
DENNI: Distributed Neural Network Inference on Severely
Resource Constrained Edge Devices

Rohit Sahu∗, Ryan Toepfer∗, Mathew D. Sinclair†, and Henry Duwe∗
∗ Iowa State University, Ames, IA † University of Wisconsin-Madison & AMD Research, Madison, WI

rsahu@iastate.edu, ryantpfr@gmail.com, sinclair@cs.wisc.edu, duwe@iastate.edu

Abstract—Pervasive intelligence promises to revolution-
ize society from Industrial Internet of Things (IIoT),
to smart infrastructure and homes, to personal health
monitoring. Unfortunately, many edge devices that are
pervasively embedded into infrastructure or implanted into
humans are severely resource-constrained. As performing
computations at the edge becomes increasingly important
to meet latency deadlines and retain sensitive data locally,
severe resource constraints present a challenge because
many algorithms are too large to fit on a single edge device.
In this paper, we focus on distributing inference for neural
networks (NNs) with convolution and fully connected layers
across multiple edge nodes. In order to improve efficiency
on severely resource-constrained edge nodes for diverse
NN architectures we present an end-to-end, automated
approach, DENNI, that optimizes NN distribution with
minimal nodes while meeting memory constraints. When
targeting a network of edge nodes with 256KB of non-
volatile memory connected with Bluetooth Low Energy,
DENNI successfully distributes NN inference for a variety
of machine learning algorithms across multiple edge nodes
where other, static approaches cannot.

Index Terms—distributed computing, neural networks,
wireless sensor nodes

I. INTRODUCTION

Smart IoT edge devices that make intelligent decisions
autonomously in real-time, adapt to the environment,
and intelligently collaborate with each other have po-
tential to revolutionize everything from manufacturing
to transportation to personal healthcare [1]. However,
unpredictable connection to gateways, limited network
bandwidth, limited energy capacity of extreme edge
devices, and privacy concerns with uploading private
end-user information to the cloud for analysis have
driven intelligence to be moved to the edge [2]. Given
that there are expected to be 43 billion IoT edge devices
by 2023 [3] and 43% of all machine learning (ML)
inference will be performed completely on the edge de-
vices [4], these issues will be significantly exacerbated.

As IoT devices become increasingly pervasive, col-
lectively they can provide a significant amount of com-
putation. However, these devices are severely resource-
constrained. For example, as shown in Table I some of
the most frequently used IoT processors only have a
few hundred KB’s of memory and frequencies less than
100 MHz. Such device characteristics are fundamentally

at odds with the requirements of most neural networks
(NNs), which can have hundreds of MBs of parameters
(or more) [5]. These constraints make it extremely
difficult to perform end-to-end inference on a single
edge device. Given these constraints, some prior work
redesigns NNs to fit on a single device, often utilizing
compression, pruning, and quantization to trade off ac-
curacy for footprint [6]–[16] or offloading computations
to the cloud [17]. However, even after applying these
techniques many state-of-the-art convolutional neural
networks (CNNs) still require more memory than a
single edge device possesses [5]. Therefore, it is critical
to develop methods to distribute NN inference on a set
of resource-constrained edge devices.

Prior works have also examined distributing NN in-
ference in systems with larger memory capacities (e.g.,
GBs per node) or high performance processors [18]–[25]
These approaches use some variation of early exiting or
layerwise splitting, which works well on devices with
larger memories. However, their approaches also require
at least one layer to be executed on a single device, which
is not always possible on severely resource-constrained
edge devices such as those listed in Table I. Other recent
work examines distributing NN inference to minimize
for overall inference latency and communication [26],
[27], while others examines distributing NN inference
to smaller, more resource constrained devices like Rasp-
berry Pi’s [28], [29]. However, none of them consider
the overall memory constraints while distributing the
NN, a fundamental limitation for severely resource con-
strained edge devices which prevents them from dis-
tributing larger NN benchmarks across edge nodes such
as MSP430’s (as discussed in Section VI).

Therefore, we propose DENNI an end-to-end auto-
mated approach that minimizes the number of distributed
nodes while considering the total memory requirements
including neural network weights, intermediate activa-
tions, and executable code. Our key insight in DENNI
is to iteratively apply mixed integer non-linear pro-
gramming (MINLP) to identify an intra- and cross-layer
splitting (discussed further in Section III) that minimizes
the number of nodes required for a NN’s inference.

978-1-6654-4331-9/21/$31.00 ©2021 IEEE

0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627
Layers of mobilenet-128 v4 full int8 quantized network

0

200

400

600

800

1000

1200
M

em
or

y
Fo

ot
pr

in
t (

KB
)

Text
Model
Tensor arena
Total Memory of msp430fr5994: 256 KB FRAM

Fig. 1: MobileNet-128 v4 layer-wise memory footprint.

204 716 1228 1740 2252 2764 3276 3788 4300
Total Memory Footprint (KB)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ov
er

al
l T

es
t A

cc
ur

ac
y

Pareto optimal points
Non Pareto optimal points
Required No of MSP430 nodes: 1
Required No of msp430 nodes: 1 to 3
Required No of MSP430 nodes: 3 to 5
Required No of MSP430 nodes: 5 to 12
Required No of MSP430 nodes: 12 to 115

Fig. 2: HAR pruning: accuracy vs total memory foot-
print.

1000 2000 3000 4000 5000
Total Memory Footprint (KB)

65

70

75

80

85

90

Ov
er

al
l T

op
-5

 T
es

t A
cc

ur
ac

y

Pareto optimal points
Non Pareto optimal points
Required No of MSP430 nodes: 3 to 4
Required No of MSP430 nodes: 4 to 8
Required No of MSP430 nodes: 8 to 14
Required No of MSP430 nodes: 14 to 22
Total Memory MSP430fr5994 256 KB FRAM + 8 KB SRAM

Fig. 3: MobileNet: accuracy vs total memory footprint.

