the
logically divided cluster of compute nodes, (ii) It facilitates
parallel block processing and achieving consensus without

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

Protocol 1 Parallel transaction manager

Require: Clusters C where the i-th cluster is C!; Transac-
tions T where the i-th transaction is T*; Entities E where
the i-th entity is E!; Remote storage R; a new block b.
Ensure: No duplicate processing of T%.
1: function TxN-Procgss(b, C, R, E)
2: for T! € T do

3 if T' is not locked then
4: Create hash H} with timestamp s and entity-
id E*

5 Push in a block b

6 else

7: Push T to transaction wait queue

8 end if

9: if time > t then
10: BAASH-Consensus(b, C, R, E) » Protocol 2
11: end if
12: end for

13: end function

a communication-intensive peer-to-peer mechanism, and
(iii) The ledgers persisting process in the remote storage
(i.e., shared-blockchain) as well as synchronization with the
distributed nodes can continue independently in parallel,
without interfering with the block validation. More details
about this layer is explained in Section 3.4 and Section 3.5.

2.1.4 Fault monitor. The fourth module is a real-time fault
tolerance mechanism implemented with three inevitable
checkpoints:

(1) Message exchange among peers: Check the communi-
cation status between the sender and receiver during
each message exchange.

(2) Exitroutine of each process: An exit routine that checks
the status of each node when the node finishes a vali-
dation process.

(3) Exception handler: Set checkpoints around the node
validation process to catch any unexpected exceptions.

Fault monitor also restores the BAASH service if any of the
cases occur while handling the block validation process by
the shared storage’s ledger. We discuss more details about
the fault monitor in Section 3.6.

2.2 Consensus Protocols

To overcome the limitations of the conventional protocols
(i.e., PoW and PBFT), as a co-design of the proposed BAASH
blockchain framework for scientific applications, we propose
a set of protocols. Protocol 1 coordinates parallel processing
of transactions of blocks. The Protocol 2 assists in managing
consensus of blocks in parallel through the distributed con-
sensus managers. The block validation process is managed

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

SC 21, November 14-19, 2021, St. Louis, MO, USA

Protocol 2 BAASH consensus

Protocol 3 Block validation

Require: Clusters C where the i-th cluster is Ct: Sub-
clusters N where the i-th sub-cluster is N’ managed
by a coordinator Nci; Total nodes n in a sub-cluster; En-
tities E where the i-th entity is E’; a new block b; hash
list bfl for b; remote storage R.

Ensure: At least 50% compute node list agreedNodes who
validate b both with local blockchain and with remote
persistent ledger Rg.

1: function BAASH-ConseNsus(b, C, R, E)

2 while |agreedNodes| <= 5 do
3 for C' € C do > In parallel
4 Push a block b in C"’s local queue
5: for N' € C' do > In parallel
6: N! « Validation(b, N', E) > Protocol 3
7 end for
8 end for
9: end while
10: if |agreedNodes| <= 7 then
11: if R validates b then
12: Generate hash by,
13: Persist-in-Storage(b, C, R) » Call Protocol 4
14: Release block b from active queue
15: else
16: Push the block to pending queue
17: end if
18: else
19: Pick a hash by, from b;l
20: Persist-in-Storage(b, C, R) > Call Protocol 4
21: Release block b from active queue
22: end if
23: Ni—0 > Deconstruct the sub-cluster

24: end function

by the Protocol 3. Finally, the Protocol 4 helps in managing
the resilient distributed ledger by storing the validated block
in nodes’ memory and persisting in the shared storage. We
will discuss each protocol in detail in the following sections.

2.2.1 Parallel transaction manager. Protocol 1 aims to ensure
the distinctive operation of transactions during the parallel
process. The BAASH engine leverages a queue that keeps
track of the individual active and pending transactions. All
the active transactions are locked to prevent duplicate trans-
action processing by creating a unique hash with the times-
tamp and the entity’s address (e.g., node) that issues the
transactions. When a transaction arrives, it (Protocol 1) first
checks (Line 3) if the transaction is unlocked (i.e., pending)
and creates a unique hash (Line 4) for it with the entities
addresses and the current timestamp before pushing to a
block (Line 5). The transaction batching process in a block

Require: Sub-clusters N where the i-th sub-cluster is N i
Nodes n where the i-th node is n‘. Entities E where the
i-th entity is E'; a new block b; hash list b;l for b where
the b, is the hash from n'.

Ensure: Block b contains valid transactions T before per-
sisted.

1: function VALIDATION(D, N%, E)

2 for n’ € N' do > In parallel

3 if n' validates b with affected E then

4 agreedNodes < agreedNodes U n'

5: Create hash b;;

6 b;l — bfl U b}il

7 else

8 bi « NULL

9 end if

10: end for

11: Return agreedNodes,bl ,b

12: end function

continues until a specific time (t). The time (t) is the mini-
mum latency over a network. Finally, Protocol 1 forwards
the block to start the consensus process (Line 10).

2.2.2 BAASH consensus. Protocol 2 steers the entire block
validation and persisting process. The parallel processing
module (more details in Section 3.4) leverages this protocol
to manage the equal dissemination of blocks among the clus-
ters. At first, the BAASH engine creates a set of coordinators
and logically distributes the compute nodes into a group of
clusters to manage the smart load-balance of the workload
that facilitates parallel block processing. Each cluster is man-
aged by a coordinator (Line 3). Each cluster is then further
split into a set of sub-clusters (Line 5) where each sub-cluster
processes a block (Line 6). A sub-cluster dynamically get
constructed with 3f + 1 + ¢ number of nodes, where f is
the maximum faulty nodes allowed in a sub-cluster, and c is
the maximum number of attempts of nodes adjustment from
a parent cluster (more details in Section 3.4). To be more
specific, at first, 3f + 1 nodes in a sub-cluster attempt to
validate a block. If more than 50% nodes in a sub-cluster fail,
the coordinator attempts a maximum of ¢ times to add an
idle node from the parent cluster to continue the validation.

