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Abstract

In many statistical problems, incorporating priors
can significantly improve performance. However,
the use of prior knowledge in differentially pri-
vate query release has remained underexplored,
despite such priors commonly being available in
the form of public datasets, such as previous US
Census releases. With the goal of releasing statis-
tics about a private dataset, we present PMWPub,
which—unlike existing baselines—Ileverages pub-
lic data drawn from a related distribution as prior
information. We provide a theoretical analysis
and an empirical evaluation on the American
Community Survey (ACS) and ADULT datasets,
which shows that our method outperforms state-
of-the-art methods. Furthermore, PMWPUYP scales
well to high-dimensional data domains, where
running many existing methods would be compu-
tationally infeasible.

1. Introduction

As the collection and distribution of private information be-
comes more prevalent, controlling privacy risks is becoming
a priority for organizations that depend on this data. Differ-
ential privacy (Dwork et al., 2006b) is a rigorous criterion
that provides meaningful guarantees of individual privacy
while allowing for trade-offs between privacy and accuracy.
It is now deployed by organizations such as Google, Ap-
ple, and the US Census Bureau. In this work, we study
the problem of differentially private query release, specifi-
cally generating a private synthetic dataset: a new dataset
in which records are “fake” but the statistical properties of
the original data are preserved. In particular, the release of
summary data from the 2020 US Decennial Census—one of
the most notable applications of differential privacy (Abowd,
2018)—can be framed as a private query release problem.
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In practice, generating accurate differentially private syn-
thetic datasets is challenging without an excessively large
private dataset, and a promising avenue for improving these
algorithms is to find methods for incorporating prior infor-
mation that lessen the burden on the private data. In this
paper we explore using public data as one promising source
of prior information that can be used without regard for its
privacy.! For example, one can derive auxiliary data for
the 2020 US Census release from already-public releases
like the 2010 US Census. Similarly, the Census Bureau’s
American Community Survey has years of annual releases
that can be treated as public data for future releases. Al-
ternatively, once national-level statistics are computed and
released, they can serve as public data for computing private
statistics over geographic subdivisions, such as states and
counties. Indeed, such a hierarchy of releases is part of
the TopDown algorithm being developed for the 2020 US
Census (Abowd et al., 2019).

Existing algorithms for private query release do not incorpo-
rate public data. While there is theoretical work on public-
data-assisted private query release (Bassily et al., 2020a), it
crucially assumes that the public and private data come from
the same distribution and does not give efficient algorithms.

QOur Contributions Therefore, in light of these observa-
tions, we make the following contributions:

1. We initiate the study of using public data to improve
private query release in the more realistic setting where
the public data is from a distribution that is related but
not identical to the distribution of the private data.

2. We present (Private) Multiplicative Weights with Pub-
lic Data (PMWPU0)_ an extension of MWEM (Hardt
et al., 2012) that incorporates public data.

3. We show that as a side benefit of leveraging public data,
PMWPU js computationally efficient and therefore is
practical for much larger problem sizes than MWEM.

4. We analyze the theoretical privacy and accuracy guar-
antees of PMWPUW,

"The public data may have been derived from private data, but
we refer to it as “public” for our purposes as long as the privacy
concerns have already been addressed.
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5. We empirically evaluate PMWP!® on the American
Community Survey (ACS) data to demonstrate that we
can achieve strong performance when incorporating
public data, even when public samples come from a
different distribution.

1.1. Related Work

Our work relates to a growing line of research that utilizes
publicly available data for private data analyses in the set-
ting where the public and private data come from the same
distribution. For private query release, Bassily et al. (2020a)
prove upper and lower bounds on the number of public and
private samples needed, and Alon et al. (2019) do the same
for binary classification. Neither of these works, however,
give computationally efficient algorithms. Other works con-
sider a more general problem, private prediction, where the
public data is unlabeled and the private data is used to la-
bel the public data (Bassily et al., 2018; Dwork & Feldman,
2018; Nandi & Bassily, 2020; Papernot et al., 2018). Beimel
et al. (2013) consider the semi-private setting where only a
portion of examples require privacy for the labels.

