Lunule: An Agile and Judicious Metadata Load Balancer for
CephFS

Yiduo Wang Cheng Li Xinyang Shao
University of Science and Anhui Province Key Laboratory of University of Science and
Technology of China High Performance Computing, USTC Technology of China

Hefei, Anhui, China
duo@mail.ustc.edu.cn

Youxu Chen
University of Science and
Technology of China
Hefei, Anhui, China
cyx1227@mail.ustc.edu.cn

ABSTRACT

For a decade, the Ceph distributed file system (CephFS) has been

widely used to serve the ever-growing big data in many key fields

ranging from Internet services to Al computing. To scale out the

massive metadata access, CephFS adopts a dynamic subtree parti-
tioning method, splitting the hierarchical namespace and distribut-
ing subtrees across multiple metadata servers. However, this method
suffers from a severe imbalance problem that may result in poor

performance due to its inaccurate imbalance prediction, ignorance

of workload characteristics, and unnecessary/invalid migration ac-
tivities. To eliminate these inefficiencies, we propose Lunule, a novel
CephFS metadata load balancer, which employs an imbalance fac-
tor model for accurately determining when to trigger re-balance

and tolerate benign imbalanced situations. Lunule further adopts

a workload-aware migration planner to appropriately select sub-
tree migration candidates. Compared to baselines, Lunule achieves

better load balance, increases the metadata throughput by up to

315.8%, and shortens the tail job completion time by up to 64.6%

for five real-world workloads and their mixture, respectively. Be-
sides, Lunule is capable of handling the metadata cluster expansion

and the client workload growth, and scales linearly on a cluster of

16 MDSs.

ACM Reference Format:

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yin-
long Xu. 2021. Lunule: An Agile and Judicious Metadata Load Balancer
for CephFS. In The International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC "21), November 14-19, 2021, St.
Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3458817.3476196

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC °21, November 14-19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11...$15.00

https://doi.org/10.1145/3458817.3476196

Hefei, Anhui, China
chengli7@ustc.edu.cn

Feng Yan
University of Nevada, Reno
Reno, Nevada, USA
fyan@unr.edu

Hefei, Anhui, China
sxy799@mail.ustc.edu.cn

Yinlong Xu
Anhui Province Key Laboratory of
High Performance Computing, USTC
Hefei, Anhui, China
ylxu@ustc.edu.cn

1 INTRODUCTION

CephFS is a widely-adopted, open-source, POSIX-compliant dis-
tributed file system (CephFS) [17]. It aims for high performance,
large data storage, and maximum compatibility with a variety of
applications, including shared home directories [32], cloud appli-
cations [6], HPC workloads [37, 40], and scientific or AI comput-
ing [8, 36]. Recently, CephFS has also become a research hotspot [4,
14, 35, 42-44].

In CephFS, metadata, mainly referring to the namespace hierar-
chy, is managed separately from data. This decoupling enables the
independent scaling of both metadata and data. Within such archi-
tecture, metadata must be first obtained prior to the actual data
access. Recent studies reveal that many file system workloads are
metadata-intensive, i.e., more than 50% (up to 92.8% in our study)
of file system operations are concentrating on metadata [1, 5, 21].
Furthermore, the vast majority of files are small [49], while the
data path overhead has been greatly improved by the emerging fast
storage devices such as NVMe SSDs [13]. All these trends make the
metadata performance of critical importance.

For a decade, CephFS followed the conventional wisdom of man-
aging a cluster of metadata servers (MDSs). This is a preferred
choice for most modern distributed file systems since it allows
them to balance load across MDSs for caching as much metadata
in memory as possible and parallelizing metadata request process-
ing [22, 24, 41, 43]. However, scaling the performance of the MDS
cluster is more challenging, compared to the data cluster, mainly
because metadata contains file system structural information and
exhibits a higher degree of interdependence [45]. To improve meta-
data scalability, CephFS adopts dynamic subtree partitioning, where
the hierarchical namespace is split into smaller subtrees, and those
subtrees will be periodically migrated among MDSs according to
the workload intensity level of each MDS [43, 45].

Additionally, Lustre[24], PVFSv2[19] and SkyFS[47] adopt a hash-
based mapping, and pair files’ metadata and the authorized MDSs
by computing the hash value of the corresponding filename or
pathname. Despite of the even metadata distribution among MDSs,
it destroys spatial locality, which is considered to be important in
real world [14, 35]. However, it is challenging for its static par-
titioning to adapt to dynamics, e.g., the MDS cluster expansion.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Compared to the hash-based mapping, the dynamic subtree parti-
tioning mechanism in CephFS offers better flexibility, and enables
to strike a balance between locality and load distribution.

Though substantial engineering efforts have been made, there
still exists a severe metadata load imbalance problem within the
CephFS dynamic subtree management, which leads to poor meta-
data performance and resource wasting [27, 35]. In Section 2.2, we
assess the performance of the CephFS’ built-in metadata load bal-
ancer with four representative workloads in different fields, rang-
ing from the traditional CephFS use cases to Al computing. Our
main finding is that the metadata accesses were not evenly dis-
tributed across multiple MDSs, and in the worst case, the volume
of metadata requests processed by the most loaded MDS is 220x
higher than that of the least loaded one, even with frequent and
active migration activities in the background.

The unexpected performance is primarily contributed by 1) inac-
curate load model with benign imbalance oblivious: the load mon-
itoring module fails to accurately model each MDS’ load and the
cluster load, while not tolerating benign imbalance, where the load
imbalance level stays at the safe interval; and 2) invalid subtree
migration candidate selection: the migration decision module in-
appropriately chooses subtree migration candidates, with no con-
sideration of the access patterns of and the future load variance on
those subtrees. These root causes make it hard to trigger metadata
migration at the right time and choose the appropriate amount of
subtree candidates for being migrated, which is either too aggres-
sive or not adapting to the workload-specific demands.

Research on improving the performance of the dynamic subtree
partitioning metadata management in CephFS has not received
enough attention. Recently, Mantle [35] decouples the load stats
collection and migration decision making steps from the rest of
CephFS’ metadata management and offers programmable APIs to
allow users to specify functions to determine when and how much
to migrate. However, the APIs are limited and do not cover the im-
portant subtree selection feature. More importantly, deriving an
accurate load model and reasonable heuristics for metadata migra-
tion and load balancing remains a challenge.

To overcome the above challenges, we propose Lunule, a novel
metadata load balancer based on dynamic subtree partitioning for
CephFS. First, to make re-balance when needed, Lunule is driven
by an analytical model, which accurately captures the whole MDS
cluster’s workload intensity level. Rather than using average load
statistics, this model uses the Coefficient of Variation to compute
real-time imbalance factor of the MDS cluster to minimize the neg-
ative impacts of noises on the migration decision. Additionally, we
introduce an urgency parameter to quantify whether the imbal-
anced situations are safe or harmful for further reducing unneces-
sary migrations. Based on the model, Lunule determines exporter
and importer MDSs. Exporter MDSs have stressed metadata loads
and need to migrate some loads to other peers. Importer MDSs have
spare capacities to accommodate incoming loads and compute how
much data should be migrated between two different MDSs roles
by taking into account of the future load variance on MDSs.

Next, Lunule chooses which set of subtrees on each exporter
MDS to move to fulfill the above migration decisions. The sub-
tree selection also plays a key role in achieving good load bal-
ance, since invalid subtree migrations would not help smooth the

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

[] mDs1
[] mps2
[7] mps3
[vDs4
[] mpss

Root

Figure 1: An exemplified metadata distribution using sub-
tree partitioning.

skewed MDS cluster load. Therefore, it is critical to accurately pre-
dict the future visiting frequencies of different subtrees, assigned
as their migration indices, and choose the migration subtree candi-
dates with higher values. To cope with various workloads, we pro-
pose a unified formula to estimate the effects of the temporal and
spatial locality of past visiting activities of subtrees on their future
loads. For the temporal locality impacts, we consider measuring
the recurrence of metadata visits in the most recent time interval,
rather than relying on a simple accumulated popularity counter
used in the current CephFS. With regard to the spatial locality im-
pacts, neglected by the current solution, we take into account the
even distribution of metadata accesses of a target subtree, and also
consider the access correlations between sibling subtrees.

Finally, we incorporate all design choices into CephFS and build
Lunule by extending CephFS’s metadata service, with the follow-
ing major technical contributions:

e We conduct a comprehensive study of discovering the load im-
balanced phenomenon in the CephFS dynamic subtree partition-
ing mechanism and identifying the root causes of their ineffi-
ciencies for migrating loads in the MDS cluster.

e We invent a new metadata load balancer Lunule, which accu-
rately models both the MDS load distribution and the urgency
of imbalance, and dynamically adapts migration plans to differ-
ent workloads, in terms of the migration amount determination
and subtree selection.

e We conduct an in-depth evaluation of Lunule on five real-world
workloads and their mixture, and the results show that Lunule
achieves significantly better metadata performance than CephFS-
Vanilla and GreedySpill, e.g., up to 315.77% increases in the ag-
gregated metadata throughput, up to 57.14% reduction in the tail
job completion time, and up to 93.42% better load balance. With
data access enabled, Lunule introduces a 1.20-2.81x speedup of
the end-to-end file system throughput, compared to the two base-
lines. Finally, Lunule scales linearly on a cluster of 16 MDSs.