If a validation process exceeds the total limit (i.e., ¢), while
attaining consensus from more than 50% nodes, the coordina-
tor involves the remote storage to come forward to provide
consensus (Line 11). Possible node failures would be either
software exceptions, false validation, or crashes. If the block
is valid the protocol picks a hash from the list of its (block)
validators (Line 19) or create a hash within remote storage
(Line 12) before persisting it (i.e., block) through the help of

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Protocol 4 Persist in storage

Require: Compute nodes n where the i-th node is n'; nk
the local blockchain on n'; Clusters C where the i-th
cluster is C; a newly mined block b; remote storage R;
Hry the hash table that contains hashes of blocks stored in
remote storage; Rp the blockchain copy on the storage;

Ensure: Validate b, store it to C, and persist it to R

1: function PERSIST-IN-STORAGE(D, C, R)
2 for C! € C do

3 for n' € C' do

4 if b ¢ nl; then

5 ng — ng ub > store in local chain
6: end if

7 end for

8 end for

9 if b ¢ Hr then > Only one look-up is needed
10: Rg «— RgUb > store in shared chain
11: end if

12: end function

Protocol 4 (Line 13 and 20). Finally, the sub-cluster (N°) is
deconstructed again at the end of a block processing (Line
23) to leverage the free nodes for the next block process-
ing. The time complexity of this protocol is O(|C|), which
is significantly lower than the existing PBFT algorithm (i.e.,
o(cP)).

2.2.3 Block validation. Protocol 3 works on block validation.
The validation process checks whether a block with transac-
tions is valid (e.g., legitimate provenance operations). When
a node in a cluster receives a block, it starts checking the
transactions in the block against the entities that are affected,
as shown in Line 3. The entities consist of any files, nodes,
or any other external source, etc.

A node provides a vote after validating the block (Line 4).
A validator (i.e., Node) creates a hash with its private key and
the current timestamp after processing all the transactions in
a block (Line 5). The validator sets the hash with Null value
if a block is invalid (Line 8). Finally, the Protocol 3 takes
advantage of consensus manager (more details in Section 3.5)
to aggregate the votes (i.e., agreedNodes) and forwards the
consensus along with the hash list (i.e., bil) as well as the
block with valid transactions (Line 11) to Protocol 2.

2.24 Persist-in-storage. Protocol 4 assists in managing the
resilient distributed ledger by storing blocks in parallel to
the nodes’ local memory in all clusters (Line 2 and 3) while
persisting blocks to the remote storage through a parallel file
system (e.g., GPFS) (Line 10). Persisting in remote storage
adds one more layer of reliability to the data on volatile mem-
ory. However, while attaining high reliability, the system
should not exhibit significant overhead. We use a key-value

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

(L& O o)

User Application ~ Compute Node External Nodes

BAASH Service API

Queue SHA_ZSS
Manager
= 8
[
- ‘m Fault
B Block Transaction

1]|
\ HPC System / \BAASHEngine S

\ BAASH Data Collector /

Figure 3: BAASH implementation with MPI and
shared storage.

model to store both the blocks and transactions both in the
in-memory ledger and the remote storage. In the key-value
data model, a hash represents a key. Therefore, when a node
attempts to store a block in the storage node, it first looks up
quickly in the storage to check whether the block is already
stored. If the block hash is already in the storage, the re-
spective node does not attempt to access the remote storage
further. This is addressed in Line 9, where we only need one
look-up to check in the storage. This prevents touching the
shared storage more than once when other nodes try to store
the same block again.

This replication process is independent and hence, does
not interrupt the overall performance of BAASH during the
block validation. The theoretical time complexity of this
protocol is O(|C|) and |C| could be a fairly large number
(e.g., tens of thousands of cores in leading-class supercom-
puters [49]). It should be noted that in HPC system remote
storage is managed through a distributed cluster of storage
nodes; hence, failure of a single storage node does not lead
to any loss to the full ledger stored in the remote storage.
We will demonstrate the effectiveness of the protocol in the
evaluation section.

3 SYSTEM IMPLEMENTATION

We have implemented a prototype system of the proposed
blockchain architecture in the user space and consensus
protocols with Python-MPIL Although this paper presents
BAASH as a user-library with a callable programming in-
terface, BAASH can also be deployed at the system level
through a wrapper. MPI is a message-passing application
programming interface that allows us to develop our own

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

parallel processing layer. We use the mpi4py package [38] for
leveraging MPI with Python. This MPI package for Python
provides bindings of the MPI standard for the Python pro-
gramming language, allowing any Python program to exploit
multiple processors across machines. Typically, for maximum
performance, each CPU (or core in a multi-core machine)
will be assigned one single process or a distinct rank.

At this point, we only release the very core modules of
the prototype. Some complementary components and plug-
ins are still being tested with more edge cases and will be
released once they are stable enough. Figure 3 illustrates the
overview of the implemented architecture of the proposed
parallel blockchain on MPI. The prototype system has been
deployed to 500 cores on an HPC cluster.