Overall, we make the following contributions:
• We propose DENNI, an automated, end-to-end,

holistic DNN inference splitting approach. DENNI
utilizes MINLP to minimize the number of dis-
tributed nodes, supports all Tensorflow-lite micro
layer operations, and statically distributes full, un-
compressed, high-accuracy NN inference across
severely resource-constrained edge nodes.

• We demonstrate DENNI is capable of enabling
full-accuracy NNs for Human Activity Recognition,
Keyword spotting, and ImageNet datasets on a net-
work of MSP430 and CC2650-based nodes, which
are too small to run these NNs on a single node.

• Our results show DENNI reduces total inference
latency by 1.12× to 8.45× and worse-case node

Processors NVM
(KB)

SRAM
(KB)

Freq
(MHz)

ATSAML11E16A Rev. B 64 16 32
EFM32HG322F64 Rev. B 64 8 25
STM32L412 Rev. A 128 40 80
MSP432P401R Rev. C 256 16 48
MSP430FR5969 64 2 16
MSP430FR5994 256 8 16

TABLE I: Commercially available ultra-low power pro-
cessors [30] suitable for IoT applications; Non-Volatile
Memory: Flash/FRAM is in KB; frequency is in MHz.

energy consumption by 1.73× to 59.21×.

II. MOTIVATION

Edge devices are expected to lead the growth of indi-
vidual intelligent devices during the IoT era. Processors
in these devices are often physically co-located with
sensors and have limited memory size and computational
capabilities. Table I lists several commonly used edge
processors [30]. These devices are severely resource con-
strained in both memory and compute capabilities. Thus,
currently most data is either communicated directly to a
datacenter in the cloud or to a nearby central gateway
device where heavy analysis like NN inference is per-
formed [17]. Subsequently, the results are communicated
back to the IoT edge device for decision making.

However, offloading data to the datacenter or nearby
gateway devices is expensive and suffers from unpre-
dictable communication reliability that impacts overall
performance and function. This is exacerbated by the
growing number of edge devices. Moreover, sometimes
(e.g., emergency disaster situations [31]) the central gate-
way device is not available. Accordingly, communicating
sensed data directly to datacenter may fail, causing
the IoT node to make incorrect decisions. Furthermore,
clients increasingly want to keep data on the edge for
security reasons [32]. Therefore, we focus on performing
NN inference on local IoT edge devices.

Unfortunately, performing inference on edge devices
is challenging due to their extremely limited memory
and compute capabilities compared to the much higher
resource requirements in many NN inference algorithms.
Figure 1 breaks down the per-layer memory consumption
for an 8-bit integer quantized version of MobileNet
v4 [33], a popular mobile and edge NN [34]. Figure 1
shows almost all of its 28 layers are too big to fit on
a single, resource constrained MSP430. Thus, the total
memory footprint of popular NNs may be too large to fit
on a single edge node. Interestingly, Figure 1 shows that
the memory footprint of MobileNet’s initial layers are
mostly dominated by the size of the intermediate input-
output tensors (i.e., data stored in the tensor arena), while

later layers are dominated by the memory of weights.
While compression techniques such as pruning [35]
and post training 8-bit quantization [36] can fit some
NN inference models on a single node, the resulting
accuracy is often significantly reduced. For example,
Figure 2 compares the memory requirements for a set of
compressed, pruned, and quantized NN designs to a 256
KB MSP430FR5994 for Human Activity Recognition
(HAR) [37] on the UCI dataset [38]. The Pareto-optimal
points are highlighted as stars. The best single-node
design achieves 90% accuracy, 5% lower than the best
overall accuracy (95.3%). However, using just three
nodes increases accuracy to 93.1% (within 2.3% of the
best). Figure 3 shows a similar trend for MobileNet.

The challenges in running HAR and MobileNet on
edge devices with high accuracy highlights the need for
a systematic approach to perform intra-layer splitting for
layers with large weight memory footprints (e.g., layers
26-27 in Figure 1), cross-layer splitting for layers with
large intermediate outputs (e.g., layers 0-10 in Figure 1),
and both cross-layer and intra-layer successively for
layers with large weight and intermediate output memory
footprint (e.g., layer 14-15 in Figure 1). Further, given
the high communication costs and unreliable inter-node
communications, this approach must also minimize the
number of nodes required. Accordingly, we propose
DENNI, which applies MINLP to systematically opti-
mize and distribute large NNs across edge devices.

III. DISTRIBUTING NNS ACROSS EDGE NODES

Figure 4 shows DENNI’s toolflow. DENNI takes in an
arbitrary NN as a Tensorflow-lite model, as well as a set
of homogeneous target nodes to map the NN to. Based
on the model’s structure and the target node’s constraints,
DENNI’s distribution algorithm identifies the model
portion that should be mapped to each node to minimize
the number of nodes required to perform inference using
the model. The model splitter then applies these splits
to the original NN, generating a new Tensorflow-lite
model file containing the appropriate weights and biases
for each node. Each model file is compiled along with
the Tensorflow-lite micro source code to create a unique
binary that is programmed onto a node.

A. Distribution Algorithm

The distribution algorithm takes an arbitrary NN such
as Figure 5, which has N layers 0 to N − 1, includ-
ing K convolution, Q pooling and N − K − Q fully
connected layers,1 and the memory constraints of a

1DENNI supports the full range of layer operators specified by
Tensorflow-lite micro, but we use this NN architecture for simplicity.

Algorithm 1: NN Distribution
Input: L = L0, ..., LN−1, neural network define as list

of N layers
Memnode, the total memory size of the node

Output: LC, list of layer chunks
for i← 0 to N − 1 do

// get the number of nodes required for this layer
and associated parameters;

(NLi, Pi)← layerMINLP (Li,Memnode);
end
empty list of layer chunks, LC;
previous min nodes, PrevNLC ← NL0;
previous parameters, PrevP ← P0;
current layer chunk first node, j ← 0;
for k ← 1 to N − 1 do

(CurrNLC,CurrP)←
chunkMINLP (Lj:k,Memnode);

if CurrNLC < PrevNLC +NLk then
PrevNLC ← CurrNLC;
PrevP ← CurrP ;

else
LC.add((PrevNLC,CurrP));
PrevNLC ← NLk;
PrevP ← Pk;
j ← k;

end
LC.add((PrevNLC,CurrP));

end

node, Memnode. The distribution algorithm splits the
NN across nodes such that the memory requirement of
each split of the NN, Memsplit, is less than Memnode.
Moreover, the distribution algorithm tries to minimize
the total number of nodes.

