
BAASH: Lightweight, Efficient, and Reliable
Blockchain-As-A-Service for HPC Systems

Abdullah Al Mamun, Feng Yan, Dongfang Zhao
aalmamun@nevada.unr.edu,fyan@unr.edu,dzhao@unr.edu

University of Nevada, Reno

Reno, NV, USA

ABSTRACT

Distributed resiliency becomes paramount to alleviate the

growing costs of data movement and I/Os while preserv-

ing the data accuracy in HPC systems. This paper proposes

to adopt blockchain-like decentralized protocols to achieve

such distributed resiliency. The key challenge for such an

adoption lies in the mismatch between blockchain’s target-

ing systems (e.g., shared-nothing, loosely-coupled, TCP/IP

stack) and HPC’s unique design on storage subsystems, re-

source allocation, and programming models. We present

BAASH, Blockchain-As-A-Service for HPC, deployable in a

plug-n-play fashion. BAASH bridges the HPC-blockchain

gap with two key components: (i) Lightweight consensus

protocols for the HPC’s shared-storage architecture, (ii) A

new fault-tolerant mechanism compensating for the MPI to

guarantee the distributed resiliency. We have implemented

a prototype system and evaluated it with more than two

million transactions on a 500-core HPC cluster. Results show

that the prototype of the proposed techniques significantly

outperforms vanilla blockchain systems and exhibits strong

reliability with MPI.

CCS CONCEPTS

• Computer systems organization → Availability; Re-

dundancy; Reliability; • Information systems→Distribu-

ted storage; Data replication tools.

KEYWORDS

Blockchain, MPI, fault tolerance, resilience, reproducibility,

HPC

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476155

Figure 1: BAASH service is useful in a typical data

movement workflow in an HPC environment.

ACM Reference Format:

Abdullah Al Mamun, Feng Yan, Dongfang Zhao. 2021. BAASH:

Lightweight, Efficient, and Reliable Blockchain-As-A-Service for

HPC Systems. In The International Conference for High Performance

Computing, Networking, Storage and Analysis (SC ’21), November

14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3458817.3476155

1 INTRODUCTION

1.1 Motivation

Distributed consistent caching. Exascale systems are likely

to have extreme power constraints; yet, follow an expensive

approach to move data anywhere, necessarily near the pro-

cessors. However, the problem can be mitigated by replicat-

ing [16] or caching data distributedly through a distributed

ledger. This is especially useful when the scientific workflows

are coupled, as illustrated in Figure 1, such as multi-scale,

multi-physics turbulent combustion application S3D [10],

where the data moving cost often grows exponentially. Be-

sides, performance in exascale systemswill require enormous

concurrency, requiring that data on each node be in the same

state through synchronization leading to the eventual con-

sistency for readers to see data from heterogeneous sources,

which is desirable in modern large scale HPC systems [5].

Provenance tracking.On top of that, extreme-scale HPC

systems (e.g., Cori [49]) rely on data provenance to repro-

duce and verify the scientific experimental results generated

during the application executions. Essentially, data prove-

nance is a well-structured log for efficient data storage along

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

with an easy-to-use query interface. Data provenance is con-

ventionally implemented through file systems [47, 54] or

relational databases [21, 31]. However, none of the current

efforts exhibit the immutability property that guarantees the

reliability of the provenance history.

Data fidelity. Over and above that, data fidelity is of

prominent importance for scientific applications deployed

to HPC systems, as the data upon which scientific discovery

rests must be trustworthy and retain its veracity at every

point in the scientific workflow. Silent data corruption has

been a critical problem [14, 17] that leads to data loss or

incorrect data, impacting the application performance at an

extreme scale. Extreme-scale workflows are often long last-

ing and dependent on intermediate results collected from

a data source or other applications, as shown in Figure 1.

Therefore, those workflows typically require careful veri-

fication before caching the data in-memory or persisting

them in remote storage. There have been noticeable inci-

dents [20, 48] where the error rates grow exponentially as

the system reaches extreme scale. Besides, there have been

more than enough incidents about data falsification and fab-

rication, causing the withdrawal of scientific publications

and other consequences. To this end, developing trustwor-

thy data service for scientific computing and HPC systems

has been recently incentivized by various federal funding

agencies, such as the National Science Foundation [39] and

the U.S. Department of Energy [15].

Blockchain-as-a-service for HPC.We argue that all of

the aforementioned services could be built upon or improved

by a decentralized consensus protocol—the very core techni-

cal innovation by blockchains. In essence, a blockchain can

enable data synchronization in HPC systems with strong

reliability in an autonomous fashion. The Oak Ridge Na-

tional Laboratory has released a white paper [1] discussing

a wide range of potential applications that can benefit from

blockchains on the Oak Ridge Leadership Computing Fa-

cility. Recent studies [2–4, 12, 33, 34, 42, 43] showed that

blockchains could be leveraged to provide a variety of ser-

vices on HPC systems.

1.2 Challenges

While blockchains have drawn much research interest in

many areas such as cryptocurrency [19, 22, 28] and smart

government [40], the HPC and scientific computing com-

munities, although regarding resilience as one of their top

system design objectives, have not taken blockchains into

their ecosystems due to various (both technical and admin-

istrative) reasons, but most notably on the following two

challenges: the shared-storage system infrastructure of HPC

systems and the MPI programming model for scientific appli-

cations. By contrast, all the mainstream blockchain systems

and frameworks assume the underlying systems are shared-

nothing clusters with the TCP/IP network stack (rather than

MPI and ranks).

Specifically, although blockchain itself exhibits many re-

search and application opportunities (comprehensive reviews

available from [13, 53]), one of the most impelling challenges

for employing blockchains into HPC systems lies in the con-

sensus protocols for the unique I/O subsystem. Existing con-

sensus protocols used in mainstream blockchains are either

based on intensive computation (the so-called proof-of-work,

or POW, for instance) or intensive network communication

(e.g., practical Byzantine fault tolerance, PBFT), which are

inappropriate for HPC in terms of both performance and

cost as shown in Table 1.

Nonetheless, some of the efforts [3, 4], recently attempt

to resolve some of the challenges to adopt blockchain or

blockchain-like data caching in the HPC ecosystem. How-

ever, these systems either follow conventional POW [3];

hence, not appropriate for permissioned environment like

HPC, or are not yet equipped with the most desired essential

features as shown in Table 1, for instance, (i) extensive com-

putation or communication free scalable consensus mech-

anism to establish trustworthiness among the distributed

cached data, (ii) full-competent HPC protocol account for

both the compute nodes and the remote storage account-

ing for the parallel file system (e.g., [45]) with reasonable

overhead; (iii) parallel block processing, (iv) parallel con-

sistency in the distributed ledger with lower latency, and

lastly, (v) fault-tolerance support addressingMPI node failure

that strengthens consistency in distributed ledger across the

nodes. Hence, the state-of-the-art systems yet suffer from a

lightweight strategy to deploy the blockchain-like resiliency

in HPC infrastructure.