As shown in Figure 3, new transactions received through
BAASH service API from the nodes or any other sources
(e.g., external HPC cluster or scientific workbench) are first
hashed using SHA-256 [46] (step 1). Then, the transactions
are pushed in a queue (step 2) to be batched or encapsulated
in a block (step 3) and added to the block queue (step 4).
The parallel processing module monitors both the clusters
of nodes as well as the block queue. The parallel module
receives a block (step 5) and distributes it whenever a clus-
ter is available (step 6). Afterward, the blocks are validated
first in compute nodes. The consensus manager collects the
consensus of the block from the cluster (step 7), and if the
block is validated successfully, BAASH decides to append the
block both in the in-memory ledger of the compute nodes
and in the remote storage through a parallel file system (i.e.,
GPFS) (step 9). During the entire block validation process,
a fault monitor keeps track of each node and takes the nec-
essary initiatives to recover any node failure and reinstate
the BAASH service (step 8). Once the data from a source
is validated and appended in the distributed ledger, other
applications can access the data as a reliable source through
BAASH API (step 10).

3.1 Data Models

The data structure for the proposed BAASH ledger is a linked
list and stored in a hash table where each tuple corresponds
to a block, which references a list of transaction records
stored in another table. In each hash table, a corresponding
hash acts as a primary key that helps in identifying a block or
a transaction. All properties of a block (e.g., block ID, parent
block hash, transactions list, and time stamp) and all prop-
erties of a transaction (e.g., transaction ID, transaction data,
time stamp, and entities ID such as Node-ID, application-ID,
file-ID) are encapsulated respectively in a Block object and
in a Transaction object at runtime.

SC 21, November 14-19, 2021, St. Louis, MO, USA

)

Transactions Queue Block Queue Shared Blockchain
I Pending I I Active I I Pending I I Active I 2S-2
Ry £ Va
| BAASH Service Daemon |
Fd g Ry

Coordination |
< Coordintors > . < Coordnators >/ a

N162 B Nncz) NICS e Nncs

Blocks assigned to
% coordinator (C1) are
™ processed in parallel
by dynamically
constructed
sub-clusters

‘4al Bl
Ny, €@ B
Dynamic 2
Sub-clusters

i
/ 1
;) vee ((Ngpy @ B

Figure 4: Parallel processing module in BAASH man-
ages blocks in parallel through distributed coordina-
tors or consensus managers.

3.2 Worker Nodes

In BAASH, transactions are first appended to the transaction
queue, which is discussed in detail in §3.3. When the cre-
ated transaction queue reaches a limit, the nodes encapsulate
them (i.e., transactions) in a block. When a block is encapsu-
lated with a number of transactions, it is then pushed into
a queue (discussed in §3.3) before it is broadcasted in the
network.

The nodes are responsible for validating the blocks and
sending consensus to the respective coordinators (MPI com-
municators) through the parallel processing module and dis-
tributed consensus managers (more details in Section §3.4
and §3.5). A coordinator will store a block both in nodes’ local
in-memory as well as in the remote storage after validation.
The format of storing data in a compute node and in remote
storage is explained in §3.1. Each node communicates with
the respective coordinator through our parallel mechanism
implemented with MPI discussed in §3.4. The communication
between compute nodes and the remote storage is managed
through a parallel file system (e.g., GPFS).

3.3 Block and Transaction Queue

The newly created or received transactions are pushed into
a pending transaction queue. In BAASH, we can adjust the
block size according to our demand. For instance, for all the
experiments presented in this paper, each block consists of 4
transactions on average. Therefore, the block encapsulation
process is triggered as soon as the queue size reaches 4. This
is because we want to compare our experimental results
with the benchmarks [13]. Once the pending transactions
are encapsulated they are moved to the active transaction
queue. When a block is ready to propagate, it is pushed

SC ’21, November 14-19, 2021, St. Louis, MO, USA

RespONse

Figure 5: A consensus manager (i.e., a coordinator)
guarantees the consistency in block management
through the two-phase distributed quorum commit
protocol.

to a pending block queue. At a fixed time interval, a block
pops out from the queue periodically and is transferred to a
coordinator. Once the block is transferred, it is then moved
to the active block queue.

It could be argued that a queue might not deliver data
at a sufficient rate to feed the network because a queue is
a linear data structure that can hardly be parallelized for
the sake of scalability. This is alleviated by the following
two approaches in our implementation. First, we adjust the
time interval larger than the latency for the queue to pop an
element. In doing so, the overhead from the queue itself is
masked completely. Second, we implement the queue using a
loosely-coupled linked-lists such that the queue can be split
and reconstructed arbitrarily.

3.4 Parallel Processing Module

As shown in Figure 4, the entire network is logically divided
into s number of clusters. BAASH creates a set of dynamic co-
ordinators (i.e., MPI communicators) to manage the clusters
from the list of nodes. The selection process of coordinators
is random, and a coordinator can not actively participate
in block validation process. Each cluster is managed by a
single coordinator. A cluster consists of n number of nodes
from where the parallel processing module dynamically cre-
ates z number of of sub-clusters. Figure 4 shows how the
parallel module in BAASH coordinates with the transaction
queue, block queue, and the shared blockchain to distribute
the blocks with transactions among a set of dynamically
constructed sub-clusters of nodes from the parent cluster
assigned to a coordinator (i.e., MPI communicator).

When a block arrives, BAASH starts looking for available
3f + 1 nodes to construct a sub-cluster to start processing
the block. f is the maximum faulty nodes allowed in a sub-
cluster. If more than 50% nodes in a sub-cluster fail, BAASH
attempts to add new nodes in the initial cluster. The initial

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

_ Start
& Restart -
-—
Bt [No' [pansH '\
running? - +
vl Yes s BAASH No |
restarted?
Keep monltonng
j Yes \
?
Exception? g:m;z Sared
[esl + transactions to stgrage =
BAASH validation
Daemon keeps
Checkpomt enqueuing
the progress in-bound
\ transactions Srie
/ faulty nodes

Figure 6: Workflow of BAASH’s monitor to han-
dle MPI failures. The monitor ensures a consistent
BAASH service against arbitrary node failures.

cluster then becomes 3f + 1 + ¢, where c is the maximum
number of nodes adjustment from a parent cluster in case
of more than 50% nodes failure in the sub-cluster. To be
more specific, ¢ denotes how many times the parallel module
attempts to add a new node from the parent cluster if the
majority (more than 50%) nodes in a sub-cluster fail. The
cluster is flexible enough to deconstruct again to merge with
the parent cluster when no blocks are available to process.

