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CONVEXITY OF A CERTAIN OPERATOR TRACE FUNCTIONAL

ERIC EVERT!, SCOTT MCCULLOUGH, TEA STREKELJ, AND ANNA VERSHYNINA?

ABSTRACT. In this article the operator trace function A, s(A)[K, M] := tr(K*A"MA"K)® is in-
troduced and its convexity and concavity properties are investigated. This function has a direct
connection to several well-studied operator trace functions that appear in quantum information
theory, in particular when studying data processing inequalities of various relative entropies. In the
paper the interplay between A, s and the well-known operator functions I'p s and ¥y, 4 s is used to
study the stability of their convexity (concavity) properties. This interplay may be used to ensure
that A, is convex (concave) in certain parameter ranges when M = I or K = I. However, our
main result shows that convexity (concavity) is surprisingly lost when perturbing those matrices
even a little. To complement the main theorem, the convexity (concavity) domain of A itself is
examined. The final result states that A, is never concave and it is convex if and only if r = 1
and s > 1/2.

1. INTRODUCTION

We consider convexity of several operator trace functions motivated by problems in quantum
information theory. In particular, we consider the data processing inequality (or monotonicity)
for several relative entropies. The inequality effectively states that quantum states become harder
to distinguish after they pass through a noisy quantum channel [6, 17]. It has been shown that
this inequality for some relative entropies is equivalent to convexity of certain trace functions.
Additionally, the convexity of these trace functions give rise to the conditions on states that ensure
equality in the data processing inequality.

1.1. Umegaki relative entropy. Let H be a finite-dimensional Hilbert space and let p and o be
two density matrices (states) on H. The Umegaki relative entropy is defined as

S(pllo) := tr(plogp — plogo) ,

when the null space of ¢ is contained in null space of p, and +oo otherwise. This quantity was
defined in 1962 [27] as a direct generalization of a classical relative entropy known as the Kullback-
Leibler divergence [5]. Umegaki relative entropy is sometimes referred to as quantum relative
entropy or just relative entropy.
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In 1975 Lindblad [22], building on the work of Lieb and Riskai [20], proved that the Umegaki
relative entropy satisfies the data processing inequality for quantum channels. Let N be a com-
pletely positive trace preserving map, that is, a quantum channel, mapping states between two
Hilbert spaces. Then the following holds

(1) SWN(p)IN(0)) < S(p,0) -

This inequality is commonly referred by two names: data processing inequality (DPI) and mono-
tonicity inequality.

In 1986-88, Petz [25, 26] classified all states and quantum channels that saturate the data
processing inequality. Here we say the states p and o saturate the data processing inequality if
equality holds in the DPI (1) for these states. Petz showed that for a given quantum channel N,
two quantum states p and o saturate the DPI (1) if and only if both states can be recovered by a
map R, known as a Petz recovery map. The map R has the following explicit form

2) Ry (@) = p 2N (N (o) 2w N (p)72) p2.

It is trivial that R, »- always recovers p perfectly; that is, R, x/(N(p)) = p. However, the recovery
of o via R, ar(0) = o cannot be generally expected. In other words, Petz showed that

Ron(o) =0 <= SN(p)IN(o)) = S(p,0) -
One additional point to note is that the recovery condition is symmetric in p and o; that is,

Ron (o) =0 if and only if Ron(p) = p.

1.2. Rényi relative entropy. For o € (—00,1) U (1,400), the quantum Rényi relative entropy
(RRE), denoted Sy, is a generalization of a classical Rényi divergence. For states p and o, it is
defined by

Sa(pllo) = ')

logt
p— og r(pa

when the null space of ¢ is contained in null space of p, and +oc otherwise. In the limit a — 1,
the Rényi relative entropy approaches the Umegaki relative entropy.

Rényi entropy relative satisfies the data processing inequality
SaN(p)IIN(0)) < Salp, o)

for a € [0,1) U (1,2]. This inequality was was established for a larger class of quantum relative
entropies, called quantum f-divergences, in [15, 24]. Saturation of the data processing inequality
for the Rényi relative entropy is again equivalent to the ability to recover both states after they pass
through a quantum channel, and the recovery map is the same one that appears in equation (2)[16].
Some other equivalent conditions on pairs of states that saturate the DPI for Rényi relative entropy
were given by Hiai et al in the same reference [16].
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1.3. Sandwiched Rényi relative entropy. Another way to generalize the classical Rényi diver-
gence is to take into account the noncommutativity of p and . In 2013 the following quantity was
proposed independently by Wilde et al [28] and Miiller-Lennert et al [23]: for a € (0,1) U (1, +00),
the sandwiched Rényi relative entropy (sandwiched RRE) is defined as

~ 1 l1-a 1—a e
Sa(pllo) == ] log (tr [0 % po 2o ] ) ,

when the null space of ¢ is contained in null space of p, and +oc otherwise. In the limit a — 1,

the sandwiched Rényi relative entropy approaches the Umegaki relative entropy.