AlthoughMPI brings a lot of opportunities to facilitate par-

allel processing in scientific computing, deploying blockchain

with MPI is a very challenging job. In MPI, one rank failure

brings down the entire communicator; hence, it raises a crit-

ical issue for a blockchain service: one single failure would

crash the entire blockchain service. Several fault-tolerance

approaches [8, 24] (mostly through software exception han-

dlers) have been designed to address MPI failures. How-

ever, no work exists to address the unique requirement of

blockchains: a crashed blockchain node has to restart from

scratch and verify all the hash values between every adjacent

pair of blocks (i.e., there is no such a concept of checkpoint,

unfortunately).

1.3 Our Contributions

In this work, we design a new blockchain framework for HPC

environments, deployed as a middleware, namely BAASH,

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 1: Summary of limitations of present blockchain-based provenance systems.

Features ProvChain [34] SmartProv [42] LineageChain [43] IMB [3] SciChain [4] BAASH

Support for diskless nodes × × × � � �
Lightweight computation × × � × � �
Free of message broadcast � � × � � �
Fully compatible to MPI × × × × × �
Parallel block processing × × × × × �
Parallel ledger resiliency × × × × × �
Realtime fault monitoring × × × × × �
Scalability on 500+ cores × × × × × �

as illustrated in Figure 1. BAASH serves as a distributed trust-

worthy ledger fully compatible with the shared-storage in-

frastructure of HPC systems. The proposed framework over-

comes the shortcomings of the state-of-the-art blockchain

systems by completely eliminating the resource-intensive re-

quirements through a set of specially crafted protocols. More-

over, BAASH is equipped with a parallel processing layer

compatible with MPI, which enables BAASH to deliver low-

overhead and scalable performance. The protocols assure

parallel resiliency and account for both the compute nodes

and the remote storage (e.g., [45]) with reasonable over-

head. Therefore, a system implementing the proposed pro-

tocols can be smoothly deployed to an HPC infrastructure.

On top of that, the realtime fault monitor co-designed with

BAASH takes care of MPI’s rank failures and thus supports

the highly-desired (eventual) consistent caching across the

compute nodes.

To summarize, this paper makes the following contribu-

tions:

• We design a set of HPC-specific scalable consensus

protocols to facilitate a parallel block processing to pro-

vide a lightweight distributed in-memory and shared-

storage resiliency support;

• We develop a reliable fault monitoring mechanism to

ensure consistent BAASH service that can tolerate MPI

rank failures to ensure the availability of the BAASH

service;

• We implement a system prototype of the proposed

consensus protocols and parallelization approaches

with OpenMP and MPI; and

• We carry out an extensive evaluation of the system

prototype with millions of transactions on an 500-core

HPC platform and experimentally demonstrate the

effectiveness of BAASH.

Figure 2: Overall architecture of BAASH on HPC sys-

tems.

2 BAASH DESIGN

2.1 Architecture

Figure 2 illustrates the high-level overview of our envisioned

distributed BAASH system, which is deployed to a typical

HPC system. Note that some customized HPC systems may

have node-local disks, although this paper assumes that the

compute nodes are diskless. For instance, a top-10 supercom-

puter called Cori [49] located at Lawrence Berkeley National

Laboratory does have local SSD storage, namely, the burst

buffer. However, the burst buffer is not a good candidate

for ledgers because it is not designed for long-term data

archival; its only purpose is to alleviate the I/O pressure for

those I/O-intensive applications by caching the intermedi-

ate data locally. Besides, because scientific applications do

not time-share the resources, the ledgers stored on the local

storage (e.g., burst buffer) are usually purged after the job

execution (for both performance and security reasons). In

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

other words, even if a ledger can be technically persisted

to local disk in some scenarios, that persistence is not per-

manent, which motivates us to come up with a secondary

ledger and validator on the remote storage. Specifically, four

key modules of our envisioned system are highlighted in

Figure 2: a resilient distributed ledger, a parallel consensus

protocol, a parallel processing layer, and a fault monitor. We

will discuss each of them in more detail in the following.

2.1.1 Resilient distributed ledger. The first module is a re-

silient distributed ledger implementation optimized for high-

performance interconnects (e.g., InfiniBand) and protocols

(RDMA) across compute nodes. Because all compute nodes

fetch and update the ledger with few latest blocks only in

volatile memory (or, in persistent local storage but with a

short lifetime—purged after the job is complete) with mini-

mum overhead, there has to be at least one permanent, per-

sistent storage (which cannot be compromised) to store back

the ledger replicas in case of catastrophes (e.g., more than

50% of compute nodes crash and lose their ledgers). Note

that the memory-only compute nodes are not necessarily

less reliable than those with persistent storage; yet, the data

stored on memory would get lost if the process that initiates

the memory is killed. It should be noted that remote storage

is a cluster of nodes in a typical high-performance computing

ecosystem that makes the shared blockchain highly reliable

against any unexpected catastrophe.

2.1.2 Scalabale in-memory & shared-storage consensus pro-

tocol. The second module is a consensus protocol that sup-

ports attaining consensus in parallel (neither costly compu-

tational overhead nor extensive network communication) to

achieve the highest possible throughput through in-memory

blockchain support of the compute nodes and the resilient

remote ledger. In BAASH, a block is validated with two con-

secutive steps. First, the block is validated through a paral-

lel mechanism with in-memory blockchain support in each

node. To minimize the block validation time, we avoid any

traditional serialized block processing mechanism followed

by state-of-the-art blockchain systems. Second, if the major-

ity of the compute nodes (i.e., at least 51%) are unable to

reach a consensus about the validity of a block, the remote

storage then participates in the block validation process with

reasonably minimum overhead. We discuss more details in

Section 2.2.

2.1.3 Parallel processing layer. The third module is the par-

allel processing layer between the diskless compute nodes

and the remote persistent storage. The layer has three pur-

poses: (i) It injects the parallel distribution mechanism for

disseminating independent blocks with transactions into the

logically divided cluster of compute nodes, (ii) It facilitates

parallel block processing and achieving consensus without

Protocol 1 Parallel transaction manager

Require: Clusters C where the i-th cluster is Ci ; Transac-

tionsT where the i-th transaction isT i ; Entities E where

the i-th entity is Ei ; Remote storage R; a new block b.
Ensure: No duplicate processing of T i .

1: function Txn-Process(b, C , R, E)
2: for T i ∈ T do

3: if T i is not locked then

4: Create hash H i

T
with timestamp s and entity-

id Ei

5: Push in a block b
6: else

7: Push T i to transaction wait queue

8: end if

9: if time ≥ t then
10: BAASH-Consensus(b,C,R, E) � Protocol 2
11: end if

12: end for

13: end function

a communication-intensive peer-to-peer mechanism, and

(iii) The ledgers persisting process in the remote storage

(i.e., shared-blockchain) as well as synchronization with the

distributed nodes can continue independently in parallel,

without interfering with the block validation. More details

about this layer is explained in Section 3.4 and Section 3.5.

2.1.4 Fault monitor. The fourth module is a real-time fault

tolerance mechanism implemented with three inevitable

checkpoints:

(1) Message exchange among peers: Check the communi-

cation status between the sender and receiver during

each message exchange.