These prior works are limited by the strong assumption
that the public and private data are drawn from the same
distribution. One notable exception is the recent work of
Bassily et al. (2020b) on supervised learning, in which the
authors assume that the public and private data can be la-
beled differently but have the same marginal distribution
without labels. Given that their problem is trivial otherwise,
they focus solely on the setting where the public dataset
is smaller than the private dataset. However, if the public
data comes from a different distribution (as is the case in
our experiments), the setting in which the size of the public
dataset is similar to or larger than that of the private dataset
becomes interesting.

Finally, Ji & Elkan (2013) propose a method that, like
PMWPUY reweights a support derived from a public dataset
(via importance weighting). However, while their method
does not rely on the assumption that the public and private
data come from the same distribution, Ji & Elkan (2013)
do not make this distinction in their theoretical analysis or
discussion. Moreover, unlike the algorithm presented in this
work, their method is not tailored to the problem of query
release.”

2. Preliminaries

We consider a data domain X = {0, 1}% of dimension d, a
private dataset De xn consisting of the data belonging
to n individuals, and a class of statistical linear queries
Q. Our final objective is to generate a synthetic dataset in
a privacy-preserving way that matches the private data’s

2See Appendix A.5 for an additional discussion.

answers. Consider a randomized mechanism M : X" —
‘R that takes as input a private dataset D and computes a
synthetic dataset X € R, where R represents the space
of possible datasets. Given a set of queries Q, we say
that the max error of a synthetic dataset X is given by
maxgeg |¢(D) — ¢(X)].

We begin with the definition of a statistical linear query:

Definition 2.1 (Statistical linear query). Given a predicate
¢ and a dataset D, the linear query g4 : X™ — [0,1] is
defined by

4s(D) = ﬁ 3 o)
xeD

Defining a dataset instead as a distribution A over the do-
main X, the definition for a linear query g, then becomes

q6(A) = Xsen P(2)A(2).

One example of a statistical query class is k-way marginal
queries, which we define below.

Definition 2.2 (k-way marginal query). Let the data uni-
verse with d categorical attributes be X = (X1 X ... x Xy),
where each X is the discrete domain of the ith attribute. A
k-way marginal query ¢g, is a linear query specified by
a set of k attributes S C [d] (with |S| = k) and target
y € [l;cg &i such that for all x € X

1 VeSS zj=y;
bsy(z) = { 0 : otherwise

where x; € X; means the ith attribute of record x € X. We
define a workload as the set of marginal queries given by a
set of attributes S. The workload given by attributes in S
has a total of [ [, g |X;| marginal queries.

Although we evaluate on k-way marginal queries in our
experiments, we provide theoretical results that hold for any
class of linear queries.

Definition 2.3 (¢;-sensitivity). The ¢;-sensitivity of a func-
tion f : X* — RF is

Af =

max
neighboring D, D’

I£(D) = f(D")x

In the context of statistical queries, the ¢;-sensitivity of
query captures the effect of changing an individual in the
dataset and is useful for determining the amount of pertur-
bation required for preserving privacy.

In our setting, we have access to a public dataset D e
X'™ containing the data of m individuals that we can use
without privacy constraints. This dataset defines a public
data domain, derioted by X C X, which consists of all
unique rows in . We assume that both the public and
private datasets are i.i.d. samples from different distributions
and use the Rényi divergence, which we define below, as a
measure for how close the two distributions are.
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Definition 2.4 (Rényi divergence). Let i and v be probabil-
ity distributions on 2. For o € (1, 00), we define the Rényi
divergence of order o between p and v as

" log 3 () (a)

Dol v)=1—1
€N

The Rényi divergence is also used in the definition of privacy
that we adopt. The output of a randomized mechanism
M : X* — TR is a privacy preserving-computation if it
satisfies concentrated differential privacy (CDP) (Dwork &
Rothblum, 2016; Bun & Steinke, 2016):

Definition 2.5 (Concentrated DP). A randomized mecha-
nism M : X" — R is 552—CDP, if for all neighboring
datasets D, D’ (i.e., differing on a single person), and for
all o € (1, 00),

Da(M(D) || M(D') < 3%

where Do, (M(D) || M(D’)) is the Rényi divergence be-
tween the distributions of M (D) and M(D’).