3.5 Consensus Manager

Distributed consensus managers (i.e., coordinators) assist in
managing votes for a block processed in parallel by a set of
nodes in the logically divided sub-clusters. It (i.e., consensus
manager) guarantees consistency in parallel block process-
ing through a newly designed protocol named two-phase
distributed quorum commit (2PDQC) protocol.

Figure 5 illustrates the entire workflow of the proposed
protocol. First, a coordinator broadcasts a block validation
request among the nodes in a cluster. Second, the nodes for-
ward their votes to the coordinator after the validation phase.
Third, the coordinator aggregates the votes to prepare the
final decision about the legitimacy of the block. Finally, the
coordinator commits the block in the shared storage (shared
blockchain) and synchronizes the nodes with the shared
blockchain. It should be noted that all the distributed coor-
dinators (Figure 4) keep monitoring the shared blockchain
during the entire process to avoid any duplicate processing
or double-spending in logically distributed clusters.

3.6 Fault Monitor

A real-time distributed monitoring process (daemon service)
as shown in Figure 6 is designed to keep monitoring the

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

BAASH service to intercept the three aforementioned check-
points (Section 2.1.4). If any of the checkpoints raises an
alert during the block validation process, the daemon ser-
vice stores (i.e., check pointing) the progress and attempts
to restart the BAASH service. It (i.e., BAASH) excludes the
faulty nodes during the construction of the logically dis-
tributed clusters.

The daemon keeps en-queuing the in-bound transactions
and leverages the remote storage (i.e., shared blockchain) to
continue the validation process while the BAASH service
takes time to restart. Once the service restarts the daemon
starts forwarding the pending transactions to BAASH. In the
case of remote storage failure, the entire validation process
is restarted automatically, which is the worst case and very
rare to happen.

4 EVALUATION
4.1 Experimental Setup

Testbed. All experiments are carried out on a high perfor-
mance computing cluster comprised of 58 physical nodes
interconnected with FDR InfiniBand. Each node is equipped
with an Intel Core-i7 2.6 GHz 32-core CPU along with 296 GB
2400 MHz DDR4 memory; hence each node can be emulated
with up to 32 nodes through user-level threads. There is no
local disk on compute nodes, which is a typical configuration
on HPC systems; a remote 2.1 PB storage system is available
managed by GPFS [45]. Each node is installed with Ubuntu
16.04, Python 3.7.0, NumPy 1.15.4, mpi4py v2.0.0, and mpich2
v1.4.1. We deploy our system prototype on up to 500 cores
and report the average results unless otherwise noted.

Workloads.We use YCSB [51], the common benchmark
for evaluating blockchains [13]. The YCSB benchmark gener-
ates data in a standard format which is flexible to abstract the
scientific data from arbitrary applications. There are many
existing tools and frameworks (e.g., Myria [36]) for migrat-
ing scientific data sets into transactional format; we do not
discuss the migration procedure in this paper and simply
assume the scientific data are already in a format that can
be dealt with blockchains and specifically, BAASH. In our
system prototype, the default batch size of a block is set
with 4, and we deploy more than two million transactions
(2,013,590) in all of the experiments. It should be noted that
BAASH is flexible enough to encapsulate any number of
transactions in a block.

Systems for Comparison. We compare Ethereum [18],
Parity [41], and Hyperledger Fabric [25] with system proto-
type of BAASH, whose original codename is HPC-blockchain.
We also compare the state-of-the-art HPC blockchains Sci-
Chain [4], and In-memory blockchain (IMB) [3]. The sixth

system is a Conventional Blockchain based on practical-byzantine-

fault-tolerance (i.e., PBFT) protocol deployed to the same

SC 21, November 14-19, 2021, St. Louis, MO, USA

100000 ; ‘ ‘ —
PBFT —+— Parity
o BAASH —x— Hyperledger
c . 2
o Ethereum —¥
§10000
9]
@
o
¢ 1000
c
2
i3
3
@ 100t
&
'_
Vo2 4 8 28 a2

12 16 20 24
Number of Nodes

(a) Performance in Conventional blockchains (batch = 4)

6
1x10 BAASH
SciChain s
IMB
100000

10000

e
i

Transactions per Second
T

40 60 80 100
Number of Nodes
(b) Performance in HPC blockchains (batch = 250)

1000

Figure 7: Transactions generated per second. BAASH
outperforms the conventional blockchains. BAASH
exhibits scalability compared to the state-of-the-art
HPC blockchain systems.

cluster (i.e., 58 nodes). We apply PBFT in each individual dy-
namically constructed cluster (i.e., with 3 f + 1 nodes) instead
of the entire blockchain network during the validation of a
block to ensure the fairness of the comparison.