2 BACKGROUND AND MOTIVATION

2.1 Dynamic subtree partitioning

Overview: With the metadata/data decoupling design, the MDS
cluster is responsible for managing the file system namespace (a.k.a
hierarchical directory structure) and facilitating client access to file
data. To scale out the metadata performance, the MDS nodes adopt
dynamic subtree partitioning to split the namespace and distrib-
ute its portions across the MDS cluster. In more detail, the load
balancer on each MDS carves up the namespace into subtrees and
directory fragments (or short, dirfrags). Subtrees are collections of
nested directories and files, while dirfrags are partitions of a sin-
gle directory (whose size exceeds a particular size). These metadata

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

Workload [

Table 1: The description of five evaluated workloads from different fields.

Scenario

Meta_op ratio

Characteristics

CNN
image

pre-process

(CNN)

Machine
Learning

78.1%

This workload corresponds to the data preprocessing phase of the common CNN model
training tasks. According to the MXNet DNN system, each client needs to scan the
whole ImageNet dataset (ILSVRC2012 [34]) to convert the dataset’s hierarchical names-
pace into a metadata list for data shuffling across training epochs, and to create a large
sequential record file, consumed by the model training. ImageNet contains 1.28 million
images spanning across 1000 directories with an average size of 114.3 KB.

NLP
training
(NLP)

Machine
Learning

92.8%

In this workload, each client trains the THUTC model[38], a Chinese text classifier, by
consuming user-defined text classification corpus. The entire dataset consists of 836k
news files placed in 14 folders with an average size of 2.8 kilobytes.

Web
trace
replay
(Web)

Traditional

57.2%

We replay a web access trace (used in many other relevant works [49]), which was
gathered from a department web server (08/23/2013-03/18/2015) at the Florida State
University, and in the Apache access log format[7]. The whole trace contains 302K files
and includes 8.06 million HTTP requests, each client gets files in order.

Filebench
Zipfian
read
(Zipf)

Traditional

50.0%

We use Filebench [39] to design a workload for simulating access patterns with strong
temporal locality. In this workload, concurrent clients exclusively access to a non-
shared directory with 10000 files and randomly read files according to a Zipfian distri-
bution, i.e., 80% of requests are touching 20% of files.

MDtest
create
(MD)

Traditional

100.0%

We use MDtest [26], a widely used tool for evaluating the metadata performance of
POSIX-compliant file systems, to simulate a write-intensive workload. Each MDtest
instance operates on a non-shared empty directory and continues to create 100000
empty files into that directory. Note that a similar workload has been used in many
related metadata works [22, 30, 33].

SC ’21, November 14-19, 2021, St. Louis, MO, USA

MDS-1m8 MDS-288 MDS-32 MDS-488 MDS-5E8

o
o
\

Requests Ratio
S
N
T

CNN NLP Web Zipf MD

Figure 2: The metadata request distribution of the five-MDS
cluster w.r.t different workloads.

fragments will be migrated between MDSs when workloads vary
for achieving the right load balance.

Figure 1 illustrates an exemplified metadata distribution using
the dynamic subtree partitioning method. In this example, the hi-
erarchy tree of the target file system is distributed and managed
by five MDS servers, e.g., MDS-1 is in charge of the grey partition,
while the green part is taken care of by MDS-5. Metadata requests
may need to relay from one MDS to another when those requests
fall outside the contacted MDS’s subtree boundary. For instance,
accessing metadata residing in the green subtree on MDS-5 should
visit MDS-1 first.

Load balancing: The core feature of dynamic subtree partitioning
is to dynamically and intelligently re-delegate arbitrary subtrees to
different MDS servers based on their usage patterns and the cur-
rent cluster load. This load balancing procedure can be summarized
into four major steps running in a loop as follows. In the first phase,
MDS nodes are involved in collecting metadata load statistics to de-
termine if the MDS cluster experiences imbalance and whether the

[MDS-1 —— MDS-2 —— MDS-3 MDS-4 —— MDS-5 ——
i 15k |- QA=
_ 12k
_ E 9k .
_ o
— 6k -
3k [R
O 1 1 1 1
0 5 10 15 20 25 300 10 20 30 40 50 60 70
time(min) time(min)

(a) Filebench Zipfian

(b) CNN pre-porcess

Figure 3: The per-MDS throughput numbers (measured as
the number of metadata requests per second) for two selec-
tive workloads.

re-balanced should be triggered. If so, then the second step parti-
tions the cluster into exporters and importers, and figures out the
amount of its local load to be shipped from an exporter to one of
its paired importers. Following that, at the third step, each exporter
MDS selects a set of subtrees or dirfrags and places them into an
export task queue to fulfill the planned migration load, possibly per-
forming further fine-grained partitions when needed. Finally, the
actual migration of those partitions from exporters to importers is
performed via a standard two-phase commit protocol.

2.2 Load imbalance phenomenon

To reveal the importance of metadata load balance and the chal-
lenges of achieving it, we test CephFS deployed with a five-node
MDS cluster by running five representative metadata-heavy work-
loads, as listed in Table 1. The experimental setup can be found in

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Section 4.2. These workloads are from different fields ranging from
web server accesses to machine learning. Among these workloads,
their metadata operations account for 50.0-100.0% of the whole file
system operation spaces. More importantly, the metadata access
is crucial to the workload performance, e.g., the ratio of the time
spent in the metadata service over that of the entire data path al-
ready exceeds half for CNN and NLP workloads.

First, we measure the total number of requests handled by each
MDS from the beginning to the completion of each workload. As
presented in Figure 2, the metadata operation imbalanced phenom-
enon exists in all workloads but with different severity. For the
most balanced Filebench-Zipfian workload, the accumulated loads
on MDS-1 and MDS-2 are almost identical, and they together han-
dled 55.4% of all metadata accesses. Compared to the two busy
MDSs, the least loaded MDS-5 only processed 9.9% of metadata ac-
cesses. Among the five workloads, CNN exhibits the highest meta-
data load imbalance. For instance, its MDS-1 received 90.3% of meta-
data accesses, which is 22 to 220 times higher than the remaining
four MDSs. The NLP, Web, and MD workloads sit between the two
extreme cases.

In addition to understanding the imbalance in the portion of
metadata requests handled by each MDS for a time interval of tens
of minutes in Figure 2, we summarize in Figure 3 the instantaneous
metadata throughput of each MDS as time evolves, which tells how
the metadata load is migrated across the MDS cluster. In the inter-
est of space, we choose two workloads, namely, Zipfian and CNN.

First, for Filebench-Zipfian read, as shown in Figure 3(a), all
loads are concentrated on MDS-4 initially, while the other four
MDSs start to involve in the metadata request processing. Between
5 and 10 minutes, the load of MDS-4 sharply goes down to only
9% of its maximal capacity, while MDS-3 becomes almost over-
loaded. More interestingly, between 15 to 23 minutes, both MDS-4
and MDS-5 become idle, while the other three peers remain with
heavy loads. Following that, the load on MDS-3 suddenly disap-
pears, while MDS-4 is assigned workloads again, and its load re-
turns to a high level accordingly.

Second, compared to the Filebench-Zipfian workload, the CNN
one also experiences a significant metadata load imbalanced prob-
lem at an extreme. As shown in Figure 3(b), regardless of time mov-
ing, almost no workloads are balanced to MDSs except MDS-4. This
implies that only one MDS is actively working, and at the same
time the resources allocated for the other peers are wasted.

The above counter-intuitive results lead us to further explore
how the built-in CephFS metadata load balancing mechanism works
and why it is not suiting the two workloads in depth. To do so,
we plot the number of migrated inodes in Figure 4. Considering
the Filebench-Zipfian read workload (Figure 4(a)), between 0 and
5 minutes, it is as expected that the number of migrated inodes
keeps increasing (those inodes are migrated from MDS-4 to the
other four) so that the loads on the four importer MDSs quickly
go up. However, between 5 and 20 minutes, even though the loads
among five MDSs are ill-balanced (Figure 3(a)), no migration ac-
tivities are observed to react to such a situation, i.e., the number
of migrated inodes remains stable in Figure 4(a). In such a case,
the five MDSs’ load is 13530, 14567, 15625, 11610, and 2692, respec-
tively, and the average is 11604. The built-in balancer mistakenly
decides not to re-balance since it believes that the busiest MDS’s

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

1.4M T T T T 200.0k T T T T
é 12M g 0.0k
L 478 150. o T
2 sonok |- 2
5 OUU. o L |
% 6000k |- T 100.0k
50400.0k |- 12 s0.0k - -
= 200.0k [—H=
0.0 [R R 0.0 L
0 5 10 15 20 25 30 0 10 20 30 40 50 60

time(min) time(min)

(a) Filebench-Zipfian (b) CNN pre-process

Figure 4: The total number of migrated inodes

load is close to the average and ignores the load gap between the
heavy and light MDSs. Furthermore, migration even occurs when
the cluster load is moderate, but the MDS with the highest load
(small absolute value) is relatively far from the average. This ob-
servation reveals the first inefficiency: the built-in load balancing
mechanism fails to draw an accurate view of the cluster state to dis-
cover imbalanced situations timely and trigger the re-balance when
needed.