The quantity inside the logarithm does not belong to the class of f-divergences, so previous
results on the DPI and its saturation cannot be applied to the sandwiched RRE. Several papers
in 2013 provided proofs for the data processing inequality for the sandwiched RRE: for a € (1, 2]
in the papers Wilde et al [28] and Miiller-Lennert et al [23]; for o € (1,00) in [3] by Beigi; and
independently of Beigi, Frank and Lieb proved the inequality for a € [1/2,1) U (1,00) in [12]. In
[12] it was shown that the data processing inequality follows from joint convexity or concavity of
the following trace map:

(3) (p,g)}_>tr<U(Lﬂn/@a)p0(rﬂn/@a)>a ‘

Frank and Lieb showed that the map in equation (3) is jointly concave for 1/2 < a < 1 and jointly
convex for o > 1, by using a variational method to separate the arguments and then showing that
convexity holds in each of p and ¢ independently. This proof relied on the following result. For a
fixed operator K, the map on positive operators

(4) A tr(K*APK)Y/P

is concave for —1 < p <1, p # 0. The concavity of the map in equation (4) was shown by Epstein
[11] for 0 < p <1 (an alternative proof is given in [9] by Carlen-Lieb) and by Frank and Lieb [12]
for -1 <p<0.

As a generalization of the map (4), given an operator K and p,s € R, define, for positive
operators A,

(5) [y s(A)[K] = tr(K*APK)® .
We note that when considering properties of I', ; that hold for all K, it is sufficient to consider

s> 0, since T’ s(A)[K] =T, _s(A)[(K*)~!] and invertible operators are dense.

Theorem 1.1. Let s > 0 and K be any operator.

(a) If0<p<1and0<s<1/p, then T'ps(A)[K] is concave in A [9, 11, 13].
(b) If -1 <p <0 and s > 0, then T'p, s(A)[K] is convex in A [13].
(¢c) If1 <p<2ands>1/p, then T, s(A)[K] is convex in A [9].

These parameter conditions are also necessary in the sense described by Theorem 1.2 immedi-
ately below. For positive integers n, let M,, and P,, denote the set of n x n matrices and positive
definite n x n matrices with complex entries respectively.
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Theorem 1.2 (Hiai [13]). Let s > 0 and p # 0.

(a) If, for each invertible K € My, the mapping I') s(A)[K], as a function on P, is concave, then
0<p<land0<s<1/p.

(b) If, for each invertible K € My, the mapping I'y s, as a function on Py, is convez, then either
—1<p<O0ands>0o0r1<p<2ands>1/p.

After the data processing inequality for sandwiched RRE was proved for o > 1/2, the condition
for equality was found by Leditzky et al [18] in 2017 for the same parameter range. It was shown
that there is an equality in the data processing inequality if and only if

loa, l-a l-a,, ;| l-a 1-a 1-a 1—ao-l 1—a
©) o @R T A (Vo) F [N F NN R M)
1.4. a—z Rényi relative entropy. A more general class of Rényi relative entropy that plays into
the noncommutativity of quantum states was introduced by Audenaert and Datta [2]. For o # 1
and z > 0, the two-parameter family of a — z Rényi relative entropy ( @ — 2z RRE) is defined as

(7) Sas(pllo) = —log [tr (o070/2 2 2 0=0r2) ]

For commuting p and o, the @ — 2z RRE reduces to the classical Rényi divergence for all values of
z. Moreover, for z =1, the @ — z RRE becomes the quantum RRE, namely, S, 1(p||o) = Sa(p||o).
And for a = z, the a — z RRE reduces to the sandwiched RRE, S,o(pllo) = Sa(pllo). For a
comprehensive discussion of various particular cases of the a — z RRE see [2].