Algorithm 1 shows the distribution algorithm. First,
our distribution algorithm performs intra-layer splitting,
finding the minimum number of nodes per layer using
a Mixed Integer Non-Linear Programming (MINLP)
formulation [39]. In order to further reduce the number
of nodes, our distribution algorithm greedily considers
cross-layer and intra-layer co-optimization for a group
of adjacent layers, called layer chunks, starting from the
input layer. We use a greedy approach since trying all
possible layer combinations to co-locate would be in-
tractable as the number of layers increases. Only consid-
ering adjacent layers provides good solutions because the
adjacent layers often share input/output memory values
and it allows the optimizer to tradeoff duplication of
weights within a layer with reduced activation memory.
Again, we use MINLP to solve for the minimum number
of nodes needed by layer chunk Lj:k. The distribution
algorithm creates successively larger layer chunks until
the minimum number of nodes for the layer chunk,
CurrNLC, is larger than the sum of the required nodes
for the previous layer chunk, PrevNLC, and the layer-

TFLite
Model

Distribution
Algorithm

Split
Parameters

Model
Splitter

Custom TFLite
Micro Src

GCC MSP430
Compiler

Programmed
to nodes

BinaryBinaryBinary
Split TFLite
Model Files

Node
Constraints

Fig. 4: DENNI toolflow.

In
p

u
t

O
u

tp
u

t

C
o

n
v

P
o

o
l

C
o

n
v

FC FC

L0
L1 L2

LN-2 LN-1

N-K-Q: fully connected layers
(LK+Q to LN-1)

K conv and Q pool layers (L0 to LK+Q-1)

T0 T1 T2 TN-2 TN-1 TN

C0, R0, S0, M0 C1, R1, S1, M1 C2, R2, S2, M2 CN-1, RN-1, SN-1, MN-1

Input channels: C, Filter height: R , Filter Width: S, Output channels: M

Fig. 5: A representative neural network.

wise optimal solution of the next layer, NLk. Once this
happens, we save the distribution parameter assignment
for that layer chunk, CurrP .

1) Memory Requirements: The MINLP optimization
must calculate the memory requirements for arbitrary
splits of a NN. A Tensorflow-lite micro NN has three
memory components – model parameters, tensor arena,
and the actual program text segment (i.e., “code”).

The model parameters include the weights and biases
for each layer. The size (in bytes) of these parameters,
Wi, for any convolutional or fully connected layer i in
an int8-quantized NN (with 32-bit integer biases) is:

Wi = Ci ∗Ri ∗ Si ∗Mi + 4 ∗Mi

where Ci, Ri, Si, and Mi denote the number of input
channels, filter height, filter width and output channels,
respectively, for the layer i of the NN (see Figure 5).2

The tensor arena holds activations for each layer (e.g.,
input, output, and intermediate feature maps). We denote
these intermediate tensors as Ti. To determine the tensor
arena size, we must consider both the sum of the largest
pair of adjacent activation tensors, (Ti, Ti+1), and the
quantization parameters (a 32-bit integer zero point and
a 32-bit float scale for each channel). Thus, the worst-
case tensor arena may be calculated as:

tensor arena = max
i∈[0,N−2]

(T ′
i+T ′

i+1)+2∗4∗(
N∑︂
i=0

Mi+1)

Here for a particular NN the code size is constant, and
depends upon the various NN inference operators.

2For depthwise convolution, Mi = 1 and biases will be Ci. For a
fully connected layer, we have Ri = Hi and Si = Wi.

​M

Weights Input Output

Tensor
Arena per

node
​Number of Nodes

= 1
R

C

​1
C

R

S

W

H

C

P

M

Q

(a) Unsplit convolution layer.

​M’

Weights Input Output

Tensor
Arena per

node

​Number of Nodes
= ceil(P’/P)*ceil(Q’/Q)*ceil(M/M’)

1<=P’<=P
1<=Q’<=Q
1<=M’<=M

S

R

C

​1
C

R

S

W

H

C

H’

W’

P

M’

P’

Q’

Q

​M

S

R

C

* Shaded parts of inputs, weights
and output are included on a

single node

(b) Intra-layer split reducing tensor arena and weight size.

Fig. 6: Intra-layer MINLP optimization.

Therefore, the total memory footprint MN for NN
inference becomes:

Meminf =

N−1∑︂
i=0

Wi + tensor arena+ code (1)

2) Intra-Layer MINLP Optimization: Given Equa-
tion 1, to reduce a layer’s memory consumption we can:
(1) reduce model size and/or (2) reduce tensor arena size.

Within a layer, such as the one shown in Figure 6a, we
allow splitting the weights by output channel, M , input
channel, C, or within a filter, R or S. This results in an
intra-layer splitting as shown in Figure 6b.3

We only allow splitting for the output channel since
the other forms of splitting require more communica-
tion prior with the next layer (often a non-linear layer
such as ReLU). Splitting by the output channel reduces
the weights memory by ceil(M/M ′) where M ′ is the
splitting parameter selected by the optimizer.

Within a layer we split the activation tensors (input
and output activations) by the output channel, M , or
within a channel, H or W . We do not allow splitting by
input channel for the same reason as above. Thus, the
tensor arena area for a node in this layer is reduced to:

tensor arena = H ′ ∗ W ′ ∗ C + P ′ ∗ Q′ ∗ M ′ (2)

where 1 <= P ′ <= P and 1 <= Q′ <= Q dictate the
value of H ′,W ′.