(2) Exit routine of each process: An exit routine that checks

the status of each node when the node finishes a vali-

dation process.

(3) Exception handler: Set checkpoints around the node

validation process to catch any unexpected exceptions.

Fault monitor also restores the BAASH service if any of the

cases occur while handling the block validation process by

the shared storage’s ledger. We discuss more details about

the fault monitor in Section 3.6.

2.2 Consensus Protocols

To overcome the limitations of the conventional protocols

(i.e., PoW and PBFT), as a co-design of the proposed BAASH

blockchain framework for scientific applications, we propose

a set of protocols. Protocol 1 coordinates parallel processing

of transactions of blocks. The Protocol 2 assists in managing

consensus of blocks in parallel through the distributed con-

sensus managers. The block validation process is managed

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

Protocol 2 BAASH consensus

Require: Clusters C where the i-th cluster is Ci ; Sub-

clusters N where the i-th sub-cluster is N i managed

by a coordinator N i
c ; Total nodes n in a sub-cluster; En-

tities E where the i-th entity is Ei ; a new block b; hash
list bl

h
for b; remote storage R.

Ensure: At least 50% compute node list aдreedNodes who
validate b both with local blockchain and with remote

persistent ledger RB .
1: function BAASH-Consensus(b, C , R, E)
2: while |aдreedNodes | <= n

2 do

3: for Ci ∈ C do � In parallel

4: Push a block b in Ci ’s local queue

5: for N i ∈ Ci do � In parallel

6: N i
c ← Validation(b,N i , E) � Protocol 3

7: end for

8: end for

9: end while

10: if |aдreedNodes | <= n

2 then

11: if R validates b then

12: Generate hash bh
13: Persist-in-Storage(b,C,R) � Call Protocol 4
14: Release block b from active queue

15: else

16: Push the block to pending queue

17: end if

18: else

19: Pick a hash bh from bl
h

20: Persist-in-Storage(b,C,R) � Call Protocol 4
21: Release block b from active queue

22: end if

23: N i ← ∅ � Deconstruct the sub-cluster
24: end function

by the Protocol 3. Finally, the Protocol 4 helps in managing

the resilient distributed ledger by storing the validated block

in nodes’ memory and persisting in the shared storage. We

will discuss each protocol in detail in the following sections.

2.2.1 Parallel transactionmanager. Protocol 1 aims to ensure

the distinctive operation of transactions during the parallel

process. The BAASH engine leverages a queue that keeps

track of the individual active and pending transactions. All

the active transactions are locked to prevent duplicate trans-

action processing by creating a unique hash with the times-

tamp and the entity’s address (e.g., node) that issues the

transactions. When a transaction arrives, it (Protocol 1) first

checks (Line 3) if the transaction is unlocked (i.e., pending)

and creates a unique hash (Line 4) for it with the entities

addresses and the current timestamp before pushing to a

block (Line 5). The transaction batching process in a block

Protocol 3 Block validation

Require: Sub-clusters N where the i-th sub-cluster is N i ;

Nodes n where the i-th node is ni . Entities E where the

i-th entity is Ei ; a new block b; hash list bl
h
for b where

the bi
h
is the hash from ni .

Ensure: Block b contains valid transactions T before per-

sisted.

1: function Validation(b, N i , E)
2: for ni ∈ N i do � In parallel

3: if ni validates b with affected E then

4: aдreedNodes ← aдreedNodes ∪ ni

5: Create hash bi
h

6: bl
h
← bl

h
∪ bi

h

7: else

8: bi
h
← NULL

9: end if

10: end for

11: Return aдreedNodes ,bl
h
, b

12: end function

continues until a specific time (t). The time (t) is the mini-

mum latency over a network. Finally, Protocol 1 forwards

the block to start the consensus process (Line 10).

2.2.2 BAASH consensus. Protocol 2 steers the entire block

validation and persisting process. The parallel processing

module (more details in Section 3.4) leverages this protocol

to manage the equal dissemination of blocks among the clus-

ters. At first, the BAASH engine creates a set of coordinators

and logically distributes the compute nodes into a group of

clusters to manage the smart load-balance of the workload

that facilitates parallel block processing. Each cluster is man-

aged by a coordinator (Line 3). Each cluster is then further

split into a set of sub-clusters (Line 5) where each sub-cluster

processes a block (Line 6). A sub-cluster dynamically get

constructed with 3f + 1 + c number of nodes, where f is

the maximum faulty nodes allowed in a sub-cluster, and c is
the maximum number of attempts of nodes adjustment from

a parent cluster (more details in Section 3.4). To be more

specific, at first, 3f + 1 nodes in a sub-cluster attempt to

validate a block. If more than 50% nodes in a sub-cluster fail,

the coordinator attempts a maximum of c times to add an

idle node from the parent cluster to continue the validation.

If a validation process exceeds the total limit (i.e., c), while
attaining consensus frommore than 50% nodes, the coordina-

tor involves the remote storage to come forward to provide

consensus (Line 11). Possible node failures would be either

software exceptions, false validation, or crashes. If the block

is valid the protocol picks a hash from the list of its (block)

validators (Line 19) or create a hash within remote storage

(Line 12) before persisting it (i.e., block) through the help of

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

Protocol 4 Persist in storage

Require: Compute nodes n where the i-th node is ni ; ni
B

the local blockchain on ni ; Clusters C where the i-th
cluster is Ci ; a newly mined block b; remote storage R;
HT the hash table that contains hashes of blocks stored in

remote storage; RB the blockchain copy on the storage;

Ensure: Validate b, store it to C , and persist it to R
1: function Persist-in-Storage(b, C , R)
2: for Ci ∈ C do

3: for ni ∈ Ci do

4: if b � ni
B
then

5: ni
B
← ni

B
∪ b � store in local chain

6: end if

7: end for

8: end for

9: if b � HT then � Only one look-up is needed

10: RB ← RB ∪ b � store in shared chain

11: end if

12: end function

Protocol 4 (Line 13 and 20). Finally, the sub-cluster (N i) is

deconstructed again at the end of a block processing (Line

23) to leverage the free nodes for the next block process-

ing. The time complexity of this protocol is O(|C |), which
is significantly lower than the existing PBFT algorithm (i.e.,

O(|C |2)).

2.2.3 Block validation. Protocol 3 works on block validation.

The validation process checks whether a block with transac-

tions is valid (e.g., legitimate provenance operations). When

a node in a cluster receives a block, it starts checking the

transactions in the block against the entities that are affected,

as shown in Line 3. The entities consist of any files, nodes,

or any other external source, etc.

A node provides a vote after validating the block (Line 4).

A validator (i.e., Node) creates a hash with its private key and

the current timestamp after processing all the transactions in

a block (Line 5). The validator sets the hash with Null value

if a block is invalid (Line 8). Finally, the Protocol 3 takes

advantage of consensus manager (more details in Section 3.5)

to aggregate the votes (i.e., agreedNodes) and forwards the

consensus along with the hash list (i.e., bl
h
) as well as the

block with valid transactions (Line 11) to Protocol 2.