We also zoom in on the decisions on the amount of migrated
metadata generated in two periods of the Filebench-Zipfian read
workload experiment, namely, 0-5 minutes and 20-30 minutes. Dur-
ing the first interval, nearly 98% of inodes managed by MDS-4 is
moved to other MDSs, which results in a very light load at MDS-4
after this migration. In the second interval, MDS-4 acts as an im-
porter and receives 88% of inodes shipped from MDS-3. However,
when this migration completes, the loads on MDS-3 and MDS-4
are just swapped, and thus the migration does not make much
sense while incurring performance cost. We call this a ping-pong ef-
fect. This is because the heavy-loaded MDS would plan to migrate
metadata as much as possible to other peers, often exceeding the
maximal migration capacity during one re-balance time interval.
For instance, we observe there were 15 subtrees in the migration
task queue, but only 2 were successfully migrated. More impor-
tantly, when determining the amount of migrated inodes, the lag
effects of metadata migration have not been taken into considera-
tion, leading to over-migration. Upon the completion of migration,
the importer MDS sharply becomes hot while the exporter may be
completely idle. This result reveals the second inefficiency: the ag-
gressive migration decision would offset the benefits of load balancing
and artificially introduce new imbalanced situations.

Finally, we look into the migration activities taking place when
running the CNN pre-processing workload. In Figure 4(b), meta-
data are continuously migrated among MDSs as time evolves. Un-
fortunately, this eager migration trend contradicts the fact that the
load never moves from the busy MDS-4 to other idle ones. We ana-
lyze all migrated inodes and find that the vast majority of them are
never visited after their migration. This is a direct consequence of
the temporal locality-based balancing strategy, i.e., selecting hot-
spots as migration candidates. Nevertheless, this workload plus the
NLP one do not re-visit scanned files, and thus invalidate the built-
in load balancing mechanism’s assumption. We summarize this as
the third inefficiency: the one-size-fits-all candidate selection policy
does not consider the unique access patterns of various workloads.

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

4 N N)

Load Monitor Load Monitor Load Monitor

IF Model J J
Migration Initiator
Workload-aware 1 n
Migration Planner
Pattern Subtree 3
Analyzer Selector

[} [}
I Migrator @ 1 i '
| - | R — -

]
<& » <& »
<

_ MDS) MDS) L MDS)

2)=)

Workload-aware
Migration Planner

Workload-aware
Migration Planner

Figure 5: Lunule architecture. The dashed-line boxes are
existing components of the CephFS built-in load balancer,
while all the solid-line boxes are new components intro-
duced by Lunule.

2.3 Design considerations

In this paper, we plan to address the aforementioned inefficiencies
of existing metadata load balancing mechanism. To fulfill this goal,
we identify three critical factors determining the effectiveness and
efficiency of such a dynamic subtree partitioning mechanism as
follows. First, considering migration introduces background traf-
fics that may contend resources with foreground requests, one has
to accurately monitor the cluster load and determine when to trig-
ger the re-balance procedure. Second, the target balancer should
make the right decisions on how much load to be migrated for
reducing the migration frequencies and avoiding long-run migra-
tion jobs. Third, one has to appropriately find a set of directories
as the migration candidates for invalid migration avoidance. All
these principles motivate the design of Lunule as follows.

3 DESIGN OF LUNULE

Based on the problems identified, we propose a novel load bal-
ancing service for CephFS, Lunule, with the following two critical
missions. First, Lunule needs to accurately monitor and report the
imbalance intensity level of the whole MDS cluster as time goes.
Second, relying on the real-time collected statistics, Lunule should
be able to make suitable plans for various workloads to select a
reasonable amount of subtree partitions as candidates to migrate
among a carefully chosen set of MDSs.

3.1 Overview

Figure 5 gives an architecture view of Lunule, which augments the
existing metadata service with three key components. First, we de-
ploy a Load Monitor at each MDS to monitor the load pressure
and collect the number of metadata requests processed per second
by the corresponding MDS. Second, there is a Migration Initiator
sitting on one of the MDSs to make real-time decisions on when
the migration should take place and how much metadata should
be exchanged among metadata servers. The decisions made are de-
pendent on the IF values, which summarize the load dispersion
among MDSs, and are computed by applying stats collected from

SC ’21, November 14-19, 2021, St. Louis, MO, USA

all Load Monitor to the residing analytical model. Though the Mi-
gration Initiator is a centralized component, it will not be a perfor-
mance bottleneck since the migration procedure takes place in the
background, runs every time epoch (configurable, 10 seconds by
default), and consumes little resources such as CPU, memory, and
network bandwidth.

The third component is a Workload-aware Migration Planner,

which is also deployed at each MDS and functions independently.
It is further split into two pillars. First, there is a Pattern Analyzer,
which learns the I/O patterns of different workloads concentrating
on subtrees the corresponding MDS manages, and computes their
probability for being migrated by understanding the past work-
loads’ impacts and predicting their future metadata access vari-
ances. Second, when re-balance is triggered, on an exporter MDS,
its Subtree Selector chooses an appropriate set of subtrees for mi-
gration, which meets the amount computed by Migration Initiator
and suits for the future visits by the target workload.
Workflow. Lunule makes migration decisions in a fixed time in-
terval, called Epoch. In each epoch, every Load Monitor sends the
observed metadata throughput numbers to Migration Initiator ().
When the metadata cluster’s imbalance degree (indicated by the IF
value) exceeds a pre-defined threshold, Migration Initiator triggers
the load re-balance procedure, and generates the migration plans,
which assign the exporter and importer roles to MDSs and pair the
exporters’ demands and importers’ capacities. Then, the Workload-
aware Migration Planner on each exporter MDS will be notified
of its assigned migration tasks (®). Upon the arrival of migration
tasks, the Subtree Selector chooses a list of suitable subtrees par-
titions (@), which will then be fed into the existing Migrator and
relocated from MDSs with heavy loads to the light ones (@).

3.2 IF model driven re-balance

We develop an analytical model that takes the collected metadata
load stats as input and predicts the Imbalance Factor values of the
whole metadata cluster, denoted as IF, and representing the inten-
sity level of metadata load imbalance in each epoch. The key chal-
lenge and novelty of the model is to address the prediction inac-
curacy achieved by the used linear model, and to identify benign
imbalanced situations.

First, we abandon the linear metadata load modeling method
used in CephFS and Mantle’s case studies, relying on the simple
comparison against the average numbers of collected loads. This
is because the linear model likely results in skewed loads on some
MDSs even with heavy migration activities. Instead, we adopt the
Coefficient of Variation (CoV) [20, 46] as the basic building block
for our model. CoV is a statistical measure of the dispersion of data
points around the mean, and is commonly used to compare the data
dispersion between distinct series of data. In our context, given a
metadata cluster consisting of n servers, its load CoV value can be
computed as follows:

0 VU= D2/ (- 1) o

oV = — = s 1
) 2?21 li/ﬂ

where [; represents the current load of the ith MDS, i.e., the num-

ber of metadata requests served by that MDS per second (or short,

IOPS), while [and (1) are the average load across all MDSs and the

SC ’21, November 14-19, 2021, St. Louis, MO, USA

corresponding corrected sample standard deviation. We choose to
use IOPS as the major metric to estimate the degree of the busy-
ness of the target MDS cluster as it has a natural reflection of the
immediate load of each MDS.

However, it is not ideal to directly use Equation 1 to quantify
the imbalance level due to the following two issues. First, the ba-
sic equation has an unfixed range (0, vn], but we expect CoV to
change in a fixed range so that it is possible to compare it against
a pre-defined threshold, above which re-balance must be triggered.
To address this, we normalize CoV to its maximum value 4/n, which
corresponds to the most imbalanced situation, where only one MDS
is handling metadata requests and the others are idle.