Given the above parameters, for a given layer the
number of nodes required for splitting is:

NLl = ceil(P/P ′) ∗ ceil(Q/Q′) ∗ ceil(M/M ′) (3)

3) Cross- and Intra-Layer MINLP Co-Optimization:
As shown in Figure 3, the tensor arena dominates the
memory usage of many early layers of NNs. For such
layers, optimizing across layers can reduce the tensor
arena size since the memory used by the input activations
of one layer can be reused by the output activations
of the next layer(s). For example, in the NN layers in
Figure 7a, part of T0’s area can be reused by part of T2 so
long as those parts are both executed on the same node.
Intra-layer splitting must also be considered in order to
split the tensor arenas across nodes while balancing the
increasing number of weights.

Figure 7b depicts an example of cross- and intra-
layer co-optimization of a layer chunk consisting of two
layers: a depthwise convolution followed by a convo-
lution. Starting with the last layer, L1, we parameterize
splitting of the output tensor arena (P ′

1, Q
′
1) where 1 <=

P ′
1 <= P1 and 1 <= Q′

1 <= Q1. Similarly, depending
upon the filter’s Ri and Si values, for each layer we
backtrack until the initial layer of the layer chunk. Since
the tensor-arena depends upon the maximum pair of the

3We show a commonly used convolutional layer. Fully-connected
layers are treated as convolutional layers with H = S and W = R.
Since pooling and non-linear activation layers are applied element-
wise, we aggregate them into the previous layer. However, they have
little impact since they do not require additional weights or tensor arena
space. Finally, we output split layers of operators such as softmax, but
perform softmax on a single node for mathematical correctness.

intermediate input-output tensor, as given by (P ′
1, Q

′
1),

the overall arena may be reduced. However, this requires
replicating the weights across ceil(P1/P

′
1)∗ceil(Q1/Q

′
1)

nodes. Note that only P ′
1 and Q′

1 are free parameters
since P ′

0 and Q′
0 must be sized such that all the necessary

input activations are present on the node to compute P ′
1

and Q′
1. Since these values will grow larger they end up

limiting the reduction of tensor arena size per node as
the layer chunk increases in depth.

Although we do not allow input channel splitting for
convolution layers, we do allow it for depthwise con-
volution layers since they have relatively large weights
compared with convolutional layers and thus would limit
the benefit of increasing layer chunk depth. Figure 7b
demonstrates this: the C ′

0 and M ′
1 output channels from

C0,M1 are mapped to each node. However, this requires
some inter-node communication within a layer chunk
(shown by the green volume in tensor T ∗∗

1 in Figure 7b)
since in the original network C0 = C1. This additional
communication does not significantly impact the latency
(see Figure 10) while reducing the number of nodes
required. For such cases, the tensor arena is the large
of the two: T ∗∗

1 . Thus, the total tensor arena for layer-
chunk can be calculated by:

tensor arena = max
i∈[0,2]

(T ′
i + T ′

i+1)) (4)
Given the above splitting parameters for the two

layers, the number of nodes required to support the
splitting is given by:

NLC0,1 = ceil(P1/P
′
1) ∗ ceil(Q1/Q

′
1)∗

Max(ceil(C0/C
′
0), ceil(M1/M

′
1)) (5)

We generalize this approach to an arbitrary number
of layers within a layer chunk as required by our
distribution algorithm.

IV. METHODOLOGY

We use MSP430FR5994-based nodes with 256KB of
memory [40] as our edge node. This node is popular
in energy-harvesting systems due to its on-chip FRAM
non-volatile memory that allows 1-2 cycle reads and
writes without having to erase a sector. Each node is
programmed with a unique bare-metal binary produced
by DENNI. These binaries contain a custom 16-bit
implementation of Tensorflow-lite micro along with the
appropriately partitioned model parameters. We measure
the actual runtime computation cost on MSP430FR5994s
executing the partitioned NN inference binaries using the
energy trace utility [41]. We analyze the inference of six
modern NNs, as highlighted in Table II.

T0

W0

C0

H0

​
C0

R0

S0

T1

Q0

C0

P0

W0

​
C1

S1

W1

R1

​
C1

R1

S1

​
C1

R1

S1

1 X1 M1 T2

Q1

M1

P1
Layer 0: DEPTHWISE

CONV2D Layer 1: CONV2D

C0=C1

(a) Example layer chunk with two layers – a depthwise convolution layer followed by a convolution layer.

Layer 1: CONV2D

Layer 0:
DEPTHWISE

CONV2D

H’0

W’0
H0

W0

​

R0

S0
P’0

Q’0

Q0

C1

P’0

Q’0

Q0

P0

P0

T’0 T*1 T**1

T’1=MAX(T*1,T**1)

​
C1

R1

​
C1

R1

1 M’1

P’1

Q’1

Q1

P1

T’0

W’1W’0

Intermediate data
communication to/from

other nodes

C’0

C’0

C’0

S1 S1

M’1

(b) Cross-layer split reducing tensor arena size.

Fig. 7: Cross- and intra-layer co-optimization.

Dataset ImageNet [34] UCI [38] DSCNN
[42]

NN MNv1 MNv2 MNv3 MNv4 HAR DSCNN

Layers 28 28 28 28 3 12
Resolution 128 128 128 128 128*6 49*10
Width
multiplier 0.25 0.5 0.75 1 – –

Million
MACs 14 49 104 186 – –

Tensor
arena
(KB)

154 249 345 443 57 136

Model
size (KB) 486 1333 2563 4177 6311 518

Code size
(KB) 145 145 145 145 141 151

Top-5
Accuracy 64.4% 77.7% 78.8% 85.8% 95.3%

(Top1)
94.58%
(Top1)

TABLE II: Benchmarks used.