Two datasets are neighboring if you can obtain one from the
other by changing the data of one individual. Definition 2.5
says that a randomized mechanism computing on a dataset
satisfies zCDP if its output distribution does not change by
much in terms of Rényi divergence when a single user in
the dataset is changed. Finally, any algorithm that satis-
fies zCDP also satisfies (approximate) differential privacy
(Dwork et al., 2006b;a):

Definition 2.6 (Differential Privacy (DP)). A randomized
algorithm M : X* — R satisfies (¢, §)-differential privacy
(DP) if for all neighboring databases D, D’, and every event
FE C R, we have

Pr[M(D) € E] < e Pr[M(D’) € E] + 6.

If § = 0, we say that M satisfies pure (or pointwise) e-
differential privacy.

3. Public Data Assisted MWEM

In this section, we revisit MWEM and then introduce
PMWPU which adapts MWEM to leverage public data.

3.1. MWEM

MWEM (Hardt et al., 2012) is an approach to answering lin-
ear queries that combines the multiplicative weights update
rule for no-regret learning and the exponential mechanism
(McSherry & Talwar, 2007) for selecting queries. It is a sim-
plification of the private multiplicative weights algorithm
(Hardt & Rothblum, 2010). MWEM maintains a distribution
over the data domain A" and iteratively improves its approx-
imation of the distribution given by the private dataset D.

At each iteration, the algorithm privately selects a query
q¢ with approximately maximal error using the exponential
mechanism and approximates the true answer to the query
with Laplace noise (Dwork et al., 2006b). MWEM then
improves the approximating distribution using the multi-
plicative weights update rule. This algorithm can be viewed
as a two-player game in which a data player updates its dis-
tribution A; using a no-regret online learning algorithm and
a query player best responds using the exponential mecha-
nism.

Our choice of extending MWEM stems from the following
observations: (1) in the usual setting without public data,
MWEM attains worst-case theoretical guarantees that are
nearly information-theoretically optimal (Bun et al., 2018);
(2) MWEM achieves state-of-the-art results in practice when
it is computationally feasible to run; and (3) MWEM can
be readily adapted to incorporate “prior” knowledge that is
informed by public data.

However, maintaining a distribution A over a data domain
X = {0, 1} is intractable when d is large, requiring a run-
time of O(n|Q| + T'|X||Q|)), which is exponential in d
(Hardt et al., 2012). Moreover, Ullman & Vadhan (2011)
show that computational hardness is inherent for worst-
case datasets, even in the case of 2-way marginal queries.
Thus, applying MWEM is often impractical in real-world
instances, prompting the development of new algorithms
(Gaboardi et al., 2014; Vietri et al., 2020) that bypass com-
putational barriers at the expense of some accuracy.

3.2. PMWPub

We now introduce PMWP'0 in Algorithm 1, which adapts
MWEM to utilize public data in the following ways:

First, the approximating distribution A; is maintained over
the public data domain X’ rather than X', implying that the
run-time of PMWP is O(n|Q| + T|X||Q|)). Because
|X| < m is often significantly smaller than |X'|, PMWPu
offers substantial improvements in both run-time and mem-
ory usage, scaling well to high-dimensional problems.

Secg\nd, Ay is initialized to the distribution over X given
by D. By default, MWEM initializes Ag to be uniform
over the data domain &X’. This naive prior is appropriate
for worst-case analysis, but, in real-world settings, we can
often form a reasonable prior that is closer to the desired
distribution. Therefore, PMWPU initializes A, to match
the distribution of D under the assumption that the public
dataset’s distribution provides a better approximation of D.