4.2 Throughput

In this section, we measure the throughput by BAASH against
the other blockchain systems. In the first experiment, we
keep the batch size to BAASH’s default (i.e., 4) while using
16 nodes as clients where each node issue 1024 transactions
per second. Figure 7 shows the throughput with varying
node scales. In terms of throughput, BAASH outperforms
other conventional systems at all scales, as shown in Fig-
ure 7(a). Specifically, it has up to 6x higher throughput than
Hyperledger and PBFT on 16 nodes, as well as 12X, and 75X
higher throughput than Ethereum, and Parity, respectively,
on 16 nodes. Thanks to the proposed consensus protocols
that are optimized for HPC systems, BAASH’s throughput is
not degraded at larger scales beyond 16 nodes, while both

SC ’21, November 14-19, 2021, St. Louis, MO, USA

1000 - n o 120
Baseline (simple replication)

H s 110
Overhead (%) p 100
90
80
70
60
50
40
30
20
10

Block writing time (ms)
Overhead (%)

1 10 100 1000 10000
Number of Blocks Processed

(a) Performance overhead comparison with replication across nodes.

10000

Baseline (central database)
BAASH ez

7

1000

100

0.1

Block reading time (ms)

0.01

Number of Blocks

(b) Performance comparison between BAASH and a central database.

Figure 8: Performance and overhead comparison.

Ethereum and Parity show some degradation. Worse yet,
Hyperledger cannot scale beyond 16 nodes at all.

We also measure the performance of the BAASH against
state-of-the-art HPC blockchains where each node issues
1024 transactions per second. In the experiment, we increase
the batch size to 250 to analyze the robustness. As shown in
Figure 7(b), it is noticeable that throughput in BAASH reason-
ably increases while scaling; whereas, the throughput tends
to decrease in the other blockchain systems. It being the
fact that the parallel block processing mechanism injected in
BAASH assembles the consensus protocol scalable enough
to generate an HPC-compatible blockchain-like resilient sys-
tem. On the contrary, the IMB [3] follows the proof-of-work,
although with a lower nonce and the SciChain [4] does not
offer a parallel processing mechanism that could leverage
the distributed nature of the HPC infrastructure.

4.3 Performance and Memory Overhead

We report the performance overhead incurred by BAASH
while providing distributed reliable resiliency on a 100-node
cluster with increasing workloads. That is, we increase the
workload from 1 to 10,000 blocks of transactions with the
default batch size 4 to measure the overhead. First, we com-
pare the block writing performance of BAASH against the

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

Table 2: Maximum memory requirement per node in
BAASH at different scales.

’ Number of nodes \ Max memory per node (MB) ‘

20 1.4
40 2.8
60 4.1
80 5.5
100 6.9

o

Ledger Validity (%)
120 Failed Nodes

Ledger Validity (%)
Failed Nodes

O N W® Ul R

100 200 300 400 500
Number of Nodes

Figure 9: Ledger validity in BAASH (in all scales at-
least 99% nodes hold consistent ledger).

baseline that only provides resiliency through in-memory
simple data replication across the nodes without any reliable
verification through a decentralized protocol. We choose
the simple replication as the baseline because it provides in-
memory resiliency support with the minimal writing effort.
As shown in Figure 8(a), although the performance overhead
is around 80% while processing smaller workloads, what is
more interesting and more important is the fact that the
overhead starts to decline as the workload increasing, e.g.,
the overhead is only around 20% while processing 10,000
blocks, thanks to the parallel processing layer in BAASH
which amortizes the cost across the participating nodes.

Second, we compare the block reading performance of
BAASH against the baseline that provides resiliency through
the central database structured in a simple SQLite database in
the remote storage instead of distributed resiliency through
in-memory support across the nodes. We do not note the
reading performance against the other baseline (i.e., simple
replication without blockchain service) because both BAASH
and the other baseline exhibit identical performance while
reading blocks from in-memory. Figure 8(b) illustrates that
the block reading performance of BAASH is significantly
faster compared to the centralized database. For example,
BAASH can perform almost 112X quicker compared to the
baseline while reading 10,000 blocks.

We further assess the memory footprint requirement per
node incurred by the BAASH service with varying node
scales up to 100 nodes, where each node issues 1,024 transac-
tions per second. Table 2 illustrates that with the increment

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

1x107 :

Parity—total
Parity—bc
Ethereum-—total
Ethereum-bc

Hyperledger-bc ——
Hyperledger—total
1x10% b BAASH-total —
BAASH-bc ——

,, 100000 R B

K4 e

3] ia

o N

m 10000 }

k)

& 1000} 1
E

=

z

0 50 100 150 200 250 300 350 400
Time (Second)

(a) All of the blocks in BAASH safely get persisted after successful valida-
tion: the BAASH-total line is completely covered by the BAASH-bc line.

8 Blocks generated
110 Blocks reach consensus ez
L

10000

Number of Blocks

O O O O O O O o o
N
Latency (s)

100 200 300 400 500
Number of Nodes

(b) 99%+ blocks reach consensus at a large scale while
incurring negligible latency.

Figure 10: Reliability in BAASH resilience support.

of nodes, the workload increases; yet, each node requires
a reasonable amount of memory (e.g., less than 7 MB at
100 nodes) to provide reliable distributed resiliency support
across the nodes through BAASH.

4.4 Reliability and Fault Tolerance

We measure the reliability of BAASH on up to 500 nodes
and check how many nodes can hold 100% valid ledgers. We
also keep track of how much node failure occurs during this
experiment. Figure 9 shows that in all scales, at least 99%
nodes keep the valid ledger. We find 100% nodes hold valid
ledger on up to 300 nodes. BAASH guarantees the resiliency
as long as more than 50% nodes hold consistent ledger at all
scale.