2.2.4 Persist-in-storage. Protocol 4 assists in managing the

resilient distributed ledger by storing blocks in parallel to

the nodes’ local memory in all clusters (Line 2 and 3) while

persisting blocks to the remote storage through a parallel file

system (e.g., GPFS) (Line 10). Persisting in remote storage

adds one more layer of reliability to the data on volatile mem-

ory. However, while attaining high reliability, the system

should not exhibit significant overhead. We use a key-value

Figure 3: BAASH implementation with MPI and

shared storage.

model to store both the blocks and transactions both in the

in-memory ledger and the remote storage. In the key-value

data model, a hash represents a key. Therefore, when a node

attempts to store a block in the storage node, it first looks up

quickly in the storage to check whether the block is already

stored. If the block hash is already in the storage, the re-

spective node does not attempt to access the remote storage

further. This is addressed in Line 9, where we only need one

look-up to check in the storage. This prevents touching the

shared storage more than once when other nodes try to store

the same block again.

This replication process is independent and hence, does

not interrupt the overall performance of BAASH during the

block validation. The theoretical time complexity of this

protocol is O(|C |) and |C | could be a fairly large number

(e.g., tens of thousands of cores in leading-class supercom-

puters [49]). It should be noted that in HPC system remote

storage is managed through a distributed cluster of storage

nodes; hence, failure of a single storage node does not lead

to any loss to the full ledger stored in the remote storage.

We will demonstrate the effectiveness of the protocol in the

evaluation section.

3 SYSTEM IMPLEMENTATION

We have implemented a prototype system of the proposed

blockchain architecture in the user space and consensus

protocols with Python-MPI. Although this paper presents

BAASH as a user-library with a callable programming in-

terface, BAASH can also be deployed at the system level

through a wrapper. MPI is a message-passing application

programming interface that allows us to develop our own

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

parallel processing layer. We use the mpi4py package [38] for

leveraging MPI with Python. This MPI package for Python

provides bindings of the MPI standard for the Python pro-

gramming language, allowing any Python program to exploit

multiple processors acrossmachines. Typically, formaximum

performance, each CPU (or core in a multi-core machine)

will be assigned one single process or a distinct rank.

At this point, we only release the very core modules of

the prototype. Some complementary components and plug-

ins are still being tested with more edge cases and will be

released once they are stable enough. Figure 3 illustrates the

overview of the implemented architecture of the proposed

parallel blockchain on MPI. The prototype system has been

deployed to 500 cores on an HPC cluster.

As shown in Figure 3, new transactions received through

BAASH service API from the nodes or any other sources

(e.g., external HPC cluster or scientific workbench) are first

hashed using SHA-256 [46] (step 1). Then, the transactions

are pushed in a queue (step 2) to be batched or encapsulated

in a block (step 3) and added to the block queue (step 4).

The parallel processing module monitors both the clusters

of nodes as well as the block queue. The parallel module

receives a block (step 5) and distributes it whenever a clus-

ter is available (step 6). Afterward, the blocks are validated

first in compute nodes. The consensus manager collects the

consensus of the block from the cluster (step 7), and if the

block is validated successfully, BAASH decides to append the

block both in the in-memory ledger of the compute nodes

and in the remote storage through a parallel file system (i.e.,

GPFS) (step 9). During the entire block validation process,

a fault monitor keeps track of each node and takes the nec-

essary initiatives to recover any node failure and reinstate

the BAASH service (step 8). Once the data from a source

is validated and appended in the distributed ledger, other

applications can access the data as a reliable source through

BAASH API (step 10).

3.1 Data Models

The data structure for the proposed BAASH ledger is a linked

list and stored in a hash table where each tuple corresponds

to a block, which references a list of transaction records

stored in another table. In each hash table, a corresponding

hash acts as a primary key that helps in identifying a block or

a transaction. All properties of a block (e.g., block ID, parent

block hash, transactions list, and time stamp) and all prop-

erties of a transaction (e.g., transaction ID, transaction data,

time stamp, and entities ID such as Node-ID, application-ID,

file-ID) are encapsulated respectively in a Block object and

in a Transaction object at runtime.

Figure 4: Parallel processing module in BAASH man-

ages blocks in parallel through distributed coordina-

tors or consensus managers.

3.2 Worker Nodes

In BAASH, transactions are first appended to the transaction

queue, which is discussed in detail in §3.3. When the cre-

ated transaction queue reaches a limit, the nodes encapsulate

them (i.e., transactions) in a block. When a block is encapsu-

lated with a number of transactions, it is then pushed into

a queue (discussed in §3.3) before it is broadcasted in the

network.

The nodes are responsible for validating the blocks and

sending consensus to the respective coordinators (MPI com-

municators) through the parallel processing module and dis-

tributed consensus managers (more details in Section §3.4

and §3.5). A coordinator will store a block both in nodes’ local

in-memory as well as in the remote storage after validation.

The format of storing data in a compute node and in remote

storage is explained in §3.1. Each node communicates with

the respective coordinator through our parallel mechanism

implementedwithMPI discussed in §3.4. The communication

between compute nodes and the remote storage is managed

through a parallel file system (e.g., GPFS).

3.3 Block and Transaction Queue

The newly created or received transactions are pushed into

a pending transaction queue. In BAASH, we can adjust the

block size according to our demand. For instance, for all the

experiments presented in this paper, each block consists of 4

transactions on average. Therefore, the block encapsulation

process is triggered as soon as the queue size reaches 4. This

is because we want to compare our experimental results

with the benchmarks [13]. Once the pending transactions

are encapsulated they are moved to the active transaction

queue. When a block is ready to propagate, it is pushed

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

Figure 5: A consensus manager (i.e., a coordinator)

guarantees the consistency in block management

through the two-phase distributed quorum commit

protocol.

to a pending block queue. At a fixed time interval, a block

pops out from the queue periodically and is transferred to a

coordinator. Once the block is transferred, it is then moved

to the active block queue.

It could be argued that a queue might not deliver data

at a sufficient rate to feed the network because a queue is

a linear data structure that can hardly be parallelized for

the sake of scalability. This is alleviated by the following

two approaches in our implementation. First, we adjust the

time interval larger than the latency for the queue to pop an

element. In doing so, the overhead from the queue itself is

masked completely. Second, we implement the queue using a

loosely-coupled linked-lists such that the queue can be split

and reconstructed arbitrarily.

3.4 Parallel Processing Module

As shown in Figure 4, the entire network is logically divided

into s number of clusters. BAASH creates a set of dynamic co-

ordinators (i.e., MPI communicators) to manage the clusters

from the list of nodes. The selection process of coordinators

is random, and a coordinator can not actively participate

in block validation process. Each cluster is managed by a

single coordinator. A cluster consists of n number of nodes

from where the parallel processing module dynamically cre-

ates z number of of sub-clusters. Figure 4 shows how the

parallel module in BAASH coordinates with the transaction

queue, block queue, and the shared blockchain to distribute

the blocks with transactions among a set of dynamically

constructed sub-clusters of nodes from the parent cluster

assigned to a coordinator (i.e., MPI communicator).