To enable BLE communication between our edge
nodes, we use the CC2640R2F [43]. We used SPI
communication to communicate between the MSP430
and the CC2640R2F. Figure 4 shows our node test
setup. Since we experiment with numerous partitioning
schemes involving up to hundreds of nodes, we modeled
communication latency rather than manually setting up
the topology for each experiment. We assume all nodes
are connected in a fully-connected topology. Based on
measurements of our system, it takes 11.6 microseconds
per byte of data, which corresponds to 84.186 KB/s, a
reasonable rate for BLE 5 supported by CC2640R2F.
Moreover, based on prior work we model our commu-
nication energy as 1 Joule per 350 KB for a maximum
Protocol Data Unit (PDU) of 65 bytes [44].

HAR DS-CNN MNv1 MNv2 MNv3 MNv40

50

100

150

200

To
ta

l D
ist

rib
ut

ed
 N

od
es

X X X X X XX X X X X X

69

9 9
22

40

63

86

19
36

65

107

223

86

17 20

43

87

146

Nodes Baseline all in one
Nodes Baseline Layerwise
Nodes: DENNI Intra-layer
Nodes: DENNI Cross-fuse
Nodes: Minimum Bound

Fig. 8: Total number of nodes required by each NN
distribution approach. DENNI supports distribution of
NN’s across severely resource-constrained nodes with
only 256KB memory available; ‘X’ means the bench-
mark cannot run using that approach.

V. RESULTS
A. Minimum Number of Nodes

To ensure that DENNI finds a valid distribution for all
benchmarks, we compare DENNI to the minimum num-
ber of nodes within available solutions. Figure 8 shows
the number of nodes each approach requires to provide
NN inference at full accuracy. Baseline represents the
case where only a single node is used for a NN. However,
none of our benchmarks can fit on a single node at full
accuracy, represented with an ‘X’. We also compare
DENNI against Layerwise Splitting, which distributes an
NN layerwise across nodes, as in prior work [22], [45].
However, since each NN has at least one layer that is
larger than a single node memory, Layerwise Splitting
fails. DENNI utilizes Intra-Layer Splitting to overcome

192 1024 2048 4096 6144 7168
Total Memory (KB)

1
15

50

100

150

200

250
Nu

m
be

r o
f N

od
es

HAR
DSCNN
MNv1
MNv2
MNv3
MNv4
HAR ideal single node
DSCNN ideal single node
MNv1 ideal single node
MNv2 ideal single node
MNv3 ideal single node
MNv4 ideal single node

Fig. 9: DENNI MINLP number of nodes vs node mem-
ory scaling across benchmarks.

this and successfully, automatically distributes each NN
with intra-layer splitting, requiring 36 to 223 nodes.4 By
using cross-layer optimizations in conjunction with intra-
layer splitting, DENNI Intra- and Cross-Layer, reduces
the required number of nodes by up to 35%.

Minimum Bound represents a fundamentally unachiev-
able lower bound on the number of nodes. We calculate
it by dividing the sum of a neural network’s total baseline
model size and baseline tensor arena by the data memory
capacity of a single node. DENNI’s intra- and cross-layer
approach provides the closest solution to the minimum
bound in all cases. However, the minimum bound is
not achieved because of splitting overheads – duplicate
weights to support cross-layer distribution, duplicate
tensor arena area to store intermediate results on each
node, additional code for pad operator and splitting,
and unused space on a node (i.e., a form of memory
fragmentation caused by discrete layer sizes not perfectly
matching node memory size).

Other work maps NNs to resource-constrained nodes
using pruning, compression, or different architec-
tures [6]–[16]. However, in order to fit on a single node,
these approaches often come with significant accuracy
reductions (see Section II). DENNI is an orthogonal ap-
proach that can be applied on top of such optimizations
in order to perform inference in a sensor network at a
desired accuracy. For example, we show several different
versions of MobileNet that have varying accuracy and
memory requirements. Although they are all too large
for a single node, DENNI can successfully perform
inference by distributing them across multiple nodes.
B. Node Memory Scalability

In the future, as technology used in such resource-
constrained nodes evolves (i.e., as density increases from
scaling or new memory technology), node memory will

4The benchmarks produce bitwise identical results when run on
MSP430 nodes compared with the original, unsplit Tensorflow-lite
micro model’s execution on a host computer.

HAR DSCNN MNv1 MNv2 MNv3 MNv410−2

10−1

100

No
rm

al
ize

d
Va

lu
e

Latency and energy single node (infinite memory)
DENNI overall latency
DENNI per node energy
DENNI overall energy

Fig. 10: Inference latency and energy using DENNI
on MSP430FR5994(256 KB) normalized to values of
a single node with infinitely large memory.

likely continue to increase, yet DENNI can still provide
benefits by cross fusing more layers in layer chunks and
hence saving arena size and exploiting larger parallelism
due to big layer chunk sizes compared to other manual
approaches. Figure 9 shows DENNI can be successfully
applied to increasing node memory sizes until the min-
nodes estimated by DENNI approaches a single node and
node memory becomes large enough for each benchmark
to fit on one node (up to 6MB).
C. Latency and Energy

Figure 10 shows the overall inference latency and
the per-node inference energy. Overall, distributing the
NNs across nodes reduces inference latency by 1.12× to
8.45× relative to a single node MSP430 with arbitrar-
ily large memory.5 DENNI’s inference latency ranges
from to 2.7 and 15.8 minutes overall inference time.
Although distributing a NN across multiple nodes in-
creases communication costs (e.g., more communication
within a layer chunk) and also have some re-computation
overhead (e.g. recomputing adjacent overlapping feature
maps across different input split partitions of same
layer chunk), DENNI’s distributed approach increases
parallelism (e.g., nodes within the same layer chunk)
and reduces overall inference latency. This occurs due to
the relative density of computation within layer chunks
compared with communication between layer chunks
and redundant computation overhead.

The inference energy varies across each node since
the amount of computation and communication vary.
Figure 10 shows the average per node energy relative
to a single node with arbitrarily large memory. In all
cases, DENNI reduces per node energy from 1.73×
to 59.21×. The worst-case node energy is 0.98 Joules,
which corresponds to a 1.73× decrease compared to the

5We conservatively estimate such a hypothetical node by measuring
the latency of all the required computational components and then
summing them together.