In addition, we make two additional improvements:

Permute-and-flip Mechanism. We replace the exponential
mechanism with the permute-and-flip mechanism (McKenna
& Sheldon, 2020), which like the exponential mechanism
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Algorithm 1 PMWPuP

Input: Private dataset Dex ", public dataset D e xm,
query class Q, privacy parameter £, number of iterations
T.
Let the domain be X = supp(D).
Let size of the private dataset be n = | D|.
Let Ag be the distribution over X given by D
.. . . é’
Initialize g = NoTik
fort =1toT do
Sample query ¢, € Q using the permute-and-flip
mechanism or exponential mechanism —i.e.,

Prlar] o exp (<5 1g(Ar1) — a(D) )

Measure: Let a;, = ¢;(D) + N (0,1/n%3). (But, if
a; < 0,seta; =0;ifa; > 1,seta; = 1A.)
Update: Let A; be a distribution over X’ s.t.

Ag(w) o< Ag—1(w) exp (¢ (@) (ar — (A1) /2)-

end for
Output: A = avgte[T]At,l

runs in linear time but whose expected error is never higher.

Gaussian Mechanism. When taking measurements of sam-
pled queries, we add Gaussian noise instead of Laplace
noise. The Gaussian distribution has lighter tails, and in
settings with a high degree of composition, the scale of
Gaussian noise required to achieve some fixed privacy guar-
antee is lower (Canonne et al., 2020). Privacy guarantees for
the Gaussian mechanism can be cleanly expressed in terms
of concentrated differential privacy and the composition
theorem given by Bun & Steinke (2016).

4. Theoretical Analysis

In this section, we analyze the accuracy of PMWP!0 under
the assumption that the public and private dataset are i.i.d.
samples from two different distributions. The support of
the a dataset X € X* isthe setsupp(X)={z e X :z €
X}, and we denote the support of the public dataset D by
X = supp(lA)). Recall that PMWPU® (Algorithm 1) takes
as input a public dataset and then updates its distribution
over the public dataset’s support using the same procedure
found in MWEM. We show that the accuracy of PMWPUP
will depend on the best mixture error over the public dataset
support X', which we characterize using the best mixture
error function f5 o : 2% — [0,1] that measures a given

support’s ability to approximate the private dataset D over
the set of queries Q. The precise definition is as follows:

Definition 4.1. For any support S € 2%, the best mixture
error of S to approximate a dataset D over the queries @) is
given by the function:

¢ (D) = pag(x)

zeS

S) = min max
fD’Q( ) HEA(S) q€Q

where p € A(S) is a distribution over the set S with 1, > 0
forallz € Sand ) g pe = 1.

Intuitively, PMWPY reweights the public dataset in a differ-
entially private manner to approximately match the private
dataset’s answers; the function f5 Q(X ) captures how well

the best possible reweighting on X would do in the absence
of any privacy constraints. While running PMWP!0 does not
explicitly require calculating the best mixture error, in prac-
tice it may prove useful to release it in a privacy-preserving
way. We present the following lemma, which shows that
[5.o(X) has bounded sensitivity.

Lemma 4.2. For any support S € 2% and set Q, the
best mixture error function fp g is 1 sensitive. That
is for any pair of neighboring datasets D, D’ of size n,
fp,0(S) = fpr.o(S)] < 5

~

It follows that we can release f5 (&), using the Laplace
or Gaussian mechanism with magnitude scaled by %

We show that, if the public and private datasets are drawn
from similar distributions, then, with high probability,
[5.o(X) is small. Note that the required size of the public
dataset increases with the divergence between the private

and public distributions.
Proposition 4.3. Let p,v € A(X) be distributions with
Doo(p|lv) < 00. Let D ~ p™ and D ~ v™ be n and m

independent samples from p and v respectively. Let X be
the support of D. Let () be a finite set of statistical queries

q:X —[0,1]. Leta,f > 0. If n > S log (%) and

m > (82eP2(ullv) 4 8 eDeo(ullr)) og (%) then

Pr {fﬁyQ(f) < a} >1-5.