To further measure the reliability of BAASH, we investi-
gate how many blocks reach consensus in all the systems
on 16 nodes, where 8 concurrent nodes issue 1024 transac-
tions per second. The reason for choosing 16 nodes is to
keep the result comparable to [13]. Figure 10(a) reports the
number of blocks that reach the consensus and are appended
to the blockchain. Both in Ethereum and Parity, some blocks

SC 21, November 14-19, 2021, St. Louis, MO, USA

2°° BAASH with Remote Storage Support 100
=45 Overhead (%) ——| 20

80
70
60
50
40
30
20
10

Overhead (%)

100 200 300 400 500
Number of Nodes

(a) Validation through remote storage handled by the
fault monitor during BAASH recovery exhibits reason-
able performance overhead.

1 *
.ol Average I
B, o Mintime -
oo Max time ~ * v %
0.7
£ x
i:o.e » »
+0.5 « X
IS
4(7,'0.4 * x
Do.3 * *
o . X x
0.2 =
0.1 ﬁ e e ——
10 20 30 5 0 80 90 100

40 0 6 70
Number of Nodes
(b) BAASH’s recovery controlled by the fault monitor

lies within decent limit while the remote storage han-
dling the validation.

Figure 11: BAASH recovery overhead by fault monitor.

are unable to reach consensus due to double spending or
selfish mining attacks, and the difference increases as time
passes. Though Hyperledger is not vulnerable to those at-
tacks because of not allowing any fork and 100% blocks tend
to reach consensus, it is significantly slower than BAASH. In
BAASH, almost 100x more blocks are generated compared
to Hyperledger, and 100% blocks reach consensus. This is be-
cause, BAASH implementation relies on the specially crafted
parallel transaction processing mechanism and the newly
designed two-phase distributed quorum commit protocol to
ensure consistent block processing in a parallel manner. Fig-
ure 10(b) reports the number of blocks that reach consensus
in BAASH at different scales ranging from 100 to 500 nodes.
We notice that in all scales, more than 99% generated blocks
can reach consensus with negligible latency.

The entire MPI network fails if a node crashes; hence,
could hinder the entire block validation process. Therefore,
we keep the remote storage to continue the validation. To
further study the fault tolerance, we check the block valida-
tion time by BAASH with remote storage support at different
scales by switching off a random node in the middle of a
block validation process and compare the overhead. Dur-
ing the experiment, each node issues 1024 transactions per
second. The goal of this experiment is to see how much
is the overhead if we leverage the remote storage during

SC ’21, November 14-19, 2021, St. Louis, MO, USA

the entire MPI network failure while restoring the BAASH
service. As shown in Figure 11(a), even with failures of the
compute node, the block validation process continues suc-
cessfully with the support of the remote storage. Besides,
BAASH with remote ledger incurs negligible overhead even
at a large scale (i.e., roughly 5% at 500 nodes cluster).

In case of a severe catastrophe (e.g., compute nodes crash),
the distributed fault monitor in BAASH simply restarts the
BAASH service excluding the faulty nodes while continuing
the validation process with the support of the shared storage.
During the restarting phase, the BAASH daemon needs to
restore the nodes with the latest block, so that the nodes can
join the validation process. To measure the BAASH service
restoration time on up to 500 nodes cluster, we switch off
a random node in the middle of a block validation process
and restore the service (i.e., BAASH) excluding the failed
node. We conduct the experiment several times at different
scales to measure the minimum and maximum restart time.
Figure 11(b) exhibits BAASH service requires reasonable
time during the restoration phase. However, the good news
is, the block validation is not stopped during this restoration
phase, because BAASH leverages shared storage’s blockchain
to continue the successful block validation process.

5 RELATED WORK

At present, blockchain research focuses on various system
perspectives. Algorand [22] proposes a technique to avoid
the Sybil attack and targeted attack. Bitcoin-NG [19] in-
creases throughput through a leader selection from each
epoch who posts multiple blocks. Monoxide [50] distributes
the workload for computation, storage, and memory for state
representation among multiple zones to minimize the re-
sponsibility of full nodes. Sharding protocols [29, 52] have
been proposed to scale-out distributed ledger. Hawk [30]
is proposed to achieve transactional privacy from public
blockchains. A blockchain protocol based on proof-of-stake
called Ouroboros [27]is proposed to provide stern security
guarantees in blockchains and better efficiency than those
blockchains based on proof-of-work (i.e., POW). Some recent
works [23, 28, 37] propose techniques to optimize Byzantine
Fault Tolerance (BFT).

Being inspired by Hyperledger [25], Inkchain [26] is de-
signed as another permissioned blockchain solution that
enables customization and enhancement in arbitrary scenar-
ios. To improve reliability and achieve better fault tolerance,
BigchainDB [7] is built upon the Practical Byzantine Fault
Tolerant (PBFT) and comes with blockchain properties (e.g.,
decentralization, immutability, owner-controlled assets) as
well as database properties (e.g., high transaction rate, low
latency, indexing and querying of structured data). A 2-layer
blockchain architecture (2LBC) is proposed in [6] to achieve

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

stronger data integrity in distributed database systems based
on a leader-rotation approach and proof-of-work. Unfor-
tunately, none of the aforementioned work addresses the
underlying platform architecture other than shared-nothing
clusters assumed by existing blockchain systems that could
help us to bridge the gap between the HPC and blockchain
technology. The proposed blockchain framework presented
by this paper, therefore, for the first time, showcases a prac-
tical parallel blockchain-like framework developed with MPI
that allows us to leverage the decentralized mechanism in
HPC systems.

We are well aware of recent advances in MPL. Various ap-
proaches [8, 9, 11, 24, 32, 35, 44] were proposed to improve
or characterize the MPI features in order to design various
solutions. However, all of these works are orthogonal to
our work, and none of these aim to develop a lightweight
blockchain framework with MPI in order to facilitate the par-
allel processing in managing distributed ledgers. Therefore,
the aforementioned works can be merged into our work for
further improvement in MPI specific packages.