1 5 10 20 50 100
Communication Latency Scaling Factor

10−1

100

DE
NN

I N
or

m
al

ize
d

La
te

nc
y

Latency single node (infinite memory)
HAR
DSCNN

MNv1
MNv2

MNv3
MNv4

Fig. 11: DENNI overall latency normalized to a single
node with infinitely large memory.

energy cost if run on a single arbitrarily large memory
node. Overall, largely due to communication energy and
redundant calculations across nodes, the total energy
required is increased by 158%. However although the
overall inference energy increases, this energy cost is
distributed across individual nodes and is relatively small
value per node. This trade-off is amenable to energy-
harvesting sensor networks based on batteryless de-
vices [46]–[49] where spare harvested energy of remote
nodes may be harnessed for distributed inference when
cloud connectivity may not be present.
D. Communication Cost

When inference is distributed, we observe that most
of the overall inference energy increases is due to
communication energy. One of the many possible ways
we may be able to significantly reduce the energy cost of
inference is by using techniques such as backscatter [50]
for communication rather than the active radio commu-
nication used in Section IV. By reflecting a carrier radio
signal from a transmitter, backscatter could be 1000×
more efficient than traditional active radio communica-
tions such as BLE [50]. However, such energy efficiency
increases need reduced transmission bit rate, resulting
in increased communication latency. Nevertheless, even
in that scenario DENNI still offers considerable overall
inference latency benefits. Figure 11 shows how DENNI
performs when we increase the modeled cost of commu-
nication latency by up to 100× its baseline value while
keeping the actual measured computation latency cost
unchanged. Barring less compute intensive benchmarks
such as MNv1 and HAR, DENNI provides a consistent
speed up of more than 3× compared to the case when
the inference is executed on a MSP430 with arbitrarily
large memory for compute intensive benchmarks such as
DSCNN, MNv2, MNv3, and MNv4.

Overall, DENNI is effective at distributing arbitrary
NNs across extremely resource-limited edge nodes. The
distribution results in lower overall latency and per-node

192 512 1024 2048
Total Memory (KB)

0

200

400

600

800

1000

Ru
nt

im
e(

se
c)

HAR
DSCNN
MNv1
MNv2
MNv3
MNv4

Fig. 12: MINLP solver total runtime (X86 64 PC) vs
node memory across benchmarks.

energy even as node memory size or communication
latency costs increase for energy-efficiency. As a result,
DENNI can enable pervasive intelligence scenarios when
the cloud/gateway connectivity may not be present at all
times such as disaster relief or low orbit constellation of
energy-harvesting nano-satellites in space [51].
E. MINLP Cost Analysis

The MINLP solver time can significantly increase as
more constraints are added. Instead of solving for the
minimum nodes for an entire NN, which could produce
an intractable MINLP problem, DENNI uses an iterative
approach starting from the input layers as described in
Section III). As shown in Figure 12, this results in a
scalable solution that completes in tens of minutes across
all benchmarks. MINLP is implemented using the Gekko
optimization suite [39] and the APOPT solver [52]. For
execution we use an Intel i7 x86 64 6-core, 2.2 GHz
CPU having 32 GB’s of RAM. Unlike some other edge-
only approaches described in Section VI, MINLP does
not require offline layerwise profiling of the NN nor does
it require online monitoring and analysis — DENNI’s
MINLP overhead is one-time and offline.

VI. RELATED WORK

Prior work examines fitting inference on a single
node by scaling the model, offloading part of the work
to relatively resource-rich devices (e.g., cloud or edge
servers), and distributing NNs across multiple nodes.
Single-node Model Scaling: To fit ML models into
a single node, prior approaches use a combination of
neural architecture search (NAS) [6], [8], compression
via pruning and quantization [9], [35], [53], [54], NN-
specific approaches [10], [13]–[16], and non-NN ap-
proaches that use techniques like low dimension projec-
tion [11], [12]. However, unlike DENNI such techniques
decrease NN inference accuracy, require costly retraining
(often with custom NN-specific implementations), and
may still need more memory than available on severely
resource constrained devices.

Single-node Offloading: An alternative approach uses
model partitioning to divide the model between edge
device and powerful cloud systems such that a part of
computation is offloaded to cloud [20], [55]–[57]. A
twist on this approach, early-exit models [19], [58]–
[60], allows the resource-constrained device to oppor-
tunistically skip some layers, lessening the compute and
memory requirements for certain inputs which can be
classified easily with a high degree of confidence. For
other inputs that need the full NN, a cloud device would
need to be used. As proposed, offloading approaches
require communication of data out of the network of
resource-constrained devices. Additionally, the desired
portion of the NN performed on the local node may still
not fit in the memory of a resource-constrained node.
Multi-node Edge-only: Table III compares DENNI to
other, prior approaches that split NNs across multiple
edge nodes, across several important features: support
for splitting convolution layer by arenas, weights, and
both arenas & weights, distributing FC layers by weights,
and which benchmarks in Table II they support. MoDNN
distributes arena-dominated convolution layers using in-
put and output splitting for FC layers [22]. Similarly,
collaborative inference utilizes input, output, and spa-
tial splitting for convolution and FC layers [45]. How-
ever, these approaches distribute each layer to unique
nodes which drastically increases the number of nodes
and communication costs. Compared to collaborative
inference, DeepThings, Edge Intelligence, and Fully
Dist. [26]–[28] save layerwise synchronization overhead
by cross fusing the initial convolutional layers. However,
none of them consider the memory constraint of edge
nodes while minimizing, limiting their use in deploy-
ments on severely resource constrained edge devices.
Finally, DeepSlice partitions convolutional NNs using
memory reclamation to reduce footprint [29]. However,
despite having a similar greedy memory allocation pol-
icy that only uses maximum memory of the sum of
adjacent tensors (e.g., the tensor arena in Tensorflow-
lite in Section III), the resulting NN inference partitions
would still not fit on severely resource constrained edge
nodes without taking into consideration node memory
constraint while distributing and they are still not able to
partition layers with both high arena and weight memory.