Proof. Note that we may assume o < 1 as the result
is trivial otherwise. Let g(z) = p(z)/v(z). Then
0 < g(x) < eP=®l) for all 2 and, for X ~ v, we
have E[g(X)] = 1 and E[g(X)?] = €P2(I¥). Define

w € A(X) by w, = % for z € X. Clearly
[p,o(X) S maxgeq [q(D) — X, cpwaq(x)|-

Fix some ¢ € (). By Hoeffding’s inequality,

Prlg(D) — q(u)] > a /4] < 2 e/,
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For X ~ v, E[g(X)q(X)] = ¢(u) and Var[g(X)q(X)] <
E[(g(X)q(X))?] < E[g(X)?] = eP2(#1*) By Bernstein’s
inequality,

Pr||m-q(u) = Y g@)a@)| = Tm
:1:65

<9 —a2m
< 2-exp 32 eD2(ull) 4 8 ePoolullv) ) °

Leth =) _pg(x). Similarly,

Pr [l —m| = Gm| =Pr [Im =3 g(a)| = 5

zeD

<2 ot
S 20 6xp 392. (eDz(HHl’) — 1) + % o+ ePoollv) ]

If all three of the events above do not happen, then

a(D) = Y weaw)| = | S ale) — — 3 glaata)

~ n ~ =
xzeD zeD xzeD
1 1
< |- a@) —a)|+ | = | ma(u) = Y g(@)a(x)
wef) :veﬁ
|t — m| a  gm+gm
P < &y A
m — Zm

Taking a union bound over all ¢ € @) shows that the proba-
bility that any of these events happens is at most

2Q|~ea2"/8+(2|Q|+2)~exp<

7062m
32.6D2(m|u)+§.a.eDoo(MHV) ’

which is at most 5 if n and m are as large as the theorem
requires. O

Having established sufficient conditions for good public
data support, we bound the worst-case error of PMWPub
running on a support X'. Since our method is equivalent
to running MWEM on a restricted domain X, its error
bound will be similar to that of MWEM. Hardt et al. (2012)
show that, if the number of iterations of the algorithm is
chosen appropriately, then MWEM has error scaling with

log(|X|) where X is the algorithm’s data domain. Since
PMWP i initialized with the restricted data domain X
based on a public dataset of size m, its error increases with

\/log |2?| < /Iog m instead. Moreover, PMWPU0’s error

-~

bound includes the best-mixture error f5 ,(X). Taken to-
gether, we present the following bound:

Theorem 4.4. For any private dataset D € X", set of
statistical queries @ C {q : X — [0,1]}, public dataset

D € X™ with support X, and privacy parameter £ > 0,

PMWPY with parameter 7' = © ("i)i Vgl‘og‘m + log(l/ﬂ))

outputs a distribution A on X such that, with probability
2 1- ﬁ’

max|g(4) - q(D)|

qe

<

O, . ogm O, 1 ~
; w g(1Ql) - (Viogm +1g<6>>+fm(x)

ne

4.1. Privacy Analysis

The privacy analysis follows from four facts: (i) Permute-
and-flip satisfies ¢g-differential privacy (McKenna & Shel-
don, 2020), which implies %ag—concentrated differential
privacy. (ii) The Gaussian noise addition also satisfies %5(2)-
concentrated differential privacy. (iii) The composition prop-
erty of concentrated differential privacy allows us to add up
these 27" terms (Bun & Steinke, 2016). (iv) Finally, we can
convert the concentrated differential privacy guarantee into
approximate differential privacy (Canonne et al., 2020).

Theorem 4.5. When run with privacy parameter € > 0,
PMWPU satisfies %éaconcentrated differential privacy and,
for all § > 0, it satisfies(e(d), 0)-differential privacy, where

1 log(1
e() = inf 55204 + w +1log(l —1/a)

a>1

IA

1
552 +1/21og(1/0) - &.

5. Empirical Evaluation

In this section, we presents results comparing PMWPUP
against baseline algorithms® in a variety of settings using
the American Census Survey and ADULT datasets.