When a block arrives, BAASH starts looking for available

3f + 1 nodes to construct a sub-cluster to start processing

the block. f is the maximum faulty nodes allowed in a sub-

cluster. If more than 50% nodes in a sub-cluster fail, BAASH

attempts to add new nodes in the initial cluster. The initial

Figure 6: Workflow of BAASH’s monitor to han-

dle MPI failures. The monitor ensures a consistent

BAASH service against arbitrary node failures.

cluster then becomes 3f + 1 + c , where c is the maximum

number of nodes adjustment from a parent cluster in case

of more than 50% nodes failure in the sub-cluster. To be

more specific, c denotes how many times the parallel module

attempts to add a new node from the parent cluster if the

majority (more than 50%) nodes in a sub-cluster fail. The

cluster is flexible enough to deconstruct again to merge with

the parent cluster when no blocks are available to process.

3.5 Consensus Manager

Distributed consensus managers (i.e., coordinators) assist in

managing votes for a block processed in parallel by a set of

nodes in the logically divided sub-clusters. It (i.e., consensus

manager) guarantees consistency in parallel block process-

ing through a newly designed protocol named two-phase

distributed quorum commit (2PDQC) protocol.

Figure 5 illustrates the entire workflow of the proposed

protocol. First, a coordinator broadcasts a block validation

request among the nodes in a cluster. Second, the nodes for-

ward their votes to the coordinator after the validation phase.

Third, the coordinator aggregates the votes to prepare the

final decision about the legitimacy of the block. Finally, the

coordinator commits the block in the shared storage (shared

blockchain) and synchronizes the nodes with the shared

blockchain. It should be noted that all the distributed coor-

dinators (Figure 4) keep monitoring the shared blockchain

during the entire process to avoid any duplicate processing

or double-spending in logically distributed clusters.

3.6 Fault Monitor

A real-time distributed monitoring process (daemon service)

as shown in Figure 6 is designed to keep monitoring the

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

BAASH service to intercept the three aforementioned check-

points (Section 2.1.4). If any of the checkpoints raises an

alert during the block validation process, the daemon ser-

vice stores (i.e., check pointing) the progress and attempts

to restart the BAASH service. It (i.e., BAASH) excludes the

faulty nodes during the construction of the logically dis-

tributed clusters.

The daemon keeps en-queuing the in-bound transactions

and leverages the remote storage (i.e., shared blockchain) to

continue the validation process while the BAASH service

takes time to restart. Once the service restarts the daemon

starts forwarding the pending transactions to BAASH. In the

case of remote storage failure, the entire validation process

is restarted automatically, which is the worst case and very

rare to happen.

4 EVALUATION

4.1 Experimental Setup

Testbed. All experiments are carried out on a high perfor-

mance computing cluster comprised of 58 physical nodes

interconnected with FDR InfiniBand. Each node is equipped

with an Intel Core-i7 2.6 GHz 32-core CPU along with 296 GB

2400 MHz DDR4 memory; hence each node can be emulated

with up to 32 nodes through user-level threads. There is no

local disk on compute nodes, which is a typical configuration

on HPC systems; a remote 2.1 PB storage system is available

managed by GPFS [45]. Each node is installed with Ubuntu

16.04, Python 3.7.0, NumPy 1.15.4, mpi4py v2.0.0, and mpich2

v1.4.1. We deploy our system prototype on up to 500 cores

and report the average results unless otherwise noted.

Workloads.We use YCSB [51], the common benchmark

for evaluating blockchains [13]. The YCSB benchmark gener-

ates data in a standard format which is flexible to abstract the

scientific data from arbitrary applications. There are many

existing tools and frameworks (e.g., Myria [36]) for migrat-

ing scientific data sets into transactional format; we do not

discuss the migration procedure in this paper and simply

assume the scientific data are already in a format that can

be dealt with blockchains and specifically, BAASH. In our

system prototype, the default batch size of a block is set

with 4, and we deploy more than two million transactions

(2,013,590) in all of the experiments. It should be noted that

BAASH is flexible enough to encapsulate any number of

transactions in a block.

Systems for Comparison.We compare Ethereum [18],

Parity [41], and Hyperledger Fabric [25] with system proto-

type of BAASH,whose original codename is HPC-blockchain.

We also compare the state-of-the-art HPC blockchains Sci-

Chain [4], and In-memory blockchain (IMB) [3]. The sixth

system is aConventional Blockchain based on practical-byzantine-

fault-tolerance (i.e., PBFT) protocol deployed to the same

(a) Performance in Conventional blockchains (batch = 4)

(b) Performance in HPC blockchains (batch = 250)

Figure 7: Transactions generated per second. BAASH

outperforms the conventional blockchains. BAASH

exhibits scalability compared to the state-of-the-art

HPC blockchain systems.

cluster (i.e., 58 nodes). We apply PBFT in each individual dy-

namically constructed cluster (i.e., with 3f +1 nodes) instead
of the entire blockchain network during the validation of a

block to ensure the fairness of the comparison.

4.2 Throughput

In this section, wemeasure the throughput by BAASH against

the other blockchain systems. In the first experiment, we

keep the batch size to BAASH’s default (i.e., 4) while using

16 nodes as clients where each node issue 1024 transactions

per second. Figure 7 shows the throughput with varying

node scales. In terms of throughput, BAASH outperforms

other conventional systems at all scales, as shown in Fig-

ure 7(a). Specifically, it has up to 6× higher throughput than

Hyperledger and PBFT on 16 nodes, as well as 12×, and 75×

higher throughput than Ethereum, and Parity, respectively,

on 16 nodes. Thanks to the proposed consensus protocols

that are optimized for HPC systems, BAASH’s throughput is

not degraded at larger scales beyond 16 nodes, while both

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

 0.01

 0.1

 1

 10

 100

 1000

1 10 100 1000 10000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

B
lo

ck
 w

rit
in

g
tim

e
(m

s)

O
ve

rh
ea

d
(%

)

Number of Blocks Processed

Baseline (simple replication)
BAASH

Overhead (%)

(a) Performance overhead comparison with replication across nodes.

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

B
lo

ck
 r

ea
di

ng
 ti

m
e

(m
s)

Number of Blocks

Baseline (central database)
BAASH

(b) Performance comparison between BAASH and a central database.

Figure 8: Performance and overhead comparison.

Ethereum and Parity show some degradation. Worse yet,

Hyperledger cannot scale beyond 16 nodes at all.

We also measure the performance of the BAASH against

state-of-the-art HPC blockchains where each node issues

1024 transactions per second. In the experiment, we increase

the batch size to 250 to analyze the robustness. As shown in

Figure 7(b), it is noticeable that throughput in BAASH reason-

ably increases while scaling; whereas, the throughput tends

to decrease in the other blockchain systems. It being the

fact that the parallel block processing mechanism injected in

BAASH assembles the consensus protocol scalable enough

to generate an HPC-compatible blockchain-like resilient sys-

tem. On the contrary, the IMB [3] follows the proof-of-work,

although with a lower nonce and the SciChain [4] does not

offer a parallel processing mechanism that could leverage

the distributed nature of the HPC infrastructure.