In [29] the precise parameter range for which the o — z RRE satisfies the data processing
inequality was determined, resolving a conjecture from [2]. Carlen et al [8] showed that the data
processing inequality is equivalent to the joint convexity/concavity property of the trace functional
appearing in the definition (8) below. Consider the following trace functional defined on P,, x P,
for a fixed operator K, by

(8) U, 0s(A, B)[K] = tr (Bq/2K*A”KBq/2>S, p¢,sER.

Carlen et al [8] showed that o — z RRE is monotone under quantum channels if and only if

Vp,.4,5(A, B)[I] is jointly concave for o < 1 and jointly convex for a@ > 1, where p = <, ¢ = 1_70‘,
1

and s = et

The study of the map V¥, , s started with the seminal Lieb Concavity Theorem [19], long before
it was connected to the monotonicity of & — z RRE. Lieb’s Concavity Theorem states that for fixed
K and 0 < p,q,< 1, p+¢q <1 the function ¥, , (A, B)[K] is jointly convex in A and B. Following
this work, a series of results studying the joint convexity of ¥, ., using different methods was
produced [1, 4, 7, 9, 11, 12, 13, 14, 29]. Finally Zhang [29] completed the classification of the
parameter range where ¥, . ¢ is jointly convex/concave. As with the map Iy 4, due to symmetry,

it suffices to consider s > 0, since
Wpqs(A, B)K] = W —q—s(A, B)[(K)7'] .
For simplicity one may also consider ¢ < p, since ¥, , s(A, B)[K] = U, , (B, A)[K*].
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Theorem 1.3 (Zhang [29]). Given an invertible operator K, the function ¥y, 4 5(-,-)[K] is

(a) jointly concave if 0 <g<p<1land0<s< zﬁq"
(b) jointly convezr if —1 < q<p <0 and s >0;
. . 1
(c) jointly convezr if —1 < ¢<0,1<p<2 (p,q) #(1,—1) and s > e
The necessity of these parameter conditions was shown even before Theorem 1.3 was completed.

Theorem 1.4 (Hiai [13], Carlen, Frank, Lieb [8]). Let ¢ < p and s > 0 be given. Suppose that
(p,q) # (0,0) and K = I.

(a) If W, 4 s is jointly concave on C?, then0<g<p<land0<s< I%Q'
(b) If U, . s is jointly convex on C*, then either —1 < ¢ < p <0 ands > 0 or -1 < q <0,
1
1<p<2 (pq) #(1,-1) and s = = .
Theorem 1.3 together with the equivalence proved in [8] immediately implies that « — z RRE

is monotone under quantum channels if and only if one of the following holds:

(a) 0 <a<1andz>max{a,1—a}l;
(b)) 1<a<2and a/2 <z <
(¢c)2<a<xwanda—-1<z<a.

Unlike with Umegaki, Rényi and sandwiched relative entropies, there is no known algebraic
condition certifying equality in the data processing inequality for the o — z RRE. However, different
necessary and sufficient conditions have been found.

Chehade [10] showed that for 1 < o < 2 and /2 < z < a, if there is equality in the data
processing inequality for a — z RRE and the following trace function defined on positive operators

Ap(A)[K, M] := tr [{K*Ap/zMAp/gK}l/p}

a—z
«

satisfy the following condition

is concave for p = € (0,1) and any positive definite M and any invertible K, then the states

11—z l-a o 1l-«a z—1 1—2z « 1—2z 11— a 1—a z—1 1—2z
g 2z (O‘ 2z pz g 2z > g 2z — N N(O‘) 2z |:N(O‘) 2z N(p) z N(O‘) 2z :| N(O‘) 2z .
Below, as a consequence of Theorem 3.1, we show that A, is never concave. For emphasis, the

assumptions used in [10] imply 1 < z < a < 2z, and hence 0 < p < 1.

To finish the picture, necessary and sufficient conditions for equality in the DPI for a — z RRE
were found by Zhang [30]. Namely,

1-a l-a a l-a\o1 1.4 1-a 1-a a 1—a]o—1 1-a
o= (0 % pzo 2 > o= =N* <N(U)W [N(O’) = N(p)=N(o) == N(o) = > .

Moreover, different conditions were found in [10, 30] that imply the equality in the DPI.
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1.5. Operator convexity. The following trace function was considered by Carlen et al [7]
©) Qpqr(A,B,C)=tr A2 BP A2

These authors showed that if, for fixed p,q,r # 0, the function €, ,, is jointly convex, then the
following operator function

(10) (A, B) — AY/2BPAY?
is operator convex.