The second problem is that not all imbalanced situations need
to perform the re-balance procedure, e.g., all MDSs are much under
their maximum throughput despite their load differences. To ad-
dress this, we additionally introduce an urgency parameter U to
describe if the current imbalance is harmful. The higher the value,
the more urgent the migration needs to be performed. We model U
as a logistic function, and U’s growth is limited by the load on the
most massive loaded MDS. Formally, U is computed as follows:

U=(1+e35)7Y u=lpa/C @)

In Equation 2, [qx denotes the maximal throughput delivered
among all MDSs in the corresponding epoch, while C is a pre-
defined parameter representing the maximal IOPS that a single
MDS theoretically could achieve!. Therefore, u means how the most
massive loaded MDS looks like, compared to the maximal MDS ca-
pacity. U’s curve is S-shaped and its smoothness is controlled by a
knob S with a range of (0, 1). In our evaluation, we set it to 0.2.

Finally, we combine the above two equations and the proposed
normalization together into the following equation, which is used
to compute the Imbalanced Factor of the whole metadata cluster.

CoV
\n

Migration Initiator applies the above model to compute the IF
value of the MDS cluster in each epoch and move on to the role
determination phase if the load imbalance degree is no longer tol-
erable, i.e., exceeding a pre-defined threshold. In this phase, as il-
lustrated in Algorithm 1, Role Decider takes the load stats gathered
from each MDS and computes a matrix E = {E;;}, where E;; cor-
responds to the number of loads that need to shipped from MDS-i
to MDS-j. As motivated in Section 2, the amount value plays a key
role in maximizing the benefits of migration and avoiding negative
impacts of over-migration. Compared to the existing solutions we
studied before, where they compute that value only from the per-
spectives of exporters, we take a more comprehensive approach
and introduce the following two novelties.

First, considering the overhead imposed by migration, we put
an upper limit on the exporting/importing demand (eld or ild) for
each exporter/importer MDS, and set it to its maximal capacity dur-
ing one epoch (line 8, 12). This capacity is a constant value and can
be computed as the maximal number of inodes one MDS can theo-
retically send out or receive. Second, for each importer, we need to

IF 3)

!We assume all MDSs are allocated the same physical resources and deliver the same
capacity. Handling heterogeneous settings is orthogonal to our solutions.

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

Algorithm 1: Role and migration amount determination

Input :A list of MDS load stats M= {m;i}(i=0,1,...,.n—-1);
Load threshold L; Capacity Cap;
Output:Export decision: An n X n matrix E (initially all zeros);
1 Importers « 0; Exporters « 0;
2 ld « Average(m;.cld);
3 foreach m; € M do
4 Ald — |m;.cld - Id|;
5 if (Ald/1d)? > L then
6 if m;.cld > Id then
Exporters.push(m;);
mj.eld — min(Cap, Ald);

9 else

10 if m;.fld — m;.cld < Ald then

1 Importers.push(m;);

12 L m;.ild < min(Cap, Ald — (m;.fld — m;.cld));

13 foreach i € Exporters do

14 foreach j € Importers do

15 if m;.eld > 0 && m;.ild > 0 then
16 Ejj « min(m;.eld, mj.ild) ;
17 m;.eld— = E;j;

18 mj.ild— = Eijo;

further take into account the impact of its future load change for
over-migration avoidance. To do so, we could apply a linear regres-
sion model against the collected historical load stats (cld) to predict
the possible load in the next epoch (fId). The importer role can be
assigned if the future load increase cannot fulfill the gap, and we
also compute its anticipated importing amount (lines 10-12). Third,
we consider the bidirectional demands from both exporter and im-
porter for generating the migration plan. For an exporter-importer
pair, we check if the exporter has the migration demand, and mean-
while the importer has capacity to accommodate such migration
(line 19). If so, we make the migration amount equal to the mini-
mum value of the migration demand and importing capacity (line
20). We then subtract the determined amount from the exporter’s
eld and importer’s ild (lines 21-22). Finally, this algorithm runs it-
eratively and finishes when all pairs are checked.

3.3 Workload-aware subtree selection

Once the migration decisions are made, the following step will
be choosing and moving an appropriate set of subtrees from ex-
porters to importers. The study in Section 2 reveals that perform-
ing subtree selection determines whether the target balance could
be achieved after the corresponding migration. The built-in migra-
tion policy in the widely adopted CephFS relies on the heat of file
metadata access measured at runtime. This “one-size-fits-all” so-
lution fails to deliver good performance for various scenarios, and
the reasons are two-fold. First, the heat-based solution neglects the
impact of spatial locality, which is more influential in AI and big
data analytic scenarios than temporal locality. Second, though the
heat of subtrees can be accumulated and decayed, it still fails to
model the significant variances of future loads.

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

In Lunule, we advance this migration candidate selection phase
to be workload-aware with the following innovations. First, in-
stead of maintaining heat counters for subtrees, we assign them
with a migration index (or short, mIndex), which corresponds to the
predicted future load on the target subtree over time. The migra-
tion index is larger, the probability for the corresponding subtree
to be migrated is higher. Migrating subtrees with higher migration
indices will likely ship superfluous workloads on a busy MDS to a
less loaded one, thus eliminating invalid but expensive migrations.

The computation of migration indices needs to take a joint con-
sideration of the impacts of both temporal locality and spatial lo-
cality exhibited in workloads. To do so, we introduce « and f as
the impact factors of temporal and spatial locality, respectively,
indicating the inclination of the recent workloads on subtrees to
either of the two access patterns. To estimate the values of the
two variables, on every MDS, we maintain the history metadata
access trace and break it into fixed-size short sequences (a.k.a cut-
ting windows). Periodically, we compute the recurrent visit ratio
of the most recent cutting windows, which is equal to the division
of the number of recurrently visited inodes and the total visited
inodes. This ratio is computed on per subtree basis and assigned to
the corresponding «. Unlike this, for , we keep track of the unvis-
ited inodes in each subtree, and assign to f the ratio of unvisited
inodes over the total number of metadata visits in the most recent
cutting windows.

In addition to the estimation of the temporal and spatial locality
inclination, we have to predict the number of future visits falling
into the two categories, which are summarized by I; and I;. We
calculate the value of I; by counting the number of metadata visits
concentrating on the corresponding subtree in the last N cutting
windows. Departing from the I; estimation, for a given subtree, we
will increase its Is by 1 if one of its unvisited inodes is accessed in
the current cutting window. Finally, we observe that there exist
strong access correlations between sibling subtrees when work-
loads exhibit spatial locality. Therefore, to respect to that obser-
vation, we will also select one of its sibling subtrees with a certain
probability, and increment I of the selected subtree by 1.

Finally, we provide a unified view of the temporal and spatial
locality impact exploration in the following formula:

mindex =a -1l + - I (4)

Subtree selection. Each MDS ranks the set of subtrees it manages
by their migration indices in descending order. For each migration
decision (exporter, importer, amount), the exporter MDS first scans
its ranked subtree list and tries to find a set of subtrees, whose ag-
gregated load number matches amount. For each encountered sub-
tree, we place it into the candidate bag if its migration index is equal
to or below amount, and then accordingly decrement amount. Oth-
erwise, we have to split the scanned subtree. There are two cases
that we should consider. First, if the metadata accesses are concen-
trating on that subtree itself, then we divide it into two subtrees,
with one’s migration index matching amount. Second, if some of
its descendant subtrees are hotspot, then we remove them from
their ancestor according to the left amount.

SC ’21, November 14-19, 2021, St. Louis, MO, USA

3.4 Discussions

Generality of Lunule. The main limitation of Lunule is that Lunule
is tightly coupled with CephFS and the dynamic subtree partitioning-
based metadata management. It is beneficial to extend Lunule to
work with other metadata services like IndexFS [33], which adopts
the hash-based metadata management, to enable a wider range of
distributed file systems. It is straightforward to apply the IF model
to these scenarios since assessing the load imbalance level of the
target MDS cluster is a general assumption. However, it is chal-
lenging to directly use the subtree selection method presented in
Section 3.3 to file systems that use different metadata organizations
than dynamic subtree partitioning. To solve this challenge, we en-
vision to design a generic framework that is similar to but more
powerful than Mantle [35], to support various migration candidate
selection policies. We will explore these opportunities in future.
Overhead. Lunule introduces extra resource consumption for ex-
changing and keeping tracking of load information of MDSs, as
well as computing the migration plans when needed. However, we
have measured and concluded that the extra overhead imposed on
the CPU, memory, and network usages is negligible, compared to
the original CephFS metadata load balancer. For instance, within
each epoch, all MDSs except the primary MDS where Migration
Initiator resides observe only a 0.94 KB increase in the out-bound
network usage for reporting the metadata load information to the
primary MDS. In a 16-MDS cluster, the primary MDS incurs only
14.1 KB extra in-bound network usage for receiving metadata stats
from other peers per epoch. In addition, when setting the epoch
time to 10 seconds, each MDS consumes only 1.37% more memory
space to maintain data structures to store load information. Finally,
there is no visible CPU utilization variance when enabling Lunule,
thanks to Lunule’s lightweight design.