6 CONCLUSION AND FUTURE WORK

This paper proposes two key techniques to enable a blockchain
service in HPC systems. First, a much-needed lightweight
set of scalable consensus protocols is designed to account for
both the diskless compute nodes and the remote shared stor-
age in HPC. Second, in an HPC environment, a must-have
property of blockchain, i.e., the reliability in front of MPI,
is guaranteed by multiple layers of subsystems, from back-
ground daemon services to callable routines to applications.
The HPC-aware consensus protocols and MPI-compatible
reliability, under the framework coined as BAASH, collec-
tively enable a blockchain service for HPC systems. A system
prototype of the proposed techniques is implemented and
evaluated with more than two million transactions on up to
500 cores, which demonstrates both high performance and
high reliability compared to state-of-the-art systems.

Our future research will (i) incorporate a parallel data
integration mechanism for the cross-blockchains or hetero-
geneous data sources, and (ii) support eventual consistency
for readers to see data from the remote writers in the exascale
system. Our hope is that BAASH could serve as a starting
point for a new line of system research on decentralized
services crafted to HPC systems.

7 ACKNOWLEDGEMENTS

This work is supported in part by the following grants: Na-
tional Science Foundation CCF-1756013, IIS-1838024, and
CAREER-2048044.

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems

REFERENCES

[1] Advancing the Science and Impact of Blockchain Technology at Oak

[10

[11

[12

[13

(15

(16

—

[t

—

]

]

=

= =

Ridge National Laboratory. https://info.ornl.gov/sites/publications/
Files/Pub118487.pdf, Accessed 2019.

Abdullah Al-Mamun, Tonglin Li, Mohammad Sadoghi, Linhua Jiang,
Haoting Shen, and Dongfang Zhao. Poster: An mpi-based blockchain
framework for data fidelity in high-performance computing systems.
In International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC), 2019.

Abdullah Al-Mamun, Tonglin Li, Mohammad Sadoghi, and Dongfang
Zhao. In-memory blockchain: Toward efficient and trustworthy data
provenance for hpc systems. In IEEE International Conference on Big
Data (BigData), 2018.

Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. SciChain:
Blockchain-enabled lightweight and efficient data provenance for re-
producible scientific computing. In IEEE 37th International Conference
on Data Engineering (ICDE), 2021.

Benjamin S Allen, Matthew A Ezell, Paul Peltz, Doug Jacobsen, Eric
Roman, Cory Lueninghoener, and J Lowell Wofford. Modernizing the
hpc system software stack. arXiv preprint arXiv:2007.10290, 2020.

L. Aniello, R. Baldoni, E. Gaetani, F. Lombardi, A. Margheri, and V. Sas-
sone. A prototype evaluation of a tamper-resistant high performance
blockchain-based transaction log for a distributed database. In 13th
European Dependable Computing Conference (EDCC), 2017.
BigchainDB. https://github.com/bigchaindb/bigchaindb, Accessed
2018.

Darius Buntinas. Scalable distributed consensus to support mpi fault
tolerance. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, pages 1240-1249. IEEE, 2012.

Lu Chao, Chundian Li, Fan Liang, Xiaoyi Lu, and Zhiwei Xu. Acceler-
ating apache hive with mpi for data warehouse systems. In 2015 IEEE
35th International Conference on Distributed Computing Systems, pages
664-673. IEEE, 2015.

Jacqueline H Chen, Alok Choudhary, Bronis De Supinski, Matthew
DeVries, Evatt R Hawkes, Scott Klasky, Wei-Keng Liao, Kwan-Liu Ma,
John Mellor-Crummey, Norbert Podhorszki, et al. Terascale direct nu-
merical simulations of turbulent combustion using s3d. Computational
Science & Discovery, 2(1):015001, 2009.

Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and
Kalyan Kumaran. Characterization of mpi usage on a production
supercomputer. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 18,
pages 30:1-30:15. IEEE Press, 2018.

Hao Dai, H Patrick Young, Thomas JS Durant, Guannan Gong, Ming-
ming Kang, Harlan M Krumholz, Wade L Schulz, and Lixin Jiang.
Trialchain: A blockchain-based platform to validate data integrity in
large, biomedical research studies. arXiv preprint arXiv:1807.03662,
2018.

Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
and Kian-Lee Tan. Blockbench: A framework for analyzing private
blockchains. In ACM International Conference on Management of Data
(SIGMOD), 2017.

Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason,
Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. Silent
data corruptions at scale. CoRR, abs/2102.11245, 2021.

DOE SBIR. https://www.sbir.gov/sbirsearch/detail/1307745, Accessed
2017.

Shaohua Duan, Pradeep Subedi, Philip Davis, Keita Teranishi, Hemanth
Kolla, Marc Gamell, and Manish Parashar. Corec: Scalable and resilient
in-memory data staging for in-situ workflows. ACM Transactions on
Parallel Computing (TOPC), 7(2):1-29, 2020.

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

SC 21, November 14-19, 2021, St. Louis, MO, USA

Shaohua Duan, Pradeep Subedi, Philip E Davis, and Manish Parashar.
Addressing data resiliency for staging based scientific workflows. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1-22, 2019.
Ethereum. https://www.ethereum.org/, Accessed 2018.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert Van Renesse.
Bitcoin-ng: A scalable blockchain protocol. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation,
NSDI'16, pages 45-59, Berkeley, CA, USA, 2016. USENIX Association.
David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt
Ferreira, and Ron Brightwell. Detection and correction of silent data
corruption for large-scale high-performance computing. In SC’12:
Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pages 1-12. IEEE, 2012.
Ashish Gehani and Dawood Tariq. SPADE: Support for Provenance
Auditing in Distributed Environments. In Proceedings of the 13th
International Middleware Conference (Middleware), 2012.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 51-68, New York, NY, USA, 2017. ACM.
G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Re-
iter, D. Seredinschi, O. Tamir, and A. Tomescu. Sbft: A scalable and
decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN),
2019.