As a result, none of the existing approaches are able
to enable complete inference for all the benchmarks as
shown in Table III on severely resource constrained edge
devices in Table I. Unlike the prior work, DENNI sup-
ports all of these benchmarks and features by utilizing
a lightweight MINLP approach that considers memory
constraints while also providing a scheme to perform

Related
work

Conv-
arena

Conv-
weights

FC-
weights

Conv-
arena
&
weights

Bench-
marks
Table II

MoDNN
[22] ✓ ✗ ✓ ✗ None

Deep
Things [28] ✓ ✗ ✗ ✗ None

Collab. inf.
[45] ✓ ✓ ✓ ✗

HAR,
MNv1

Fully dist.
[27] ✓ ✓ ✓ ✗

HAR,
MNv1

Deep Slice
[29] ✓ ✓ ✓ ✗

HAR,
MNv1

DENNI ✓ ✓ ✓ ✓ All

TABLE III: Comparison to prior NN splitting work.

both arena and weight splitting for all layer types.

VII. CONCLUSION AND FUTURE WORK
The growing memory requirements of NNs are at

odds with mapping to extremely resource-constrained
nodes such as those suitable for energy-harvesting sensor
networks. Even a single layer within a pruned NN may
exceed the memory capacity of a single node. Therefore,
we propose DENNI, which combines MINLP with intra-
and cross-layer distribution approaches to enable NN
inference on such resource-constraint edge devices.

DENNI provides a platform to investigate open re-
search questions for inference at the extreme edge. For
example, DENNI can explore mechanisms that provide
dependable inference on energy-harvesting nodes which
may be intermittently powered due to the inherent vari-
ability of energy-harvesting mechanisms. DENNI also
provides a potential base for lightweight dynamically
adaptative NN splitting. In addition, we envision extend-
ing DENNI to additional machine learning workloads
such as RNNs and online learning in order to expand
the capabilities of learning at the extreme edge.

ACKNOWLEDGMENT
This work was supported in part by the U.S. National

Science Foundation under Grant 2008548.
REFERENCES

[1] D. Schatsky et al., “Pervasive intelligence Smart Machines Ev-
erywhere,” 2019.

[2] Y. Zhang et al., “Hello edge: Keyword spotting on microcon-
trollers,” arXiv preprint arXiv:1711.07128, 2017.

[3] Mckinsey, “Growing opportunities in the Internet of Things,”
2021.

[4] ABI Research, “Hardware Vendors Will Win Big in Meeting the
Demand For Edge AI Hardware,” 2018.

[5] J. Cheng et al., “Recent advances in efficient computation of deep
convolutional neural networks,” FITEE, 2018.

[6] C. Banbury et al., “MicroNets: Neural Network Architectures
for Deploying TinyML Applications on Commodity Microcon-
trollers,” in MLSys, 2021.

[7] Y. Cherapanamjeri et al., “Thresholding based Efficient Outlier
Robust PCA,” 2017.

[8] I. Fedorov et al., “SpArSe: Sparse Architecture Search for CNNs
on Resource-Constrained Microcontrollers,” in NeurIPS, 2019.

[9] I. Fedorov, M. Stamenovic et al., “Tinylstms: Efficient neu-
ral speech enhancement for hearing aids,” arXiv preprint
arXiv:2005.11138, 2020.

[10] S. Gopinath et al., “Compiling KB-Sized Machine Learning
Models to Tiny IoT Devices,” in PLDI, 2019.

[11] C. Gupta et al., “ProtoNN: Compressed and Accurate KNN for
Resource-Scarce Devices,” in ICML’17, 2017.

[12] A. Kumar et al., “Resource-Efficient Machine Learning in 2 KB
RAM for the Internet of Things,” in ICML, 2017.

[13] A. Kusupati et al., “FastGRNN: A Fast, Accurate, Stable and
Tiny Kilobyte Sized Gated Recurrent Neural Network,” in
NeurIPS, 2018.

[14] S. G. Patil et al., “GesturePod: Enabling On-Device Gesture-
Based Interaction for White Cane Users,” in UIST, 2019.

[15] T. Tambe et al., “9.8 A 25mm2 SoC for IoT Devices with 18ms
Noise-Robust Speech-to-Text Latency via Bayesian Speech De-
noising and Attention-Based Sequence-to-Sequence DNN Speech
Recognition in 16nm FinFET,” in ISSCC, 2021.

[16] U. Thakker et al., “Doping: A technique for Extreme Com-
pression of LSTM Models using Sparse Structured Additive
Matrices,” in SysML, 2021.

[17] J. McChesney et al., “DeFog: Fog Computing Benchmarks,” in
SEC, 2019.

[18] T. Bolukbasi et al., “Adaptive neural networks for efficient
inference,” in ICML, 2017.

[19] S. Teerapittayanon et al., “Distributed deep neural networks over
the cloud, the edge and end devices,” in ICDCS, 2017.

[20] J. H. Ko et al., “Edge-host partitioning of deep neural networks
with feature space encoding for resource-constrained internet-of-
things platforms,” in AVSS, 2018.

[21] E. Li et al., “Edge intelligence: On-demand deep learning model
co-inference with device-edge synergy,” in MECOMM, 2018.

[22] J. Mao et al., “Modnn: Local distributed mobile computing
system for deep neural network,” in DATE, 2017.

[23] J. Mao, Z. Yang et al., “Mednn: A distributed mobile system
with enhanced partition and deployment for large-scale dnns,” in
ICCAD, 2017.

[24] Z. Zhou et al., “Edge Intelligence: Paving the Last Mile of
Artificial Intelligence with Edge Computing,” arXiv preprint
arXiv:1905.10083, 2019.

[25] N. D. Lane et al., “Deepx: A software accelerator for low-power
deep learning inference on mobile devices,” in IPSN, 2016.