4 EVALUATION

In this section, we first introduce the implementation of Lunule,
and then evaluate Lunule against state-of-the-art baselines with
several real-world workloads. Throughout all experiments, we fo-
cus on the following questions: (1) can Lunule eliminate the load
imbalanced situations reported by other baselines for a cluster of
MDSs? (2) What are the performance implications (throughput, la-
tency, and job completion time) of achieving good metadata load
balance enabled by Lunule? and (3) How does Lunule adapt to
changes in workloads and the cluster scale-out?

4.1 Implementation details

We put all components together into a novel metadata load bal-
ancer Lunule, which is implemented atop CephFS [43] (Ceph ver-
sion 12.2.5) and consists of 1800 lines of C++ code? We reuse the
original migration code but perform heavy changes to the MDS
and message modules of CephFS in the following parts:

Stats recording: Original popularity counter is removed entirely
and replaced by miIndex. Each inode has a boolean queue of n-
length, recording whether accessed in the last n epochs. When-
ever the metadata is accessed, its parent directory checks the queue
and modifies its I; or I value, following the rules described in Sec-
tion 3.3. To reduce the CPU overhead, the value of mIndex, a, and

2Code is available at https://github.com/mdbal-lunule/lunule

SC ’21, November 14-19, 2021, St. Louis, MO, USA Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

| CephFS-Vanilla GreedySpill Lunule-Light Lunule

g 1 VAl =i T
208 8
<
0.6 .
8 | - |
Eo04 .
8
= 02 . S~ —~
- 0 1 I 1 1 1 1 1 Y 1 1 1 g

0O 5 10 1520 2530 0 5 10 15 20 25 30 0 S5 10 15 20 25 30 0 5 10 15 20 25 30 O 5 10 15

time(min) time(min) time(min) time(min) time(min)
(a) CNN (b) NLP (¢) Zipfian (d) Web (&) MD

Figure 6: The imbalance factors of different workloads using different load balancer (lower is better). Note that the MD exper-
iments ended around 15 minutes, much shorter than the other four. This is because in the MD workloads, concurrent clients

continuously create new files and lead the MDSs to run out of memory beyond 15 minutes.

is updated only once per epoch rather than immediately after each
request handling.

Stats collection: To reduce the communication overhead in large-
scale conditions, we replace the original decentralized, N-to-N stats
collection module with a centralized, N-to-1 Load Monitor mod-
ule, as described in Section 3.1. We assign Migration Initiator to
the MDS with the lowest rank, e.g., MDS-0, in most cases. Other
MDSs first send their states to the initiator, and the latter commu-
nicates with all other servers after making a decision. To this end,
a new message type, Imbalance State message, which consists of
MDS rank ID and metadata requests rate, is introduced into the
CephFS to replace the original Heartbeat message.

Migration trigger and assignment: Corresponding to the above
part, the Migration Initiator calculates the imbalance factor after
cluster stats are collected and then decides whether to migrate.
Lunule brings in another message type, Migration Decision to dis-
patch decisions. Each decision message specifies the amount of
loads of one exporter that need to be migrated to the importers.
The Migration Initiator sends the assignments of exporting load to
the exporters, and the exporters then go ahead to the next step of
selecting subtrees upon they receive the decisions.

Subtree selection: Lunule uses a simple recursive algorithm to se-
lect the migration subtrees starting from the root directory via the
following three searching paths: (1) determines whether there is a
subtree with mIndex that is approximately equal to the migrating
amount, allowing a 10% difference; (2) searches the subtree whose
mlindex is larger than the migrate amount and splits it into two
partitions, where the resulting mIndex of one partition is close to
amount; (3) selects a minimal set of subtrees, the sum of whose
mindex values roughly meets the migration demand. This method
is similar to CephFS’s, and we plan to extend it in future work by
implementing a dynamic strategy of the subtree selection.

4.2 Experimental setup

Test platform. Our experiments run on a local cluster with 16
bare-metal servers, connected via a 56Gb/s IPoIB network. Each
server has 2 Intel(R) Xeon(R) E5-2650 V4 CPUs, 64 GB memory and
1.6TB NVMe SSD (Intel P4610), running CentOS version 7.3.10.0-
862.14.4.el17.x86_64. We use five physical servers dedicated for run-
ning MDS daemons. We use the other ten servers for deploying
a single cluster Monitor daemon for CephFS, OSD daemons for

hosting the data and client emulators for generating workloads,
respectively. Unless otherwise pointed out, we configure a clus-
ter of 5 MDS daemons and 6 OSD daemons, and evenly distribute
100 clients across the remaining non-MDS servers for generating
workloads. For the dynamism and scalability experiments, we in-
crease either the number of MDSs or clients for introducing more
computing resources or more workloads. With the increase in the
metadata stress, we also add more OSD daemons accordingly until
the maximum of 27 is reached.

Baselines and configurations. The CephFS built-in load balancer
is our natural baseline, denoted as “Vanilla”. We additionally run
the GreedySpill metadata load balancer (denoted as “GreedySpill”),
which is originally from GIGA+ [30] and implemented and inte-
grated into CephFS via the Mantle metadata framework [35]. The
GreedySpill balancer aggressively sheds metadata loads to all MDSs
by triggering migration when some MDSs do not have any load,
and moving half of the load from the loaded MDS to its idle neigh-
bor MDSs during migration. Its code is at [12].

To explore the benefits of various system components, we con-
figure Lunule with two variants, “Lunule-Light” and “Lunule”, with
the workload-ware migration optimization switched off/on.
Workloads and metrics. We run five workloads (listed in Ta-
ble 1), namely, CNN image pre-processing (CNN), NLP training
(NLP), Filebench Zipfian read (Zipf), Web trace replay (Web), and
MDtest create (MD). Among the five workloads, CNN, NLP, and
Web are real-world workloads, while Zipf and MD are benchmark
workloads. The MD workload is write-only, while the remaining
are read-only.

To make sure load re-balance can be triggered, we stress the
target system by launching 100 concurrent clients simultaneously,
with each client running its own workload. Alongside the exper-
iments with five individual workloads, we also test how the sys-
tem behaves when we mix all of them. For the mixture workload,
we split clients into four groups, each group of clients running
the same type of workload. Since our primary goal is to improve
the metadata performance, unless otherwise stated, in most exper-
iments, we skip the data path and only exercise the metadata re-
trieval. In addition, we enable the data access when testing the end-
to-end performance. To understand the system behaviors, we mea-
sure the following metrics, namely, imbalance factors, clustered
metadata throughput, and job completion time.

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

SC ’21, November 14-19, 2021, St. Louis, MO, USA

[_CephFS-Vanilla GreedySpill Lunule-Light Lunule |

60k

2

345k o

-

<

=30k [1 r

]

8

2 /——\/—'\/_,—\\

= 15k . 2

0 | | | | | | | | | | | | | |
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 O 5 10 15

time(min) time(min) time(min) time(min) time(min)
(a) CNN (b) NLP (c) Zipfian (d) Web (e) MD

Figure 7: The peak throughput of the MDS cluster with combinations of four workloads and four balancers (higher is better).

4.3 Single workload test

Imbalance elimination. We begin our analysis with the imbal-
ance reduction of our solution, compared with other baselines. Fig-
ure 6 summarizes the imbalanced factor (IF) values of the five-node
MDS cluster when running five workloads with four different load
balancers. The lower IF values indicate a better load balance. Among
all tested cases, GreedySpill performs the worst and its IF value is
close to 1, leading to the most imbalanced situation, where almost
all loads adhere to a single MDS. This is because the load estima-
tion model GreedySpill relies on takes into account little local in-
formation rather than global stats and is not accurate to trigger
necessary re-balances. Meanwhile, at each time when re-balance
is triggered, GreedySpill always plans to ship half of the hosting in-
odes from the busy MDS to its neighbors with light load, imposing
high migration cost.

CephFS-Vanilla significantly outperforms GreedySpill for the web
workload (Figure 6(d)), where it quickly balances the workload to
all other MDSs at the beginning and keeps the IF value constantly
low since then. This is because the web workload exhibits a high
temporal locality, which is well handled by the hotness-based mi-
gration policy adopted by the original load balancer. Compared to
the web workload, with regard to the Zipfian read (Figure 6(c)),
although CephFS-Vanilla still performs better than GreedySpill, its
IF values fluctuate and keep increasing after reaching the lowest
around 5 minutes. For the MD workload, CephFS-Vanilla achieves
a roughly constant IF value around 0.25, corresponding to an im-
balance situation, where at least one MDS has almost no load. The
trends observed by Zipfian and MD is a direct consequence of the
aggressive migration decisions, which does not consider the de-
mands from the importer side and the lag of the migration effects.

Contrary to the Zipfian read and web workloads, CephFS-Vanilla
achieves the same poor results as GreedySpill for the other two
workloads, namely, CNN (Figure 6(a)) and NLP training (Figure 6(b)).
These results are highly relevant to the unique characteristics of
the two workloads, i.e., they all are scanning-type workloads, and
each file is rarely re-accessed. Therefore, the hotness-based migra-
tion policy employed by CephFS-Vanilla fails to predict the future
visit pattern. All these results again prove the existence and sever-
ity of the load imbalance problems in the existing leading solutions,
which are consistent with the findings presented in Section 2.2.