Yanfei Guo, Wesley Bland, Pavan Balaji, and Xiaobo Zhou. Fault toler-
ant mapreduce-mpi for hpc clusters. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, pages 34:1-34:12, 2015.

Hyperledger. https://www.hyperledger.org/, Accessed 2018.
Inkchain. https://github.com/inklabsfoundation/inkchain, Accessed
2018.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Advances in Cryptology (CRYPTO), 2017.

Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin security
and performance with strong consistency via collective signing. In
25th USENIX Security Symposium (USENIX Security 16), pages 279-296,
2016.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 583-598. IEEE, 2018.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy (SP), 2016.
S. Lee, S. Kohler, B. Ludascher, and B. Glavic. A sql-middleware uni-
fying why and why-not provenance for first-order queries. In IEEE
International Conference on Data Engineering (ICDE), 2017.

Mingzhe Li, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni, Jie
Zhang, and Dhabaleswar K Panda. Designing mpi library with on-
demand paging (odp) of infiniband: challenges and benefits. In SC’16:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 433-443. IEEE, 2016.
X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla.
Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability. In IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2017.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

(34]

(35

=

(36

=

(37

—

(38

=

(39

[

[44]

(45

=

[46

—

(48

=

(49]

(50]

(51]

(52]

X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla.
Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability. In IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2017.

Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhiwei Xu. Datampi:
extending mpi to hadoop-like big data computing. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pages
829-838. IEEE, 2014.

Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer Kaftan,
Alvin Cheung, Magdalena Balazinska, Ariel Rokem, Andrew Connolly,
Jacob Vanderplas, and Yusra AlSayyad. Comparative evaluation of big-
data systems on scientific image analytics workloads. In Proceedings
of the 43rd International Conference on Very Large Data Bases (VLDB),
2017.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 31-42.
ACM, 2016.

MPI4PY. https://mpidpy.readthedocs.io/en/stable/intro.html, Accessed
2019.

NSF CICL https://www.nsf.gov/pubs/2018/nsf18547/nsf18547.htm,
Accessed 2018.
Svein @lnes. Beyond bitcoin enabling smart government using
blockchain technology. In International Conference on Electronic Gov-
ernment, pages 253-264. Springer, 2016.

Parity. https://ethcore.io/parity.html/, Accessed 2018.

Aravind Ramachandran and Murat Kantarcioglu. Smartprovenance: A
distributed, blockchain based data provenance system. In Proceedings
of the Eighth ACM Conference on Data and Application Security and
Privacy, CODASPY 18, pages 35-42, 2018.

Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin,
Beng Chin Ooi, and Meihui Zhang. Fine-grained, secure and effi-
cient data provenance on blockchain systems. Proceedings of the VLDB
Endowment, 12(9):975-988, 2019.

Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static/dy-
namic validation of mpi collective communications in multi-threaded
context. In Proceedings of the 20th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2015, pages 279-280.
ACM, 2015.

Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proceedings of the 1st USENLX Conference
on File and Storage Technologies (FAST), 2002.

SHA-256. https://en.bitcoin.it/wiki/SHA-256, Accessed 2018.

Chen Shou, Dongfang Zhao, Tanu Malik, and Ioan Raicu. Towards a
provenance-aware distributed filesystem. In TaPP Workshop, USENLX
Symposium on Networked Systems Design and Implementation (NSDI),
2013.

Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Fer-
reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory
errors in modern systems: The good, the bad, and the ugly. ACM
SIGARCH Computer Architecture News, 43(1):297-310, 2015.

The Cori Supercomputer. http://www.nersc.gov/users/computational-
systems/cori, Accessed 2018.

Jiaping Wang and Hao Wang. Monoxide: Scale out blockchain with
asynchronized consensus zones. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19), Boston, MA,
2019. USENIX Association.

YCSB. https://github.com/brianfrankcooper/YCSB/wiki/Core-
Workloads, Accessed 2018.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-
chain: Scaling blockchain via full sharding. In Proceedings of the 2018

[53]

[54]

Abdullah Al Mamun, Feng Yan, Dongfang Zhao

ACM SIGSAC Conference on Computer and Communications Security,
pages 931-948. ACM, 2018.

Kaiwen Zhang and Hans-Arno Jacobsen. Towards dependable, scalable,
and pervasive distributed ledgers with blockchains. In 38th IEEE
International Conference on Distributed Computing Systems (ICDCS),
2018.

Dongfang Zhao, Chen Shou, Tanu Malik, and Ioan Raicu. Distributed
data provenance for large-scale data-intensive computing. In IEEE
International Conference on Cluster Computing (CLUSTER), 2013.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

All experiments are carried out on a high-performance computing
cluster comprised of 58 nodes interconnected with FDR InfiniBand.
Each node is equipped with an Intel Core-i7 2.6 GHz 32-core CPU
along with 296 GB 2400 MHz DDR4 memory; hence each node can
be emulated with up to 32 nodes through user-level threads.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/mamunbond@7/beast
Artifact name: BAASH

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: Intel Core-i7 2.6 GHz 32 core CPU

Operating systems and versions: Ubuntu 18.04

Libraries and versions: Python 3.7.0, NumPy 1.15.4, mpidpy v2.0.0,
and mpich2 v1.4.1