5.1. Additional Baseline

DualQuery. Similar to MWEM, DualQuery (Gaboardi
et al., 2014) frames query release as a two-player game,
but it reverses the roles of the data and query players.
Gaboardi et al. (2014) prove theoretical accuracy bounds for
DualQuery that are worse than that of MWEM and show
that on low-dimensional datasets where running MWEM
is feasible, MWEM outperforms DualQuery. However,
DualQuery employs optimization heuristics and is often
more computationally efficient and scales to a wider range
of query release problems than MWEM.

3HDMM has been considered as a relevant baseline algorithm
in past query release work, but having consulted McKenna et al.
(2018), we realized that running HDMM in many settings (includ-
ing ours) is infeasible. We refer readers to Appendix A.5, where
we provide a more detailed discussion.
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5.2. Data

American Community Survey (ACS). We evaluate all al-
gorithms on the 2018 American Community Survey (ACS),
obtained from the IPUMS USA database (Ruggles et al.,
2020). Collected every year by the US Census Bureau, the
ACS provides statistics that capture the social and economic
conditions of households across the country. Given that
the Census Bureau may incorporate differential privacy into
the ACS after 2025, the data provides a natural testbed for
private query release algorithms in a real-world setting.

In total, we select 67 attributes,* giving us a data domain
with dimension 287 and size ~ 4.99 x 10*®. To run MWEM,
we also construct a lower-dimensional version of the data.
‘We refer to this data domain as ACS (reduced), which has
dimension 33 and a size of 98304.

For our private dataset 5 we use the 2018 ACS for the state
of Pennsylvania (PA-18) and Georgia (GA-18). To select
our public dataset D, we explore the following:

Selecting across time. We consider the setting in which
there exists a public dataset describing our population at a
different point in time. Using the 2020 US Census release as
an example, one could consider using the 2010 US Census
as a public dataset for some differentially private mechanism.
In our experiments, we use the ACS data for Pennsylvania
and Georgia from 2010.

Selecting across states. We consider the setting in which
there exists a public dataset collected concurrently from a
different population. In the context of releasing state-level
statistics, one can imagine for example that some states have
differing privacy laws. In this case, we can identify data for
a similar state that has been made public. In our experiments,
we select a state with similar demographics to the private
dataset’s state—Ohio (OH-18) for Pennsylvania and North
Carolina (NC-18) for Georgia. To explore how PMWPUP
performs using public data from potentially more dissimilar
distributions, we also run PMWP' ysing the five largest
states (by population) according to the 2010 US Census,
i.e. California (CA-18), Texas (TX-18), New York (NY-18),
Florida (FL-18), and Illinois (IL-18).

ADULT. We evaluate algorithms on the ADULT dataset
from the UCI machine learning dataset repository (Dua
& Graff, 2017). We construct private and public datasets
by sampling with replacement rows from ADULT of size
0.9N and 0.1N respectively (where N is the number of
rows in ADULT). Thus, we frame samples from ADULT as
individuals from some population in which there exists both
a public and private dataset trying to characterize it (with
the former being significantly smaller). In total, the dataset
has 13 attributes, and the data domain has dimension 146

* An inventory of attributes can be found in Appendix A.2.

and support size ~ 7.32 x 10!,

5.3. Empirical Optimizations

Following a remark made by Hardt et al. (2012) for opti-
mizing the empirical performance of MWEM, we apply the
multiplicative weights update rule using sampled queries g;
and measurements a; from previous iterations ¢. However,
rather than use all past measurements, we choose queries
with estimated error above some threshold. Specifically at
each iteration ¢, we calculate the term ¢; = |q;(At) — a4
for ¢ < ¢. In random order, we apply multiplicative weights
using all queries and measurements, indexed by %, where
c; > %f, i.e. queries whose noisy error estimates are rela-
tively high. In our implementation of MWEM and PMWFPUP,
we use this optimization. We also substitute in the permute-
and-flip and Gaussian mechanisms when running MWEM.

5.4. Hyperparameter tuning

On the ACS dataset, we select hyperparameters for
PMWPUY ysing 5-run averages on the corresponding val-
idation sets (treated as private) derived from the 2014 ACS
release. Specifically, we evaluate Pennsylvania (PA-14) us-
ing PA-10 and OH-14, Georgia (GA-14) using GA-10 and
NC-14, and both using CA-14, TX-14, NY-14, FL-14, and
IL-14. In all other cases, we simply report the best perform-
ing five-run average across all hyperparameter choices. A
list of hyperparameters is listed in Table 2 in the appendix.