Overall, the two Lunule variants achieve better load balance
than both CephFS-Vanilla and GreedySpill. Lunule performs the
best, and produces low IF values at most time, corresponding to

2100
'E 75 Ceph —t
o Lunule Hmm
S50 |- .
2 25

2 s | i
E .

S 0

O CNN NLP Zipf Web

Figure 8: The overall performance of 4 workloads with the
original load balancer and Lunule with data access enabled.

the best-balanced situation, where no significant load gaps exist be-
tween any pair of MDSs. Moreover, the average IF values of Lunule
are 17.9-90.4% lower than the ones achieved by CephFS-Vanilla and
GreedySpill for the five workloads, respectively. In more detail, for
the CNN and NLP workloads, the performance gains delivered by
Lunule-Light are limited, since the accurate IF model itself is not
sufficient for good load balance, and the two workloads are more
dependent on the migration policy. Unlike Lunule-Light, Lunule
obtains much lower IF values, because it is able to choose the right
set of subtree migration candidates based on the identified I/O pat-
terns. In this case, it always balances non-visited inodes to other
MDSs for parallelizing future visits. For Zipf, web and MD work-
loads, both Lunule variants deliver similar results. This is due to the
fact that these two workloads are more sensitive to the imbalance
factor model, and the default subtree selector Lunule-Light relies
on generated the same migration plans and made the same subtree
selection decisions, as Lunule does.

Metadata performance improvement. Next, we shift our fo-
cus to the implication of the reduction in imbalance factor on the
overall performance of the metadata service. Figure 7 presents the
throughput of handling metadata requests over time computed by
aggregating the IOPS stats reported by each single MDS, for the
combinations of five workloads and four load balancers. As ex-
pected, there exists a strong negative correlation between the re-
sults in Figures 6 and 7, i.e., the lower the IF values, the higher the
aggregated IOPS. Overall, because of the accurate sensing model
and the workload-aware migration policies, Lunule significantly
outperforms all other three baselines. For instance, as shown in Fig-
ure 7(a), with the CNN workload, Lunule introduces a 2.81X, 2.14X,
and 2.15X improvement, compared to CephFS-Vanilla, GreedySpill
and Lunule-Light, respectively. Similarly, for NLP, another work-
load exhibiting strong spatial locality, Lunule still outperforms the

SC ’21, November 14-19, 2021, St. Louis, MO, USA

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

[Vanilla — Lunule — | [MDS-1 — MDS-2 — MDS-3 MDS-4 — MDS-5 — | [Vanilla — Lunule — |
1 T T T T J 1 T T
5 _
§0.8 . 0.8
=06 1 Zosf
g 1 3
S04 . S04
< n ~
°
£02 - L | L L 02
| 0 50 100 150 2000 50 100 150 200
0 time(min) time(min) 0 '
0 50 100 150 200 0 50 100 150 200
time(min) (a) CephFS-Vanilla (b) Lunule time(min)

Figure 9: IF values,

workload. workload.

three baselines by 1.76X, 1.65%, and 1.78X. For the three more skewed
workloads, Zipf, web, and MD, for which the hotness-based load
balancing policy primarily targets, our solution still performs bet-
ter even though the improvement is not as great as we observe
in both CNN and NLP. For instance, with regard to MD, in Fig-
ure 7(e), Lunule and Lunule-Light achieve on average 17.0% and
7.6% higher throughput than the best-performed state-of-the-art
baseline CephFS-Vanilla, respectively. All results validate that our
design is suitable and reasonable when facing different types of
workloads, and capable of eliminating or alleviating the imbalanced
problems of the baselines.

End-to-end performance improvement. Next, we shift our at-
tention to investigating the impact of the good metadata load bal-
ance achieved by Lunule on the CephFS overall performance. To
do so, we extend the above experiments by enabling data access
and we measure the job completion time. We report the job com-
pletion time of four workloads except MD in Figure 8, since MDtest
is intensively used to solely test the metadata performance and we
follow the common practice to not enable data access [22, 33]. For
the CNN, NLP and Zipf workloads, Lunule outperforms CephFS-
Vanilla by 18.6-64.6% in the job completion time. This indicates
that the metadata access accounts for a high portion of the whole
workloads, and the metadata performance acceleration enabled by
Lunule contributes to the overall performance improvement. Un-
like these workloads, for the Web trace replaying, we observe lim-
ited end-to-end performance gains. The reason is two-fold. First,
as shown in Figure 7(d), the metadata load imbalanced intensity
level of Web is lowest among the four workloads. Second, enabling
data path would dilute the benefits of the metadata performance
improvement.

4.4 Mixed workload test

To emulate a more realistic setup, we evaluate Lunule with a mixed
workload, where we partition 100 clients into four groups and each
group of clients runs one of the four single workloads presented be-
fore. We omit the comparison related to Lunule-Light and GreedyS-
pill since the former system performs worse than Lunule while the
latter performs worst.

Imbalance elimination. Figure 9 shows the comparison of the
imbalance factors of the MDS cluster with Lunule, and CephFS-
Vanilla using the mixed workload. Similar to the single workload

mixed Figure 10: Throughput numbers, two systems, mixed

Figure 11: Completion time
CDF, mixed workload.

results, the built-in load balancer’s imbalance factor values fluctu-
ate significantly, with the maximum value up to approximately 0.6.
Although CephFS-Vanilla perfectly balances loads among MDS at
the time of 50 minutes, it takes 3.33%x longer time than Lunule for
doing so. This is because the inaccurate migration decision making
and ineffective migration target selection cause additional costs.
However, this best-balanced situation enabled by CephFS-Vanilla
does not last for an extended period. Instead, the loads among the
five MDSs become skewed again at 85 minutes. The variations with
large gaps continue to proceed. This is because the completion of
client jobs at different time likely results in new imbalance issues
and would lead CephFS-Vanilla to frequently trigger its ineffective
re-balance procedure. As opposed to CephFS-Vanilla, Lunule is able
to lead the MDS cluster to nearly reach the best-balanced state dur-
ing the whole testing period, i.e., the imbalanced factor value is
always close to zero. Again, this is because of the accurate model
and workload-aware migrations for making a reasonable trade-off
between balancing loads and preserving locality. We also observe
that the Lunule’s curve is much shorter than the one of CephFS-
Vanilla. This is because Lunule could leverage the most resources
for parallelizing metadata request processing, and the workloads
always run faster with Lunule than CephFS-Vanilla.

Overall performance improvement. To understand the impacts
of load balancing on the overall system performance, we take a
fine-grained view of the throughput numbers of each MDS in Fig-
ure 10 for both Lunule and CephFS-Vanilla. At a high level, the
higher imbalanced factor values correspond to skewed loads among
the deployed five MDSs. For instance, as shown in Fig.10(a), the
load is initially handled by MDS-1, and then shipped to other MDSs
between 0 and 150 minutes. During this period, MDS-4 sharply be-
comes overloaded, and the load on MDS-5 drops by 10.6%. At the
44'h minute, MDS-5 receives loads from MDS-2 and becomes busy
again. Meanwhile, the loads on MDS-3 and MDS-5 decline to zero
at 105 minute and IOPS increase to 7.5k/s and 4.3k/s at 152 minute,
respectively. This all indicates that the loads among MDSs man-
aged by CephFS-Vanilla are highly skewed, and the ping-pong ef-
fects are clearly observed. In contrast to CephFS-Vanilla, as shown
in Figure 10(b), the throughput numbers achieved by each MDS
are more balanced within Lunule. This balanced situation does not
sacrifice the overall performance, instead, improves evidently it.
For instance, during 0 and 50 minutes, Lunule delivers 48k IOPS

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

MDS-1 — MDS-2 — MDS-3 MDS-4 — MDS-5 — MDS-6 — |

15k '/ A'AdﬂMDS "4 7 Add Workload
o2k : B
-
s 9k
S
8 6k[
153 |
= 3k) :
0 /A | | | |
0 10 20 30 40 0 10 20 30 40
time(min) time(min)

(a) Dynamic MDS (b) Dynamic Workload

Figure 12: Performance of Lunule when handling dynamics.

as the clustered throughput, which is 1.6 higher than the one of
CephFS-Vanilla. Around 60 minutes, all MDSs are observing declin-
ing throughput numbers, since some workloads have finished.
Job completion time. Finally, we continue to investigate the im-
pact of load balancing on the job completion time under the mixed
workload. We plot the CDF curves of job completion time of all
100 clients in Figure 11. Among all clients, 50% could finish their
requests before 125 minutes, regardless of using Lunule or CephFS-
Vanilla. However, half of the fastest clients finish in 100 minutes
with Lunule, 13.1% shorter than the one achieved by CephFS-Vanilla.
Furthermore, Lunule makes nearly 80% of clients complete their
jobs before 130 minutes, while CephFS-Vanilla delivers 24.8% longer
completion time. Again, Lunule defeats CephFS-Vanilla in the tail
completion time reduction, e.g., the 99% job completion time of
Lunule is 154 minutes, 1.42X better than the baseline. This improve-
ment is a direct consequence of the higher IOPS and better load
balance results shown above.