4.3 Performance and Memory Overhead

We report the performance overhead incurred by BAASH

while providing distributed reliable resiliency on a 100-node

cluster with increasing workloads. That is, we increase the

workload from 1 to 10,000 blocks of transactions with the

default batch size 4 to measure the overhead. First, we com-

pare the block writing performance of BAASH against the

Table 2: Maximum memory requirement per node in

BAASH at different scales.

Number of nodes Max memory per node (MB)

20 1.4

40 2.8

60 4.1

80 5.5

100 6.9

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Le
dg

er
 V

al
id

ity
 (

%
)

F
ai

le
d

N
od

es

Number of Nodes

Ledger Validity (%)

100.00 100.00 100.00 99.00 99.40

Failed Nodes

Figure 9: Ledger validity in BAASH (in all scales at-

least 99% nodes hold consistent ledger).

baseline that only provides resiliency through in-memory

simple data replication across the nodes without any reliable

verification through a decentralized protocol. We choose

the simple replication as the baseline because it provides in-

memory resiliency support with the minimal writing effort.

As shown in Figure 8(a), although the performance overhead

is around 80% while processing smaller workloads, what is

more interesting and more important is the fact that the

overhead starts to decline as the workload increasing, e.g.,

the overhead is only around 20% while processing 10,000

blocks, thanks to the parallel processing layer in BAASH

which amortizes the cost across the participating nodes.

Second, we compare the block reading performance of

BAASH against the baseline that provides resiliency through

the central database structured in a simple SQLite database in

the remote storage instead of distributed resiliency through

in-memory support across the nodes. We do not note the

reading performance against the other baseline (i.e., simple

replication without blockchain service) because both BAASH

and the other baseline exhibit identical performance while

reading blocks from in-memory. Figure 8(b) illustrates that

the block reading performance of BAASH is significantly

faster compared to the centralized database. For example,

BAASH can perform almost 112× quicker compared to the

baseline while reading 10,000 blocks.

We further assess the memory footprint requirement per

node incurred by the BAASH service with varying node

scales up to 100 nodes, where each node issues 1,024 transac-

tions per second. Table 2 illustrates that with the increment

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) All of the blocks in BAASH safely get persisted after successful valida-

tion: the BAASH-total line is completely covered by the BAASH-bc line.

 1

 100

 10000

 1 10
6

 1 10
8

100 200 300 400 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

N
um

be
r

of
 B

lo
ck

s

La
te

nc
y

(s
)

Number of Nodes

Blocks generated
Blocks reach consensus

Latency (s)

(b) 99%+ blocks reach consensus at a large scale while

incurring negligible latency.

Figure 10: Reliability in BAASH resilience support.

of nodes, the workload increases; yet, each node requires

a reasonable amount of memory (e.g., less than 7 MB at

100 nodes) to provide reliable distributed resiliency support

across the nodes through BAASH.

4.4 Reliability and Fault Tolerance

We measure the reliability of BAASH on up to 500 nodes

and check how many nodes can hold 100% valid ledgers. We

also keep track of how much node failure occurs during this

experiment. Figure 9 shows that in all scales, at least 99%

nodes keep the valid ledger. We find 100% nodes hold valid

ledger on up to 300 nodes. BAASH guarantees the resiliency

as long as more than 50% nodes hold consistent ledger at all

scale.

To further measure the reliability of BAASH, we investi-

gate how many blocks reach consensus in all the systems

on 16 nodes, where 8 concurrent nodes issue 1024 transac-

tions per second. The reason for choosing 16 nodes is to

keep the result comparable to [13]. Figure 10(a) reports the

number of blocks that reach the consensus and are appended

to the blockchain. Both in Ethereum and Parity, some blocks

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B
lo

ck
 V

al
id

at
io

n
T

im
e

(m
s)

O
ve

rh
ea

d
(%

)

Number of Nodes

BAASH with Remote Storage Support
Overhead (%)

(a) Validation through remote storage handled by the

fault monitor during BAASH recovery exhibits reason-

able performance overhead.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 70 80 90 100

R
es

ta
rt

 T
im

e
(s

)

Number of Nodes

Average
Min time
Max time

(b) BAASH’s recovery controlled by the fault monitor

lies within decent limit while the remote storage han-

dling the validation.

Figure 11: BAASH recovery overhead by faultmonitor.

are unable to reach consensus due to double spending or

selfish mining attacks, and the difference increases as time

passes. Though Hyperledger is not vulnerable to those at-

tacks because of not allowing any fork and 100% blocks tend

to reach consensus, it is significantly slower than BAASH. In

BAASH, almost 100× more blocks are generated compared

to Hyperledger, and 100% blocks reach consensus. This is be-

cause, BAASH implementation relies on the specially crafted

parallel transaction processing mechanism and the newly

designed two-phase distributed quorum commit protocol to

ensure consistent block processing in a parallel manner. Fig-

ure 10(b) reports the number of blocks that reach consensus

in BAASH at different scales ranging from 100 to 500 nodes.

We notice that in all scales, more than 99% generated blocks

can reach consensus with negligible latency.

The entire MPI network fails if a node crashes; hence,

could hinder the entire block validation process. Therefore,

we keep the remote storage to continue the validation. To

further study the fault tolerance, we check the block valida-

tion time by BAASHwith remote storage support at different

scales by switching off a random node in the middle of a

block validation process and compare the overhead. Dur-

ing the experiment, each node issues 1024 transactions per

second. The goal of this experiment is to see how much

is the overhead if we leverage the remote storage during

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

the entire MPI network failure while restoring the BAASH

service. As shown in Figure 11(a), even with failures of the

compute node, the block validation process continues suc-

cessfully with the support of the remote storage. Besides,

BAASH with remote ledger incurs negligible overhead even

at a large scale (i.e., roughly 5% at 500 nodes cluster).

In case of a severe catastrophe (e.g., compute nodes crash),

the distributed fault monitor in BAASH simply restarts the

BAASH service excluding the faulty nodes while continuing

the validation process with the support of the shared storage.

During the restarting phase, the BAASH daemon needs to

restore the nodes with the latest block, so that the nodes can

join the validation process. To measure the BAASH service

restoration time on up to 500 nodes cluster, we switch off

a random node in the middle of a block validation process

and restore the service (i.e., BAASH) excluding the failed

node. We conduct the experiment several times at different

scales to measure the minimum and maximum restart time.

Figure 11(b) exhibits BAASH service requires reasonable

time during the restoration phase. However, the good news

is, the block validation is not stopped during this restoration

phase, because BAASH leverages shared storage’s blockchain

to continue the successful block validation process.