5.5. Results

We first present results on the ACS data, demonstrating
that PMWP'0 achieves state-of-the-art performance in a
real world setting in which there exist public datasets that
come from slightly different distributions. Next, we run
experiments on ADULT and vary how similar the public
and private distributions are by artificially changing the
proportion of females to males in the public dataset. Finally,
we run additional experiments to highlight various aspects
of PMWPU in comparison to the baseline algorithms.

5.5.1. ACS

In Figure 1, we compare PMWPY against baseline algo-
rithms while using different public datasets. In addition, we
plot the best mixture error function for each public dataset to
approximate a lower bound on the error of PMWP!0, which
we estimate by running (non-private) multiplicative weights
with early stopping (at 100 iterations).

We observe that on ACS (reduced) PA-18, MWEM achieves
lower error than DualQuery at each privacy budget (Figure
1), supporting the view that MWEM should perform well
when it is feasible to run it. Using PA-10, OH-18, and NY-18
as public datasets, PMWP'? improves upon the performance
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ACS (reduced): PA-18 / PA-10

ACS (reduced): PA-18 / OH-18

ACS (reduced): PA-18 / NY-18 ACS (reduced): PA-18 / CA-18
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Figure 1: Max error for ¢ € {0.1,0.15,0.2,0.25,0.5,1} and § = % Results are averaged over 5 runs, and error bars
represent one standard error. The x-axis uses a logarithmic scale. Given the support of each public dataset, we shade the
area below the best mixture error to represent max error values that are unachievable by PMWPY  Additional results using
our other choices of public datasets can found in Appendix A.4. Top row: 5-way marginals with a workload size of 3003
(maximum) on the 2018 ACS (reduced) for Pennsylvania. Middle row: 3-way marginals with a workload size of 4096 on
the 2018 ACS for Pennsylvania. Bottom row: 3-way marginals with a workload size of 4096 on the 2018 ACS for Georgia.

of MWEM and outperforms all baselines. Similarly, on
the full-sized ACS datasets for Pennsylvania and Georgia,
PMWP' outperforms DualQuery.

Next, we present results of PMWPU0 when using CA-18
to provide examples where the distribution over the public
dataset’s support cannot be reweighted to answer all queries
accurately. In Figure 1, we observe that when using CA-18,
PMWPU performs well on ACS (reduced) PA-18. However,
on the set of queries defined for ACS PA-18 and GA-18, the
best mixture error for CA-18 is high. Moreover, we observe
that across all privacy budgets £, PMWPU achieves the best
mixture error. Regardless of the number of rounds we run
the algorithm for, the accuracy does not improve, and so the
error plots in Figure 1 are flat and have no variance.

While it may be unsurprising that the support over a dataset
describing California, a state with relatively unique demo-
graphics, is poor for answering large sets of queries on
Pennsylvania and Georgia, one would still hope to iden-
tify this case ahead of time. One principled approach to
verifying the quality of a public dataset is to spend some pri-

vacy budget on measuring its best mixture error. Given that
finding the best mixture error is a sensitivity—% query, we
can use the Laplace mechanism to measure this value. For
example, in the cases of both PA and GA (which have size
n = 10%), we can measure the best mixture error with a tiny
fraction of the privacy budget (such as ¢ = 0.01) by adding
Laplace noise with standard deviation % ~1.414 x 1073,