4.5 Dynamic adaptation test

As the load balancing is crucial for adapting to changes in terms
of cluster expanding and denser workloads, here, we further stress
Lunule with these two types of changes, and the results are sum-
marized in Figure 12. The workload we use is Zipfian (We observe
similar trends with the other three workloads and omit them due
to space limit).

Expanding MDS cluster size. In Figure 12(a), there are 4 MDSs
initially and we add one more MDS at the time of 10 and 20 min-
utes, respectively. In the first phase, workloads are first concen-
trating on MDS-1 and then moving to the other 3 MDSs, resulting
in 41k IOPS as the aggregated throughput. When adding a new
MDS-5, thanks to the load balancing mechanism of Lunule, MDS-5
quickly absorbs migrated loads from other peers and the clustered
throughput increases to 51k IOPS. Similarly, when adding MDS-6,
Lunule timely transitions from a balanced state to another. In such
a state, MDS-3 and MDS-5’s throughput drops by 13.1% and 16.4%
but the clustered throughput is improved by 10.0%. This implies
that Lunule can easily leverage new spare resources for serving
metadata requests in parallel among the expanded cluster while
minimizing the migration’s negative impacts.

Increasing client workloads. In Figure 12(b), we partition the
experiment into four phases, wherein the first phase, we launch 10
clients to simulate workloads and then add 10 more clients when

SC ’21, November 14-19, 2021, St. Louis, MO, USA

each subsequent phase starts. First, at the beginning of each phase,
there is a throughput spike for MDS-1, because we always force
newly added clients to first contact this MDS. However, the extra
load introduced to MDS-1 is immediately balanced to other peers
so that we can observe stable sustained throughput for different
MDSs. From the first phase towards the last one, the throughput
number of each MDS constantly increases, since more workloads
are introduced and Lunule is able to coordinate all MDSs for evenly
partitioning loads. Moreover, in the first phase, the cluster load
is more imbalanced than others, but Lunule does not trigger re-
balance after the very first epochs. This is because our imbalance-
sensing model knows that this imbalanced situation is not harmful
since all MDSs are lightly loaded.

4.6 Other experiments

Scalability test. Figure 13(a) shows the scalability of the MDS clus-
ter by measuring the peak throughput w.r.t. the increasing number
of MDSs. For the MD workload, Lunule scales linearly on a clus-
ter of 16 MDSs (the largest MDS cluster that our local environment
can support), and delivers a throughput of more than 112k requests
per second. The slight deviation between Lunule’s curve and the
linear scaling curve (the dotted line) is because we run out of the
client machines’ capacity and the MDS cluster is slightly below the
saturation point. We expect Lunule to bring performance benefits
with larger scale deployments. In addition to MD, we also observe
similar scalability results for workloads like CNN.

Lunule vs. Hash-based solution. Figure 13(b) compares the per-
formance between Lunule and a hash-based solution, denoted by
“Dir-Hash”. To make a fair comparison, we simulate the hash-based
baseline within CephFS by leveraging its existing features [15]. We
first split the file system namespace into fine-grained subtrees and
then evenly distributing these subtrees to all MDSs by statically
pinning them to different MDSs according to their hash values.
Results with the Web workload highlight that Lunule outperforms
Dir-Hash and CephFS-Vanilla by up to 22.2%. Figure 14 shows the
shortcomings of Dir-Hash in detail: Metadata distributes evenly
across 5 MDSs as shown in Figure 14(a), while Figure 14(b) indi-
cates that this distribution not only leads to evident request im-
balance but also fails to balance load dynamically. In addition, Dir-
Hash imposes 98.0% higher number of forwards among MDSs than
both Lunule and CephFS-Vanilla. These forward metadata requests
are needed to traverse file path because Dir-Hash does not preserve
locality and introduces more metadata fragmentation.

5 RELATED WORKS

Decoupling metadata from data makes it easy to scale their per-
formance independently. However, this also introduces challenges
to efficiently manage metadata due to its hierarchical namespace
and more stringent requirements for scalability and fault tolerance.
Upon its emergence, GFS[16] and HDFS[18] assume a single server
(a.k.anamenode) to accommodate all metadata. Unfortunately, stud-
ies show that the real-world workloads easily overwhelm this sin-
gle metadata server setting, making it become a performance bot-
tleneck [25, 28].

More recent distributed file systems maintain a cluster of meta-
data servers for serving ever-increasing demands from clients to

SC ’21, November 14-19, 2021, St. Louis, MO, USA

160k |- ' ' 1 45k
= s
S 80k & .
E 3%
= <
go 40k “bdn
5 el 5k CephFS-Vanilla u
fcu 20k Linear '+ [< Lunule
Lunule Dir-Hash
1()1(T T 0 1 1 1
2 4 8 16 0 5 10 15 20 25 30
MDS time(min)

(a) Scalability under MD (b) Lunule vs. Hashing
Figure 13: (a) reports Lunule’s scalability under the MD
workload, while (b) shows the performance comparison be-
tween Lunule, CephFS-Vanilla and the hash-base solution
under the Web workload.

MDS-4 — MDS-5 — |
IOPS over time (Dir-Hash)
15k R

MDS-1 — MDS-2 — MDS-3
Inodes Distribution (Dir-Hash)

—
[}
=

3

Metadata req/s
(=) O
= =
éé
J |

o5}
%=
T
1

0 I I I I I
0 5 10 15 20 25 30

time(min)

MDS‘ 51/[0& gﬂ)& _Q/[DS‘ Q/IDS‘ 5

(a) Inodes Distribution (b) Metadata Requests Distribution
Figure 14: (a) shows the amount of inodes distribution of
Web workload by static hashing method, while (b) shows the
distribution of runtime metadata requests.

eliminate such bottleneck. There are two major solutions to place
metadata on multiple servers and regulate concurrent accesses to
them, namely, hash-based mapping and subtree partitioning. Lazy
Hybrid [9], PVFSv2 [19], SkyFS [47], CalvinFS [41], and Lustre [24]
adopt the first solution and determine the location of metadata by
hashing the corresponding file pathname or some other unique
identifiers. Although these solutions can evenly distribute meta-
data across MDSs, they do not preserve locality inherent in file
system workloads and fail to adapt dynamics in terms of the MDS
cluster expansion and hot-spots of activities in the hierarchical
namespace. To benefit a specific workload, where massive meta-
data creations are passed through a shared directory and the sizes
of directories are growing at unprecedented speeds, GIGA+ [30]
further improves the performance of hash-based metadata man-
agement via the metadata re-distribution and eventual consistency
adoption.

To preserve locality while not targeting specific workloads, Ursa
Minor [2], NFS [31], and Farsite [3] use subtree partitioning, which
assigns the portions of the file system namespace (a.k.a subtrees)
to different MDSs. However, due to the static metadata distribu-
tion, similar to the aforementioned hash-based mapping, it is chal-
lenging for these solutions to dynamically accommodate metadata

Yiduo Wang, Cheng Li, Xinyang Shao, Youxu Chen, Feng Yan, and Yinlong Xu

growth and cluster expansion, since the growth may not keep meta-
data evenly distributed across MDSs. Furthermore, the static sub-
tree partitioning cannot handle ever-changing client workloads,
particularly when load distribution is highly skewed. Handling these
dynamics would require manual redistribution of the hierarchical
namespace. To address this limitation, CephFS [45] and PanFS[10]
employ dynamic subtree partitioning, which improves the static
counterpart by periodically migrating subtrees among MDSs ac-
cording to the load intensity level of the whole MDS cluster. CephFS
is now widely used in both academia and industry [4, 11].

Mantle [35] generalizes the metadata load balance problem in
DFSs and enables to specify conditions to trigger re-balance. How-
ever, without a deep understanding of the significant factors that
impact the decisions, it is hard to write suitable policies even with
the Mantle framework. We conduct a comprehensive study on the
metadata load balance problem and identify the inefficiencies of
various load balancers including the one implemented within Man-
tle. We have shown that our solution significantly outperforms the
baselines by timely detecting and reacting to imbalance and mak-
ing judicious migration decisions, relying on an accurate model.