It has long been known [21] that the function in (10) is jointly convex for ¢ = 2 and —1 < p < 0.
As it turns out [7], this is the only parameter range where this function is jointly operator convex,
and the function is never jointly operator concave. It follows that €2, , , is never concave, and it is
convex if and only if ¢ = 2, p,r < 0 and —1 < p+ r < 0. The later case was proved previously in
[19].

1.6. Main results. To investigate the stability of convexity (concavity) of the trace functions I'y
and U, ., as well as the convexity (concavity) of A,, we introduce the following trace function
defined on positive operators

Ars(A)K, M] = tr [{K*A"MA'K}®], 1,5 €R.

Crucial in establishing our main results is the interplay between A, ; and the other trace functions
introduced so far. Namely,

(11) Ars(A)[K, I] = Top s (A)[K],

(12) Ars(A, M) = Wy 9, 5(M, A)[1],
Ar 1 (A)K, M) = Q1 9,1(A, M, KK™),
A%%(A)[K,M] = A, (A)[K, M].

Our main result is Theorem 2.2, stating that although for fixed K, A, s(-)[K, I] = Ty 5(-)[K]
is convex (concave) in some parameter range by Theorem 1.1, the convexity (concavity) is lost
for specific choices of M in any small neighbourhood of the identity. Corollary 2.4 then gives the
analog of Theorem 2.2 for the function W. For fixed M, the function A, s(-)[1, M| = Uy 2, s(M, -)[1]
is convex (concave) in some parameter range by Theorem 1.3, but in any small neighbourhood of
the identity there is some fixed K such that A, s(-)[K, M] fails to be convex (concave).

As a consequence of (11) and Theorem 2.2, we obtain the convexity (concavity) range of the
function A itself. The latter is explained in Section 3, where we show that the trace function A, ,
is convex only when r =1 and s > 1/2, and that it is never concave.

Independently of this work, Zhang [31] considered the same function A, 5(A)[K, M| (under the
notation ¥, ;(A)) and showed that:

(1) for any r # 0 and s > 1, it is not concave in A for all K and M;
(2) for any 1/2 <r < 1 and 1/2p < s < 1, the function A, s is not convex in A.
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We complement these results and give the complete parameter range for which A, is convex
(concave).

2. STABILITY OF CONVEXITY OF THE TRACE FUNCTIONS I ¢ AND ¥,

Let M,, denote the set of complex n x n matrices, P, C M, denote the subset of positive
definite matrices, and Z,, C M,, denote the subset of invertible matrices.

For r,s € R, matrices A, M € P,, and K € Z,,, the function A is defined as follows
(13) A s(A) K, M) :=tr [ {K*A"MA"K}°].
Remark 2.1. Note that, due to the symmetry
Ars(A)K, M) = A _(A)[(K*)~H, M7,

it is sufficient to consider the case s > 0 when studying convezity (concavity) properties of Ay .

2.1. Stability of convexity of the trace function I', ;. As we noted in (11), fixing M = I in
the function A results in the function I'; that is,

A s(A)[K, I =Ty s(A)[K] .

Therefore, when M = I, Theorem 1.1 provides large parameters range where A is convex and
concave. Our main result, Theorem 2.2, asserts that convexity and concavity are not stable as
functions of M. In other words, there are arbitrarily small perturbations of M away from the
identity that result in loss of concavity (or convexity) of A. In the sequel we let | T|| denote the
operator norm of a matrix 7.

Theorem 2.2. For eachr # 0,1 and s > 0 and each € > 0, there exists an invertible matriz K € T,
and a positive definite matriz M € Py satisfying ||M — I|| < € such that A, (-)[K, M] is neither
concave nor convex. In fact, K and M can be chosen as

ko (VO ot
0 k t 1
for suitably small positive k and any choice of |t| < e.

Corollary 2.3. For any e > 0 there exists a positive definite matrix M € Py satisfying |M —1I|| < e
such that

(a) if 0 <r <1/2 and 0 < s < 5, then there is an invertible K € Iy, for which A, s(-)[K, M] is
not concave;

(b) if r <0 and s > 0, then there is an invertible K € Iy such that A, s(-)[K, M] is not convex;

(c) if1/2 <r <1 and s > o, then there is an invertible K € I, for which A, s(-)[K, M] is not
convex.
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In the upcoming proof we make use of the convergent power series expansion (generalized
binomial theorem)

= (r
I T _ k
I+x)=> <k>X ,
k=0
valid for || X|| <1 and r € R.

