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Abstract—As the storage overhead of high-performance com-
puting (HPC) data reaches into the petabyte or even exabyte
scale, it could be useful to find new methods of compressing
such data. The compression autoencoder (CAE) has recently been
proposed to compress HPC data with a very high compression
ratio; however, this machine learning-based method suffers from
the major drawback of lengthy training times. In this paper, we
attempt to mitigate this problem by proposing a proportioning
scheme that reduces the amount of data that is used for training
relative to the amount of data to be compressed. We show that
this method drastically reduces the training time without, in most
cases, significantly increasing the error. We further explain how
this scheme can even improve the accuracy of the CAE on certain
datasets. Finally, we provide some guidance on how to determine
a suitable proportion of the training dataset to use in order to
train the CAE for a given dataset.

Index Terms—Data compression, HPC, machine learning, au-
toencoder, training time

I. INTRODUCTION

The amount of data produced by high-performance comput-
ing (HPC) applications is very significant: it is often reported
to be on the terabyte or petabyte scale [1], and is growing
close to—if not already at—the exabyte scale [2], [3]. With
such a massive quantity of data, it is extremely important to
have an efficient way to compress it; otherwise, the storage
overhead of the data could be prohibitively large.

In general, there are two classes of compression methods:
lossless and lossy compressors. Lossless compressors are
able to compress data such that the compressed file can be
decompressed without losing any data. However, the trade-
off of lossless compressors is that their compression ratios
are relatively low. Lossy compressors, conversely, are able to
achieve much higher compression ratios, with the drawback
that some data loss generally occurs when decompressing
the data. Several lossy compressors have been proposed for
compressing HPC data, with some of the most widely-known
including SZ [18], ZFP [17], and ISABELA [4], [16].

Another method of compressing HPC data that has recently
been proposed utilizes machine learning. Specifically, the tech-
nique uses a type of neural network known as an autoencoder.
A special autoencoder, known as the compression autoencoder
(CAE), has been developed for compressing HPC data; it has
been indicated that it can achieve a compression ratio of up to
two orders of magnitude on certain datasets [5]. Such a high
compression ratio makes it very appealing to use. However,

one of its main drawbacks is that the training process of the
CAE can take a very long time. This paper proposes a way to
mitigate this problem by proportioning the amount of training
data to use relative to the amount of data to be compressed.

The rest of the paper is organized as follows. Section 2
discusses autoencoders in more detail, giving special attention
to the CAE. Section 3 proposes our solution for reducing the
lengthy training times of the CAE and explains our exper-
imental testbed. Section 4 describes the results, specifically
focusing on the impact on training time and testing error.
Section 5 offers guidance on determining a suitable training
dataset size relative to the size of the compression dataset.
Section 6 discusses related work. The conclusion is presented
in Section 7.

II. BACKGROUND AND MOTIVATION

The basic idea of an autoencoder, a type of unsupervised
neural network, is that it takes some input and produces an
output with as little loss of data as possible [6]. Autoencoders
generally have two main parts, an encoder and a decoder. The
encoder may contain a number of layers of data points. In
many cases, the amount of data points would decrease from
one layer to the next, thereby accomplishing dimensional re-
duction. Following the encoder is the decoder, which contains
the same number of layers that the encoder has. However,
whenever the number of data points decreases from one layer
to the next in the encoder, the number of data points would
increase between the two corresponding layers in the decoder.

In between the encoder and the decoder is the middle layer,
sometimes known as the Z layer. The Z layer contains the
minimal number of data points of all the layers.

The CAE [5] is an autoencoder specially designed for com-
pressing HPC data. In the CAE, the compressor is represented
by the encoder portion of the autoencoder, which consists of
three layers of decreasing dimensions. For example, the first
layer may contain n nodes, the second layer may contain /8
nodes, and the third layer may contain n/64 nodes, where
n is the number of data points sent to the autoencoder at a
time. In this case, every data point in the original input file is
represented by one node in the first layer of the autoencoder;
by the second layer, however, one node represents eight data
points. This increases to every 64 data points being represented
per node for the third layer. Thus, in every layer, the number
of data points needed to store the representation is reduced by
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Fig. 1. Diagram of a seven-layer CAE with three layers in the encoder, a Z layer, and three layers in the decoder. Note that the entirety of the input file does
not always proceed through the autoencoder at once, but may be split into multiple batches first.

8z, meaning that the theoretical compression ratio increases
8z with each layer.

After the encoder is the Z layer (the middle layer), which
may contain /512 nodes (another 8x reduction). In this layer,
which represents the compressed file, each node represents 512
data points of the original file; the theoretical compression
ratio would thus be 512.

Following the Z layer is the decompressor (represented by
the decoder portion of the autoencoder), which contains three
layers of increasing dimensions. The last layer of the decoder
would contain n data points, and this layer represents the
decompressed file. The CAE is thus a seven-layer autoencoder,
as there are three layers in the encoder, one middle layer, and
three layers in the decompressor.

In order to move from one layer to the next, a series
of weight matrices and bias vectors is used. There is one
weight matrix and one bias vector between every two layers
of the autoencoder; therefore, a seven-layer autoencoder would
have six weight matrices and six bias vectors. These weight
matrices and bias vectors are generally obtained through a
training process. Before compressing a dataset D, a dataset
D’ (which is generally similar to dataset D) will go through
the autoencoder for multiple epochs. In each epoch, the
autoencoder will compress and decompress D'—also known
as the “training dataset”—by using the weight matrices and
bias vectors (which were initialized prior to the start of the first
epoch'), and then compare the output of the decompressed D’
to the original data points in D’. It will then try to minimize
that difference by modifying the weight matrices and bias
vectors. It does this every epoch. At the end of the training
phase, the weight matrices and bias vectors will be saved; they
can then be used to compress dataset D. In this work, as in
previous work [5], the compression process is often referred

to as the “testing” process, and the dataset to be compressed
(e.g. D) is also referred to as the “testing” dataset.