5.5.2. ADULT

To provide results on a different dataset, we also run ex-
periments on ADULT in which we construct public and
private datasets from the overall dataset. When sampled
without bias, the public and private datasets come from the
same distribution, and so the public dataset itself already
approximates the distribution of the private dataset well.
Consequently, we conduct additional experiments by sam-
pling from ADULT according to the attribute sex with some
bias. Specifically, we sample females with probability r + A
where 7 == 0.33 is the proportion of females in the ADULT
dataset. In Figure 2, we observe that running PMWPU® with
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Figure 2: Max error on 3-way marginals across privacy
budgets ¢ € {0.1,0.15,0.2,0.25,0.5, 1} where § = -5 and
the workload size is 256. Results are averaged over 5 runs,
and error bars represent one standard error. Each public
dataset is constructed by sampling from ADULT with some
bias A over the attribute sex (labeled as PMWPU0 (A)).

a public dataset sampled without bias (A = 0) achieves
very low error across all privacy budgets, and when using a
public dataset sampled with low bias (|A| < 0.2), PMWPuP
still outperforms DualQuery. However, when the public
dataset is extremely biased (A € {0.45,0.65}), the perfor-
mance of PMWPY deteriorates (though it still significantly
outperforms DualQuery). Therefore, we again show under
settings in which the public and private distributions are
relatively similar, PMWPUY0 achieves strong performance.

5.5.3. ADDITIONAL EMPIRICAL ANALYSIS

Public data size requirements. In Figure 3, we plot the
performance on ACS PA-18 of PMWPY against base-
line solutions while varying the fraction of the public
dataset used. Specifically, we sample some percentage
(p € {100%,10%,1%,0.1%}) of rows from PA-10 and
OH-18 to use as the public dataset. PMWPY outperforms
across all privacy budgets, even when only using 1% of the
public dataset (Figure 3). From a practical standpoint, these
results suggest that one can collect a public dataset that is
relatively small (compared to the private dataset) and still
achieve good performance using PMWPU0,

Run-time. Although running MWEM on the ACS (reduced)-
PA dataset is feasible, PMWFU is computationally more
efficient. An empirical evaluation can be found in Table 1.

6. Conclusion

In this paper, we study differentially private query release in
which the privacy algorithm has access to both public and
private data samples. We present our algorithm PMWPU®,
a variant of MWEM, that can take advantage of a source
of public data. Unlike prior work however, we explore
the case in which the public and private distributions are

£ =0.1 € =0.25
0.15
0.20 4
0.15 | 0.10 4
0.10 4
P 0.05 e
< 0.054 — —
o
t T T T T T T T T
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x
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=
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—————— DualQuery PMWP® (PA-10) —— PMWPU (OH-18)

Figure 3: Performance comparison on ACS PA-18 while
varying the size of the public dataset. We evaluate on 3-way
marginals with a workload size of 4096 and privacy budgets
defined by € {0.1,0.0.25,0.5,1} and § = .

Table 1: Run-time comparison between PMWPU and
MWEM on the 2018 ACS PA and ACS (reduced) PA, de-
noted as FULL and Red. respectively. We compare the
per-iteration run-time (in seconds) between PMWP{ (ys-
ing PA-10 as the public dataset) and MWEM. Experiments
are conducted using a single core on an i5-4690K CPU
(3.50GHz) machine.

ALGO. PER-ITER. RUN-TIME
RED PMWPub 0.185
) MWEM 0.919
FULL PMWPub 2.021
MWEM —

different, analyzing theoretical guarantees in this setting.
Moreover, we demonstrate that PMWPY improves accuracy
over baseline algorithms in an empirical study involving the
American Community Survey and ADULT datasets. In
doing so, we also demonstrate that our algorithm is scalable
to high-dimensional data.

For future work, one interesting avenue of research would
be to extend other existing methods to PAP query release.
However, we note that unlike MWEM, other methods such
as DualQuery do not explicitly maintain a reweighting over
a set of examples, which makes incorporating prior informa-
tion less straightforward. In general, however, we reiterate
that public data should be thought of as an additional source
of prior information that lessens the burden of the private
data. For example, one can imagine extending DualQuery
by “pretraining” the approximating query distribution on
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public data first.’ In addition, we contend that extending
PMWP to other differential privacy problems, such as
convex minimization problems (Ullman, 2015), is likewise
interesting. In particular, incorporating public data into dif-
ferentially private algorithms that generate synthetic data
for supervised learning is an open research problem.
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