Proof of Theorem 2.2. Fix r,s,t € R with 0 # 7 # 1 and s > 0 and |t| < €. Define, for 0 < b < %,

o025 ).

In particular, g, is continuous and

g (0) =r 427" 2
Computing the second derivative of g,.(0) as a function of r shows that this function is strictly
convex, hence can have at most two zeros. They occur at r = 0 and r» = 1. Moreover, g¢,(0) is
negative for r € (0,1) and positive for » < 0 and r > 1. Thus, for our fixed r # 0, 1, there exists a
b > 0 sufficiently close to 0 such that g,(b) # 0. Fix such a b.

Let

() e Y N

In particular, ||M — I|| < e. We discuss the adaptation to an invertible K at the end of the proof.
For 0 < |z| < 1, let
10 01
1= A1(b) (0 b)’ 2 = As(z) +l‘<1 0)7

and

'_A1+A2_ 1/(0 T . 1
A= 5 —I—|—2<x b—1>_'I+2T.

Consider the function Z, ; defined by
E(z) = ET,S(ﬂj)[ta b] = AT,S(AI)[K, M] + AT,S(A2)[K7 M] — 2AT,S(A) (K, M]

for |z| < % Note that Z(0) = 0. We will show that there exist x4 arbitrary close to 0 such that
+=(z4) > 0, thus proving A, s is neither convex nor concave for all M in a neighbourhood of the
identity.

To prove the claim above, let ¢ = b — 1 and observe that, for k > 2,

"= (0 0) e <(1) é) +a*Ty(x) = Li(z) + 2°Ti ().

0 ck

for some (matrix) Tj(z) that is polynomial in z. Further, using |z| < 1 (and |c| < 1),

k k
— — k m —m — 3
2 HT] < 2 3 (el et < kol 4 1) < (3))
m=2
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Thus, letting

it follows that

k=0
< /r\ 0 0 T [T\ 0
:I+;<k>2 M(o 1>+Ek§<k> M(l 0>+$2F($’6)
_ s \ W
fagy -1 (4 )* Fle)

with G(z) also uniformly bounded for |z| <  because b < 3 implies ﬁ < 2. Hence, letting
T
az%[(l—l—%) —1},Wehave

tr((K*A"MA"K)*) = (1 + 2zta + 2%[a® + f(2)])°,

where f(x) is uniformly bounded. Thus,

tr(K*ATMATK)®) = 1 + 2sb”it1 [(1 + b_?l) - 1} +0(z),

o) — .

xT

where lim,_,q

A similar argument with

gives

and thus

tr((K*ASMASK)®) = 1 4 2stre + Oa(x),
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O2(x)

xT

S(x) = tr((K* ATMATK)®) + tr((K* A MALK)®) — 2 tr((K* A" MATK)*

where lim,_,q = 0. Hence,

—1 4+ (1 + 2stra) — 2 <1+2sbft1 (1+ b; 1>T— 1}) +0(x)

= 23xt[7‘— bil <<1+ b; 1>T - 1)] + O(z)
= 2stzg,(b) + O(x),

O(x)

x
concludes the proof with the present choice of (not so invertible) K.

It remains to show that K can be taken to be invertible. Let A, A1, Ao and M be as defined

above and for k > 0 set
K =K(k)= 1o .
0 %k

é(ka) = Ar,s(Al)[K(k)vM] + Ar,s(A2)[K(k)7M] - 2AT,S(A)[K(k)7M] :

Since s > 0, one has that Z(x, k) is continuous in k and that

where O(x) is a function satisfying lim,_,q

= 0. Hence choosing = near 0 with opposite signs

Define

lim =(z, k) = = —=(x) .
lim (z,k) =E(z,0) = E(x)

Thus, for sufficiently small choices of k, the sign of E(az, k) may be determined by choosing = as
above and then k > 0 sufficiently small. [

2.2. Stability of convexity of the trace function ¥, , .. In this subsection we show that the
stability of convexity (and concavity) of I', s and ¥, , s are closely related. As noted in (12), in a
certain parameter range, the function ¥ can be obtained from A by taking K = I; that is,

A s(A)I, M] = Wy 9 s(M, A)[1].