5 RELATED WORK

At present, blockchain research focuses on various system

perspectives. Algorand [22] proposes a technique to avoid

the Sybil attack and targeted attack. Bitcoin-NG [19] in-

creases throughput through a leader selection from each

epoch who posts multiple blocks. Monoxide [50] distributes

the workload for computation, storage, and memory for state

representation among multiple zones to minimize the re-

sponsibility of full nodes. Sharding protocols [29, 52] have

been proposed to scale-out distributed ledger. Hawk [30]

is proposed to achieve transactional privacy from public

blockchains. A blockchain protocol based on proof-of-stake

called Ouroboros [27]is proposed to provide stern security

guarantees in blockchains and better efficiency than those

blockchains based on proof-of-work (i.e., PoW). Some recent

works [23, 28, 37] propose techniques to optimize Byzantine

Fault Tolerance (BFT).

Being inspired by Hyperledger [25], Inkchain [26] is de-

signed as another permissioned blockchain solution that

enables customization and enhancement in arbitrary scenar-

ios. To improve reliability and achieve better fault tolerance,

BigchainDB [7] is built upon the Practical Byzantine Fault

Tolerant (PBFT) and comes with blockchain properties (e.g.,

decentralization, immutability, owner-controlled assets) as

well as database properties (e.g., high transaction rate, low

latency, indexing and querying of structured data). A 2-layer

blockchain architecture (2LBC) is proposed in [6] to achieve

stronger data integrity in distributed database systems based

on a leader-rotation approach and proof-of-work. Unfor-

tunately, none of the aforementioned work addresses the

underlying platform architecture other than shared-nothing

clusters assumed by existing blockchain systems that could

help us to bridge the gap between the HPC and blockchain

technology. The proposed blockchain framework presented

by this paper, therefore, for the first time, showcases a prac-

tical parallel blockchain-like framework developed with MPI

that allows us to leverage the decentralized mechanism in

HPC systems.

We are well aware of recent advances in MPI. Various ap-

proaches [8, 9, 11, 24, 32, 35, 44] were proposed to improve

or characterize the MPI features in order to design various

solutions. However, all of these works are orthogonal to

our work, and none of these aim to develop a lightweight

blockchain framework with MPI in order to facilitate the par-

allel processing in managing distributed ledgers. Therefore,

the aforementioned works can be merged into our work for

further improvement in MPI specific packages.

6 CONCLUSION AND FUTUREWORK

This paper proposes two key techniques to enable a blockchain

service in HPC systems. First, a much-needed lightweight

set of scalable consensus protocols is designed to account for

both the diskless compute nodes and the remote shared stor-

age in HPC. Second, in an HPC environment, a must-have

property of blockchain, i.e., the reliability in front of MPI,

is guaranteed by multiple layers of subsystems, from back-

ground daemon services to callable routines to applications.

The HPC-aware consensus protocols and MPI-compatible

reliability, under the framework coined as BAASH, collec-

tively enable a blockchain service for HPC systems. A system

prototype of the proposed techniques is implemented and

evaluated with more than two million transactions on up to

500 cores, which demonstrates both high performance and

high reliability compared to state-of-the-art systems.

Our future research will (i) incorporate a parallel data

integration mechanism for the cross-blockchains or hetero-

geneous data sources, and (ii) support eventual consistency

for readers to see data from the remote writers in the exascale

system. Our hope is that BAASH could serve as a starting

point for a new line of system research on decentralized

services crafted to HPC systems.

7 ACKNOWLEDGEMENTS

This work is supported in part by the following grants: Na-

tional Science Foundation CCF-1756013, IIS-1838024, and

CAREER-2048044.

BAASH: Lightweight, Efficient, and Reliable Blockchain-As-A-Service for HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

REFERENCES
[1] Advancing the Science and Impact of Blockchain Technology at Oak

Ridge National Laboratory. https://info.ornl.gov/sites/publications/

Files/Pub118487.pdf, Accessed 2019.

[2] Abdullah Al-Mamun, Tonglin Li, Mohammad Sadoghi, Linhua Jiang,

Haoting Shen, and Dongfang Zhao. Poster: An mpi-based blockchain

framework for data fidelity in high-performance computing systems.

In International Conference on High Performance Computing, Network-

ing, Storage and Analysis (SC), 2019.

[3] Abdullah Al-Mamun, Tonglin Li, Mohammad Sadoghi, and Dongfang

Zhao. In-memory blockchain: Toward efficient and trustworthy data

provenance for hpc systems. In IEEE International Conference on Big

Data (BigData), 2018.

[4] Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. SciChain:

Blockchain-enabled lightweight and efficient data provenance for re-

producible scientific computing. In IEEE 37th International Conference

on Data Engineering (ICDE), 2021.

[5] Benjamin S Allen, Matthew A Ezell, Paul Peltz, Doug Jacobsen, Eric

Roman, Cory Lueninghoener, and J Lowell Wofford. Modernizing the

hpc system software stack. arXiv preprint arXiv:2007.10290, 2020.

[6] L. Aniello, R. Baldoni, E. Gaetani, F. Lombardi, A. Margheri, and V. Sas-

sone. A prototype evaluation of a tamper-resistant high performance

blockchain-based transaction log for a distributed database. In 13th

European Dependable Computing Conference (EDCC), 2017.

[7] BigchainDB. https://github.com/bigchaindb/bigchaindb, Accessed

2018.

[8] Darius Buntinas. Scalable distributed consensus to support mpi fault

tolerance. In 2012 IEEE 26th International Parallel and Distributed

Processing Symposium, pages 1240–1249. IEEE, 2012.

[9] Lu Chao, Chundian Li, Fan Liang, Xiaoyi Lu, and Zhiwei Xu. Acceler-

ating apache hive with mpi for data warehouse systems. In 2015 IEEE

35th International Conference on Distributed Computing Systems, pages

664–673. IEEE, 2015.

[10] Jacqueline H Chen, Alok Choudhary, Bronis De Supinski, Matthew

DeVries, Evatt R Hawkes, Scott Klasky, Wei-Keng Liao, Kwan-Liu Ma,

John Mellor-Crummey, Norbert Podhorszki, et al. Terascale direct nu-

merical simulations of turbulent combustion using s3d. Computational

Science & Discovery, 2(1):015001, 2009.

[11] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and

Kalyan Kumaran. Characterization of mpi usage on a production

supercomputer. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis, SC ’18,

pages 30:1–30:15. IEEE Press, 2018.

[12] Hao Dai, H Patrick Young, Thomas JS Durant, Guannan Gong, Ming-

ming Kang, Harlan M Krumholz, Wade L Schulz, and Lixin Jiang.

Trialchain: A blockchain-based platform to validate data integrity in

large, biomedical research studies. arXiv preprint arXiv:1807.03662,

2018.

[13] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,

and Kian-Lee Tan. Blockbench: A framework for analyzing private

blockchains. In ACM International Conference on Management of Data

(SIGMOD), 2017.

[14] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason,

Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. Silent

data corruptions at scale. CoRR, abs/2102.11245, 2021.

[15] DOE SBIR. https://www.sbir.gov/sbirsearch/detail/1307745, Accessed

2017.