There is a large body of related work, which consider the orga-
nization and storage of metadata. For instance, IndexFS [33] stores
file system metadata using LevelDB, and LocoFS[22] further bridges
the performance gap between the hierarchical namespace and key-
value stores by decoupling metadata dependencies. With the rapid
development of CephFS technologies, it has already been incor-
porated many advanced features, including the ones used in In-
dexFS such as the dynamic metadata re-balancing and the key-
value based out-of-core metadata organization [4]. LocoFS’s pri-
mary focus is not on improve the metadata load balance. Thus,
the goals and design spaces of Lunule are complementary to these
work. Along the same lines, CalvinFS[41] and HopsFS [29] lever-
age relational and NewSQL database for metadata management,
respectively. Furthermore, some recent proposals utilize new hard-
ware technology such as RDMA and NVM to either improve the
fault tolerance or performance of metadata service [23, 48].

6 CONCLUSION

To address the existing metadata load balance mechanism’s inef-
ficiencies, we introduce Lunule, driven by an accurate load moni-
tor module for judging the imbalance degree and its urgency, and
enabling workload-aware migration plans. Experimental results
show that Lunule outperforms two state-of-the-art baselines with
better load balance, higher clustered metadata IOPS, shorter job
completion time, and greater end-to-end system performance.

ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers for their construc-
tive feedback and suggestions. This work was supported by Na-
tional Nature Science Foundation of China (61772486, 61832011,
and 61802358), National Science Foundation (CAREER-2048044, IIS-
1838024, and CCF-1756013), and USTC Research Funds of the Dou-
ble First-Class Initiative (YD2150002006). Cheng Li is the corre-
sponding author.

Lunule: An Agile and Judicious Metadata Load Balancer for CephFS

REFERENCES

(1]

[2

=

E

=

e
L=

[14

[15]

[16

[18]
[19

[20

(21

[22]

[23

[24]
[25]

[26

[27]

[28]

[29]

[30

[31

[32

Cristina L Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, and Roy H
Campbell. Metadata traces and workload models for evaluating big storage sys-
tems. In UCC, 2012.

Michael Abd-El-Malek, William V Courtright II, Chuck Cranor, Gregory R
Ganger, James Hendricks, Andrew J Klosterman, Michael P Mesnier, Manish
Prasad, Brandon Salmon, Raja R Sambasivan, et al. Ursa minor: Versatile cluster-
based storage. In FAST, 2005.

Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wat-
tenhofer. Farsite: Federated, available, and reliable storage for an incompletely
trusted environment. ACM SIGOPS Operating Systems Review, 2002.

Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gregory R.
Ganger, and George Amvrosiadis. File systems unfit as distributed storage back-
ends: Lessons from 10 years of ceph evolution. In SOSP, 2019.

Sadaf R Alam, Hussein N El-Harake, Kristopher Howard, Neil Stringfellow, and
Fabio Verzelloni. Parallel i/o and the metadata wall. In Proceedings of the sixth
workshop on Parallel Data Storage, 2011.

Ambedded Technology. Use cephfs and s3 for medical application. ambedded.
com.tw/en/use-case/use-case-03.html, 2020.

A.S.Foundation. Log files - apache http server version 2.4, 2020.

G Borges, S Crosby, and Lucien Boland. Cephfs: a new generation storage plat-
form for australian high energy physics. Journal of Physics: Conference Series,
898:062015, 10 2017.

Scott A Brandt, Ethan L Miller, Darrell DE Long, and Lan Xue. Efficient metadata
management in large distributed storage systems. In MSST, 2003.

Welch Brent, Unangst Marc, Abbasi Zainul, G Garth, M Brian, S Jason, Z Jim,
and Z Bin. Scalable performance of the panasas parallel file system. In FAST,
2008.

Ceph. Ceph user. https://ceph.io/users/.

] Ceph. Mantle. https://docs.ceph.com/docs/master/cephfs/mantle/.

Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. Spandb: A
fast, cost-effective Ism-tree based KV store on hybrid storage. In 19th USENIX
Conference on File and Storage Technologies (FAST 21), pages 17-32. USENIX As-
sociation, February 2021.

Y. Chen, C. Li, M. Lv, X. Shao, Y. Li, and Y. Xu. Explicit data correlations-directed
metadata prefetching method in distributed file systems. IEEE TPDS, 2019.
Ceph Community. New in Luminous: CephFS subtree pinning. https://ceph.io/
community/new-luminous-cephfs- subtree-pinning/.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In SOSP, 2003.

Red Hat. Ceph file system official site. https://ceph.io/ceph-storage/file-system/,
2021.

HDFS. Hadoop file system. http://hadoop.apache.org/.

Dean Hildebrand and Peter Honeyman. Exporting storage systems in a scalable
manner with pnfs. In MSST, 2005.

Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur Berger. Dynamic
load balancing without packet reordering. ACM SIGCOMM Computer Commu-
nication Review, 2007.

Andrew W Leung, Shankar Pasupathy, Garth R Goodson, and Ethan L Miller.
Measurement and analysis of large-scale network file system workloads. In
USENIX ATC, 2008.

Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. Locofs: A loosely-coupled
metadata service for distributed file systems. In SC, 2017.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an rdma-enabled
distributed persistent memory file system. In USENIX ATC, 2017.

Lustre. Lustre file system. http://www.lustre.org/.

Kirk McKusick and Sean Quinlan. Gfs: Evolution on fast-forward. Commun.
ACM, 2010.

Christopher J. Morrone. Mdtest. https://github.com/MDTEST-LANL/mdtest,
2003.

Theofilos Mouratidis. Ceph MDS balancing issues. https://www.spinics.net/
lists/ceph-devel/msg44650.html.

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
and Sanjeev Kumar. f4: Facebook’s warm BLOB storage system. In OSDI, 2014.
Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohss-
chmiedt, and Mikael Ronstrém. Hopsfs: Scaling hierarchical file system meta-
data using newsql databases. In FAST, 2017.

Swapnil Patil and Garth Gibson. Scale and concurrency of giga+: File system
directories with millions of files. In Proceedings of the 9th USENIX Conference on
File and Stroage Technologies, FAST 11, page 13, USA, 2011. USENIX Association.
Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and
Dave Hitz. Nfs version 3: Design and implementation. In USENIX Summer, 1994.
Red Hat. The shared file systems service with cephfs through nfs.
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/
16.0/html/deploying_the_shared_file_systems_service_with_cephfs_through_

SC ’21, November 14-19, 2021, St. Louis, MO, USA

nfs/assembly_cephfs-intro, 2020.

Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. Indexfs: Scaling file
system metadata performance with stateless caching and bulk insertion. In SC,
2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
Michael A. Sevilla, Noah Watkins, Carlos Maltzahn, Ike Nassi, Scott A. Brandt,
Sage A. Weil, Greg Farnum, and Sam Fineberg. Mantle: A programmable meta-
data load balancer for the ceph file system. In SC, 2015.

Softlron. ~ Ceph comes of age with the explosion of ai and ml data.
https://s3.amazonaws.com/cdn-media.softiron.com/doc/SCW+White+Paper_
Ceph+comes-+of+age.pdf, 2019.

StackHPC Ltd. Stackhpc at the cern ceph day 2019. https://www.stackhpc.com/
cern-ceph.html, 2019.

Maosong Sun, Jingyang Li, Zhipeng Guo, Z Yu, Y Zheng, X Si, and Z Liu. Thuctc:
an efficient chinese text classifier. GitHub Repository, 2016.

V. Tarasov. Filebench. https://github.com/filebench/filebench, 2018.

Telfer, Stig and Garbutt, John. Ad-hoc filesystems for dynamic science work-
loads. https://indico.cern.ch/event/765214/contributions/3517141/attachments/
1908894/3153554/2019-09- 17- TelferGarbutt- Ad-hoc- Filesystems.pdf, 2019.
Alexander Thomson and Daniel J Abadi. Calvinfs: Consistent WAN replication
and scalable metadata management for distributed file systems. In FAST, 2015.
Li Wang, Yiming Zhang, Jiawei Xu, and Guangtao Xue. MAPX: Controlled data
migration in the expansion of decentralized object-based storage systems. In
18th USENIX Conference on File and Storage Technologies (FAST 20), pages 1-11,
Santa Clara, CA, February 2020. USENIX Association.

Sage A Weil. Ceph: reliable, scalable, and high-performance distributed storage.
PhD thesis, University of California, Santa Cruz, 2007.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, page 307-320, USA, 2006. USENIX Association.

Sage A Weil, Kristal T Pollack, Scott A Brandt, and Ethan L Miller. Dynamic
metadata management for petabyte-scale file systems. In SC, 2004.

Wikipedia contributors. Coefficient of variation. https://en.wikipedia.org/w/
index.php?title=Coefficient_of variation&oldid=981477185, 2020.

Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. Adaptive and scalable metadata

management to support a trillion files. In SC, 2009.

Jian Yang, Joseph Izraelevitz, and Steven Swanson. Orion: A distributed file

system for non-volatile main memory and rdma-capable networks. In FAST,
2019.

Shuanglong Zhang, Helen Catanese, and Andy An-I Wang. The composite-file
file system: Decoupling the one-to-one mapping of files and metadata for better
performance. In FAST, 2016.