Hence, when K = I, Theorem 1.3 identifies large parameter ranges where A is convex and concave.
We show as a corollary of Theorem 2.2 that this condition on K is not stable in the sense that
perturbing M away from the identity even a little results in the loss of convexity (or concavity) of

A.

Corollary 2.4. For any € > 0 there exists an invertible matric K € Ty and a positive definite
matriz M € Py such that | K —I|| < € and A, s(A)[K, M] is not

(a) concave for 0 <r <1/2 and 0 < s < lerv

1
(b) convex for —1/2 < r <0, and s > o

Proof. The definition of A, s and the fact that the eigenvalues of the matrices XY and Y X are the
same imply

(15) A s(A)[K, M*M] = Ay o(A)[M, KK”].
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Now let

~ 1 (V1+t+V1I—-t VI+t—V1-t ~ (1 0
K_§<\/1—|—t—\/1—t \/1+t+\/1—t) and M_<0 k2>'

Note that one can choose 0 < t < 1 such that |K — I|| < e. Let K and M be as in the proof of
Theorem 2.2 and observe that

M =K*K and R’R’:C t):M.

Then by (15),
Arg(A)K, M] = A, o (A)[K, K*K] = A, (A)[K, KK*] = A, (A)[K, M] .

Invoking Theorem 2.2 completes the proof. [ |

3. CONVEXITY AND CONCAVITY OF THE TRACE FUNCTION A, g

In this section we collect the results concerning the convexity and concavity ranges of A, .
The main result here is Theorem 3.1. It states that A, (A)[K, M] is convex only for r = 1 and
s > 1/2, and that it is never concave. We will see that the questions of convexity and concavity
for A, 5(-)[K, M] for most parameter ranges were already settled in Theorem 2.2 and Theorem 1.1.

Theorem 3.1. Fiz real numbers r,s with r #= 1 and s > 0 and an integer n > 2. The function
Pn3A A (A)K, M]

is convex for all K € I,, and M € Py, if and only if r = 1 and s > 1/2; and is never concave for
all K €7, and M € P,

The proof of Theorem 3.1 is divided into three parts. Proposition 3.2 below asserts the con-
vexity of A, for r =1 and s > 1/2. Theorem 2.2 disproves A, s is neither convex nor concavity
for all » # 0,1 and s > 0. Finally, Proposition 3.3, based upon Theorem 1.1, shows A, s is neither
convex nor concave when r =1 and 0 < s < 1/2.

Proposition 3.2. Fix a positive integer n, K € M,, and M € P,. If s > %, then the function
Prn3> A A s(A)K, M]

is convex in A.

Proof. The function Ay s can be expressed in terms of the function I', for which the convexity range
is known. Explicitly,

(16) A (A K, M) = Ay o(MY2AMY?)[M~Y2K, I = Ty o(MY2AMY?) M~V K]

From Theorem 1.1, for s € [1/2,00), the mapping A FQ’S(M%AM%)[M_%K] is convex. |
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Proposition 3.3. Given an integer n > 2, there exists an invertible matriz K € Z,, such that if
0<s< %, then there exist positive definite matrices M4 € P, so that the function

Pn3A— A s(A)K, M]

is not convex in A with M = M and not concave in A with M = M_.
Proof. It suffices to prove the result with n = 2. In this case choose

K:<1 0)7 M:M(t):<1 t))
00 t 1

for |t| < 1 to be chosen later.

Following the proof of Theorem 2.2 consider

1 0 0 1
A1—<0 1>,A2—A2($)—I+J}<l O>

for |z| < % Let A = w. Expansion up to second order terms in x gives

tr((K*AlMAlK)S
tI‘((K*AgMAgK S

1,
(1+ + 2tz + 2°)° ~ 1 + 2stx + sa® + 2s(s — 1)t%2?,
2
—1
<1+ta:+ >~1+stx+sx—+Mt2x2.

tr((K*AMAK)® 1 5

Hence

E1a(t,7) =tr((K* Ay M A K)®) + tr((K* AsM Ay K)®) — 26r(K* AMAK)?)

1 1
~ 5:52 <s2t2 + s<§ - t2>> = 2% h(s,t).