[16] ShaohuaDuan, Pradeep Subedi, Philip Davis, Keita Teranishi, Hemanth

Kolla, Marc Gamell, and Manish Parashar. Corec: Scalable and resilient

in-memory data staging for in-situ workflows. ACM Transactions on

Parallel Computing (TOPC), 7(2):1–29, 2020.

[17] Shaohua Duan, Pradeep Subedi, Philip E Davis, and Manish Parashar.

Addressing data resiliency for staging based scientific workflows. In

Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 1–22, 2019.

[18] Ethereum. https://www.ethereum.org/, Accessed 2018.

[19] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In Proceedings of the 13th

Usenix Conference on Networked Systems Design and Implementation,

NSDI’16, pages 45–59, Berkeley, CA, USA, 2016. USENIX Association.

[20] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt

Ferreira, and Ron Brightwell. Detection and correction of silent data

corruption for large-scale high-performance computing. In SC’12:

Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, pages 1–12. IEEE, 2012.

[21] Ashish Gehani and Dawood Tariq. SPADE: Support for Provenance

Auditing in Distributed Environments. In Proceedings of the 13th

International Middleware Conference (Middleware), 2012.

[22] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai

Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-

rencies. In Proceedings of the 26th Symposium on Operating Systems

Principles, SOSP ’17, pages 51–68, New York, NY, USA, 2017. ACM.

[23] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Re-

iter, D. Seredinschi, O. Tamir, and A. Tomescu. Sbft: A scalable and

decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN),

2019.

[24] Yanfei Guo, Wesley Bland, Pavan Balaji, and Xiaobo Zhou. Fault toler-

ant mapreduce-mpi for hpc clusters. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’15, pages 34:1–34:12, 2015.

[25] Hyperledger. https://www.hyperledger.org/, Accessed 2018.

[26] Inkchain. https://github.com/inklabsfoundation/inkchain, Accessed

2018.

[27] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain

protocol. In Advances in Cryptology (CRYPTO), 2017.

[28] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail

Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin security

and performance with strong consistency via collective signing. In

25th USENIX Security Symposium (USENIX Security 16), pages 279–296,

2016.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas

Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,

decentralized ledger via sharding. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 583–598. IEEE, 2018.

[30] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:

The blockchain model of cryptography and privacy-preserving smart

contracts. In 2016 IEEE Symposium on Security and Privacy (SP), 2016.

[31] S. Lee, S. Kohler, B. Ludascher, and B. Glavic. A sql-middleware uni-

fying why and why-not provenance for first-order queries. In IEEE

International Conference on Data Engineering (ICDE), 2017.

[32] Mingzhe Li, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni, Jie

Zhang, and Dhabaleswar K Panda. Designing mpi library with on-

demand paging (odp) of infiniband: challenges and benefits. In SC’16:

Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 433–443. IEEE, 2016.

[33] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla.

Provchain: A blockchain-based data provenance architecture in cloud

environment with enhanced privacy and availability. In IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID),

2017.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Abdullah Al Mamun, Feng Yan, Dongfang Zhao

[34] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla.

Provchain: A blockchain-based data provenance architecture in cloud

environment with enhanced privacy and availability. In IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID),

2017.

[35] Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhiwei Xu. Datampi:

extending mpi to hadoop-like big data computing. In 2014 IEEE 28th

International Parallel and Distributed Processing Symposium, pages

829–838. IEEE, 2014.

[36] Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer Kaftan,

Alvin Cheung, Magdalena Balazinska, Ariel Rokem, Andrew Connolly,

Jacob Vanderplas, and Yusra AlSayyad. Comparative evaluation of big-

data systems on scientific image analytics workloads. In Proceedings

of the 43rd International Conference on Very Large Data Bases (VLDB),

2017.

[37] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The

honey badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 31–42.

ACM, 2016.

[38] MPI4PY. https://mpi4py.readthedocs.io/en/stable/intro.html, Accessed

2019.

[39] NSF CICI. https://www.nsf.gov/pubs/2018/nsf18547/nsf18547.htm,

Accessed 2018.

[40] Svein Ølnes. Beyond bitcoin enabling smart government using

blockchain technology. In International Conference on Electronic Gov-

ernment, pages 253–264. Springer, 2016.

[41] Parity. https://ethcore.io/parity.html/, Accessed 2018.

[42] Aravind Ramachandran and Murat Kantarcioglu. Smartprovenance: A

distributed, blockchain based data provenance system. In Proceedings

of the Eighth ACM Conference on Data and Application Security and

Privacy, CODASPY ’18, pages 35–42, 2018.

[43] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin,

Beng Chin Ooi, and Meihui Zhang. Fine-grained, secure and effi-

cient data provenance on blockchain systems. Proceedings of the VLDB

Endowment, 12(9):975–988, 2019.

[44] Emmanuelle Saillard, Patrick Carribault, and Denis Barthou. Static/dy-

namic validation of mpi collective communications in multi-threaded

context. In Proceedings of the 20th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, PPoPP 2015, pages 279–280.

ACM, 2015.

[45] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for

large computing clusters. In Proceedings of the 1st USENIX Conference

on File and Storage Technologies (FAST), 2002.

[46] SHA-256. https://en.bitcoin.it/wiki/SHA-256, Accessed 2018.

[47] Chen Shou, Dongfang Zhao, Tanu Malik, and Ioan Raicu. Towards a

provenance-aware distributed filesystem. In TaPP Workshop, USENIX

Symposium on Networked Systems Design and Implementation (NSDI),

2013.

[48] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Fer-

reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory

errors in modern systems: The good, the bad, and the ugly. ACM

SIGARCH Computer Architecture News, 43(1):297–310, 2015.

[49] The Cori Supercomputer. http://www.nersc.gov/users/computational-

systems/cori, Accessed 2018.

[50] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchain with

asynchronized consensus zones. In 16th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 19), Boston, MA,

2019. USENIX Association.

[51] YCSB. https://github.com/brianfrankcooper/YCSB/wiki/Core-

Workloads, Accessed 2018.

[52] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-

chain: Scaling blockchain via full sharding. In Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security,

pages 931–948. ACM, 2018.

[53] Kaiwen Zhang andHans-Arno Jacobsen. Towards dependable, scalable,

and pervasive distributed ledgers with blockchains. In 38th IEEE

International Conference on Distributed Computing Systems (ICDCS),

2018.

[54] Dongfang Zhao, Chen Shou, Tanu Malik, and Ioan Raicu. Distributed

data provenance for large-scale data-intensive computing. In IEEE

International Conference on Cluster Computing (CLUSTER), 2013.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

All experiments are carried out on a high-performance computing

cluster comprised of 58 nodes interconnected with FDR InfiniBand.

Each node is equipped with an Intel Core-i7 2.6 GHz 32-core CPU

along with 296 GB 2400 MHz DDR4 memory; hence each node can

be emulated with up to 32 nodes through user-level threads.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/mamunbond07/beast
Artifact name: BAASH

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Core-i7 2.6 GHz 32 core CPU

Operating systems and versions: Ubuntu 18.04

Libraries and versions: Python 3.7.0, NumPy 1.15.4, mpi4py v2.0.0,

and mpich2 v1.4.1