[26] L. Zhou et al., “Distributing deep neural networks with container-
ized partitions at the edge,” in HotEdge, 2019.

[27] R. Stahl et al., “Fully Distributed Deep Learning Inference on
Resource-Constrained Edge Devices,” in SAMOS, 2019.

[28] Z. Zhao et al., “DeepThings: Distributed adaptive deep learning
inference on resource-constrained IoT edge clusters,” TCADICS,
2018.

[29] S. Zhang et al., “Deepslicing: Collaborative and adaptive cnn
inference with low latency,” TPDS, vol. 32, no. 9, 2021.

[30] Embedded Microprocessor Benchmark Consortium. Embedded
microprocessor benchmark consortium. [Online]. Available:
https://www.eembc.org/ulpmark/scores.php

[31] B. K. Dar et al., “An Architecture for Fog Computing En-
abled Emergency Response and Disaster Management System
(ERDMS),” in ICAC, 2018.

[32] Z. Whittaker, “After Spate of Recent Attacks, Google beefs up
Nest security protections,” 2020.

[33] A. G. Howard et al., “Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] A. Krizhevsky et al., “Imagenet classification with deep convo-
lutional neural networks,” Advances in NIPS, vol. 25, 2012.

[35] H. Hu et al., “Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures,” arXiv preprint
arXiv:1607.03250, 2016.

[36] Google. Post-training integer quantization. [Online]. Avail-
able: https://www.tensorflow.org/lite/performance/post training
integer quant

[37] A. Ignatov, “Real-time Human Activity Recognition from Ac-
celerometer Data using Convolutional Neural Networks,” Applied
Soft Computing, vol. 62, 2018.

[38] U. M. L. Repository. Human Activity Recognition Using
Smartphones Data Set. [Online]. Available: http://archive.ics.uci.
edu/ml/datasets/human+activity+recognition+using+smartphones

[39] L. D. Beal et al., “Gekko optimization suite,” Processes, 2018.
[40] MSP430FR5994 LaunchPad™ Development Kit

(MSP-EXP430FR5994), Texas Instruments.
[41] Texas Instruments. EnergyTrace Technology. [Online]. Available:

http://www.ti.com/tool/ENERGYTRACE
[42] ARM. ARM software ML zoo. [Online]. Avail-

able: https://github.com/ARM-software/ML-zoo/tree/master/
models/keyword spotting/ds cnn large/tflite int8

[43] CC2640R2F SimpleLink™ Bluetooth 5.1 Low Energy Wireless
MCU, Texas Instruments.

[44] M. Siekkinen et al., “How low energy is bluetooth low energy?
comparative measurements with zigbee/802.15.4,” in WCNCW,
2012.

[45] R. Hadidi et al., “Toward collaborative inferencing of deep neural
networks on internet-of-things devices,” IOT-J, vol. 7, no. 6,
2020.

[46] V. Deep et al., “Harc: A heterogeneous array of redundant
persistent clocks for batteryless, intermittently-powered systems,”
in RTSS, 2020.

[47] M. Wymore et al., “Lifecycle management protocolsfor battery-
less, intermittent sensor nodes,” in IPCCC, 2020.

[48] V. Kortbeek et al., “Time-sensitive intermittent computing meets
legacy software,” in ASPLOS, 2020.

[49] K. Maeng et al., “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in PLDI, 2020.

[50] Xu et al., “Practical backscatter communication systems for
battery-free internet of things: A tutorial and survey of recent
research,” IEEE Signal Processing Magazine, vol. 35, no. 5,
2018.

[51] B. Denby et al., “Orbital edge computing: Nanosatellite constel-
lations as a new class of computer system,” in ASPLOS, 2020.

[52] J. Hedengren et al., “Apopt: Minlp solver for differential and
algebraic systems with benchmark testing,” in Proceedings of
the INFORMS National Meeting, vol. 1417, 2012.

[53] S. Han et al., “Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Cod-
ing,” arXiv preprint arXiv:1510.00149, 2015.

[54] Y. He et al., “Channel pruning for accelerating very deep neural
networks,” in ICCV, 2017.

[55] Y. Kang et al., “Neurosurgeon: Collaborative intelligence be-
tween the cloud and mobile edge,” SIGARCH Comput. Archit.
News, vol. 45, no. 1, Apr. 2017.

[56] H.-J. Jeong et al., “Ionn: Incremental offloading of neural net-
work computations from mobile devices to edge servers,” in
SoCC, 2018.

[57] D. Hu et al., “Fast and accurate streaming cnn inference via
communication compression on the edge,” in IoTDI, 2020.

[58] S. Scardapane et al., “Why should we add early exits to neural
networks?” Cognitive Computation, vol. 12, no. 5, 2020.

[59] N. Passalis et al., “Efficient adaptive inference for deep convo-
lutional neural networks using hierarchical early exits,” Pattern
Recognition, vol. 105, 2020.

[60] Li et al., “Deep learning for smart industry: Efficient manufacture
inspection system with fog computing,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, 2018.

https://www.eembc.org/ulpmark/scores.php
https://www.tensorflow.org/lite/performance/post_training_integer_quant
https://www.tensorflow.org/lite/performance/post_training_integer_quant
http://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://www.ti.com/tool/ENERGYTRACE
https://github.com/ARM-software/ML-zoo/tree/master/models/keyword_spotting/ds_cnn_large/tflite_int8
https://github.com/ARM-software/ML-zoo/tree/master/models/keyword_spotting/ds_cnn_large/tflite_int8

	Introduction-0.0ex
	Motivation-2ex
	Distributing NNs Across Edge Nodes
	Distribution Algorithm
	Memory Requirements
	Intra-Layer MINLP Optimization
	Cross- and Intra-Layer MINLP Co-Optimization

	Methodology
	Results
	Minimum Number of Nodes
	Node Memory Scalability
	Latency and Energy
	Communication Cost
	MINLP Cost Analysis

	Related Work
	Conclusion and Future Work
	References