Thus for x sufficiently small, the sign of =1 4(¢, x) is determined by the sign of h(s,t). Since s > 0,
the latter is positive for all ¢ such that t? < % Thus, for such ¢ and every s > 0, the function
A A (A) K, M(t )] is not concave. Moreover, the roots of h(s,t) viewed as a quadratic function
in s are 0 and 1 — 5. Therefore h(s,t) is negative for 1/2 < #* <land 0 < s < 1— 5 < 1/2.
Hence, for every ﬁxed 0 < s < 3 there is a [¢t| < 1 such that h(s,t) < 0. Therefore, for each

0 < s < 5 there exists a [¢| < 1 such that the map A — Ay 4(A)[K, M(t)] is not convex.

The matrix K can be chosen invertible by the same argument as presented at the end of
Theorem 2.2. m

Remark 3.4. (a) Note that even though Ay 4(A)[I, M] is convex in A for fixed positive definite M
and s > % by Proposition 3.2, it is not jointly convex in A and M for fixed s > % as can be seen
by combining the duality between the functions A and ¥ in (12) and Theorem 1.4 item (b). That
A; 5(A)[I, M] is not jointly convex for fixed s > 0 is also a consequence of the following example
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that has the advantage of involving 2 x 2, rather than 4 x 4, matrices as was done in Theorem 1.2.

Let

1/2 0 1 0 40 10

0 1 ) 2 = 1=

Ay = _
! 0 1/2)° 0 1)’ 0 4

Direct computation shows

A+ A My + M. 45\°
Avs(A1) (T2, M) /2 + A s (A2) T2, Mo /2 = Ai s <%> [12, ﬁ} =2-2 (—) ,

which is negative for s > 0.

(b) We mentioned that Zhang [31] shows joint convexity of the function
(A,B,C) = tr |BPK1AK,C™1)°

for 0 < p,q < 1/2 such that p+ ¢ < 1 and s > 1/(1 — p — q). Moreover, he shows that these
conditions are optimal in the sense that if the function (A, B, C) +— tr|B~PAC~9|” is jointly convex

in any finite dimension, then p, ¢, s must satisfy the above conditions.

Acknowledgements. All authors are thankful to the American Institute of Mathematics for

sponsoring the workshop “Noncommutative inequalities” in June 2021 as well as the organizers of

the workshop, where the collaboration between the authors and the work described in this paper

began.

REFERENCES

Ando, T. (1979). Concavity of certain maps on positive definite matrices and applications to Hadamard products.
Linear algebra and its applications, 26, 203-241. 4

Audenaert, K. M., & Datta, N. (2015). o — z-Rényi relative entropies. Journal of Mathematical Physics, 56(2),
022202. 4

Beigi, S. (2013). Sandwiched Rényi divergence satisfies data processing inequality. Journal of Mathematical
Physics, 54(12), 122202. 3

Bekjan, T. N. (2004). On joint convexity of trace functions. Linear algebra and its applications, 390, 321-327. 4
Bhatia, Matrix analysis, Springer-Verlag, New York, 1997 1

Bjelakovic, I., Deuschel, J. D., Kriiger, T., Seiler, R., Siegmund-Schultze, R., & Szkoa, A. (2008). Typical support
and Sanov large deviations of correlated states. Communications in mathematical physics, 279(2), 559-584. 1
Carlen, E. A., Frank, R. L., & Lieb, E. H. (2016). Some operator and trace function convexity theorems. Linear
Algebra and its Applications, 490, 174-185. 4, 6

Carlen, E. A., Frank, R. L., & Lieb, E. H. (2018). Inequalities for quantum divergences and the Audenaert-Datta
conjecture. Journal of Physics A: Mathematical and Theoretical, 51(48), 483001. 4, 5

Carlen, E. A., & Lieb, E. H. (2008). A Minkowski type trace inequality and strong subadditivity of quantum
entropy II: convexity and concavity. Letters in Mathematical Physics, 83(2), 107-126. 3, 4

Chehade, S. (2020). Saturating the Data Processing Inequality for oo — z Rényi Relative Entropy. arXiv preprint
arXiv:2006.07726. 5

Epstein, H. (1973). Remarks on two theorems of E. Lieb. Communications in Mathematical Physics, 31(4),
317-325. 3, 4



14

[12]
[13)
[14]
[15]
[16]
[17)
18]
[19)
[20]
21]
[22]
23]

24]
25]

[26]

EVERT, MCCULLOUGH, STREKELJ, AND VERSHYNINA

Frank, R. L., & Lieb, E. H. (2013). Monotonicity of a relative Rényi entropy. Journal of Mathematical Physics,
54(12), 122201. 3, 4

Hiai, F. (2013). Concavity of certain matrix trace and norm functions. Linear algebra and its applications, 439(5),
1568-1589. 3, 4, 5

Hiai, F. (2016). Concavity of certain matrix trace and norm functions. II. Linear Algebra and its Applications,
496, 193-220. 4

Hiai, F., Mosonyi, M., & Hayashi, M. (2009). Quantum hypothesis testing with group symmetry. Journal of
mathematical physics, 50(10), 103304. 2

Hiai, F., Mosonyi, M., Petz, D., & Bény, C. (2011). Quantum f-divergences and error correction. Reviews in
Mathematical Physics, 23(07), 691-747. 2

Hiai, F., & Petz, D. (1991). The proper formula for relative entropy and its asymptotics in quantum probability.
Communications in mathematical physics, 143(1), 99-114. 1

Leditzky, F., Rouzé, C., & Datta, N. (2017). Data processing for the sandwiched Rényi divergence: a condition
for equality. Letters in Mathematical Physics, 107(1), 61-80. 4

Lieb, E. H. (1973). Convex trace functions and the Wigner-Yanase-Dyson conjecture. Les rencontres physiciens-
mathématiciens de Strasbourg-RCP25, 19, 0-35. 4, 6

Lieb, E. H., & Ruskai, M. B. (1973). Proof of the strong subadditivity of quantum-mechanical entropy. Les
rencontres physiciens-mathématiciens de Strasbourg-RCP25, 19, 36-55. 2

Lieb, E. H., & Ruskai, M. B. (1974). Some operator inequalities of the Schwarz type. Advances in Mathematics,
12(2), 269-273. 6

Lindblad, G. (1975). Completely positive maps and entropy inequalities. Communications in Mathematical
Physics, 40(2), 147-151. 2

Miiller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., & Tomamichel, M. (2013). On quantum Rényi entropies: A
new generalization and some properties. Journal of Mathematical Physics, 54(12), 122203. 3

Petz, D. (1986). Quasi-entropies for finite quantum systems. Reports on mathematical physics, 23(1), 57-65. 2
Petz, D. (1986) Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Communi-
cations in Mathematical Physics, 105:1237131. 2

Petz, D. (1988). Sufficiency of channels over von Neumann algebras. The Quarterly Journal of Mathematics,
39(1), 97-108. 2

Umegaki, H. (1954). Conditional expectation in an operator algebra. Tohoku Mathematical Journal, Second
Series, 6(2-3), 177-181. 1

Wilde, M. M., Winter, A., Yang, D. (2014). Strong converse for the classical capacity of entanglement-breaking
and Hadamard channels via a sandwiched Rényi relative entropy. Communications in Mathematical Physics,
331(2), 593-622. 3

Zhang, H. (2020). From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture. Advances in Mathe-
matics, 365, 107053. 4, 5

Zhang, H. (2020). Equality conditions of data processing inequality for o — z Rényi relative entropies. Journal
of Mathematical Physics, 61(10), 102201. 5

Zhang, H. (2021). Some convexity and monotonicity results of trace functionals. arXiv preprint arXiv:2108.05785.
6, 13



CONVEXITY 15

GROUP SCIENCE, ENGINEERING AND TECHNOLOGY, KU LEUVEN KULAK, E. SABBELAAN 53, 8500 KORTRIJK,
BELGIUM, AND

ELECTRICAL ENGINEERING ESAT/STADIUS, KU LEUVEN, KASTEELPARK ARENBERG 10, 3001 LEUVEN, BELGIUM

FEmail address: eric.evert@kuleuven.be

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FL

FEmail address: sam@ufl.edu

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, LIUBLJANA, SLOVENIA

Email address: tea.strekelj@fmf.uni-1j.si

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HousToN, TX

FEmail address: anna@math.uh.edu



	1. Introduction
	1.1. Umegaki relative entropy.
	1.2. Rényi relative entropy.
	1.3. Sandwiched Rényi relative entropy.
	1.4. -z Rényi relative entropy.
	1.5. Operator convexity.
	1.6. Main results

	2. Stability of convexity of the trace functions p,s and p,q,s
	2.1. Stability of convexity of the trace function p,s
	2.2. Stability of convexity of the trace function p,q,s

	3. Convexity and concavity of the trace function r,s
	References