One of the major drawbacks facing the compression autoen-
coder is that its training time can be very lengthy. Previous
work [5] found that, with compression ratios between 64 and
512, training a dataset with less than 50,000 data points over
25,000 epochs could take around two hours. If the training
dataset contained around 300,000 data points, then the training
time could increase to over 12 hours. Such findings establish
a correlation between the size of the training dataset and the
amount of time required for training. As the training and
testing datasets are equal in size in these experiments, if the
dataset for compression (i.e. the testing dataset) was very large,
then the training dataset would also be very large and could
take a significant amount of time to train. Therefore, in this
work we focus on the training overhead problem and propose
a proportioning method to address the issue.

III. DESIGN
A. Method

As mentioned previously, before a dataset D is compressed,
weights and biases are obtained by training a dataset D’, which
is generally similar to D. Dataset D’ would often be generated
from the same HPC scientific benchmark as dataset D, and
could even be a portion of dataset D.

Since datasets D and D’ are from the same benchmark,
they often have similar features; thus, the weights and biases
of one would likely be applicable to the other as well. As the
features of both datasets are generally similar, we propose that

IThe autoencoder model used in previous work [5] and in these ex-
periments initialized the weight matrices to values from the random normal
distribution and the bias vectors to zero. Different autoencoder models could
potentially have different initialization methodologies.



TABLE I
OVERVIEW OF THE 18 EXPERIMENTAL DATASETS
Dataset Data Points | Benchmark
Bump 25,000 NEK5000
Astro 32,768 NEK5000
Fish 32,768 NEK5000
Sedov-Pres 39,072 FLASH
Sedov-Temp 39,072 FLASH
yf17Pres 48,552 NEK5000
yf17Temp 48,552 NEK5000
Swept 77,180 NEK5000
S3DP 97,020 MCERI
Inviscid Vortex 100,000 NEK5000
Rarefaction 100,000 NEK5000
Maclaurin-Pres 133,376 FLASH
Maclaurin-Temp 133,376 FLASH
Eddy 135,000 NEK5000
2DAnnulus 181,890 NEK5000
Blast2 289,440 FLASH
MD-Seg 300,000 GROMACS
mhdTime 2,400,001 SDR

by reducing the size of the training dataset (without changing
the size of the compression, or testing, dataset), we could
reduce the training time while still learning enough features
to maintain an acceptable level of accuracy. In the previously
used CAE [5], the size of the training and testing HPC datasets
would be the same. Assume that X represents the number of
data points in each of these datasets. However, it may not be
necessary to train all X data points from the training dataset
in order to generate weights and biases for the testing dataset;
rather, the features could be learned from the training dataset
by using a portion of X. We thus develop a method known
as dataset proportioning: finding a rough proportion of the
training dataset to use for compression that can reduce the
training time while still learning enough features from the
training dataset to be able to compress and decompress the
testing dataset without losing a significant amount of accuracy.

B. Experimental Setup

To test our theory, we set up an experimental testbed.
The experimental setup is the same seven-layer compression
autoencoder used in the previous work [5]. As displayed in
Figure 1, it has three layers of decreasing dimensions for the
encoder (representing the compressor), a middle layer (rep-
resenting the compressed file), and three layers of increasing
dimensions for the decoder (representing the decompressor).
The main difference between this autoencoder and the previous
CAE is that this autoencoder only uses a portion of the
training dataset for training. In our experimental model, the
n percent of each training dataset that is used is the first
n percent. For example, when training is conducted on 25%
of the training dataset, it is the first 25% of data points that
are chosen for training. Future work may look into whether
choosing a different section of the dataset, or whether, for
example, choosing one in every four data points, may yield
better results.

We use this autoencoder to run experiments on the 18
datasets listed in Table I. These datasets come from HPC
simulations from several open-source benchmarks: NEK5000
[11], FLASH [12], MCERI [13], GROMACS [14], and SDR
[15]. Each of these datasets has two parts, one for training and
one for testing. (For example, the two parts of the MD-Seg
dataset are md_training.bin and md_testing.bin.) The “Data
Points” column of the table indicates the number of double-
precision floating-point data points in each of these parts, as
the training and testing portions are equal in size.

For each of the 18 datasets, training is generally performed
six times: once on the entire training dataset, as well as on
approximately 50, 25, 10, 5, and 1 percent of the training
dataset. Each training is performed over 10,000 epochs. After
each training finishes, weights and biases from the training
process are saved. These weights and biases are then used
to compress the entire corresponding testing dataset. For
example, for the MD-Seg dataset, training is performed using
the six aforementioned proportions of the training dataset,
md_training.bin, and then is tested on the testing dataset,
md_testing.bin, with each of the six pairs of weights and
biases.

IV. RESULTS AND EVALUATION
A. Training Time

The motivation for this work is to attempt to reduce the
lengthy training times encountered when using the autoen-
coder for lossy compression of HPC data. Figure 2 displays
the training times for 17 of the experimental datasets as the
size of each training dataset decreases.”As can be seen from
this graph, as the size of the training dataset is reduced, the
time required for training is generally reduced as well. While
this is not always as obvious for smaller datasets, which
already have a relatively low training time, the differences
are much more pronounced for large datasets. Several of
the large datasets experience a training time reduction of an
order of magnitude. It appears that these datasets’ training
times approach a horizontal asymptote at around 40 seconds;
however, the exact value of the training time limit may depend
on the specific autoencoder model and the hardware capability.

B. Testing Error

From Figure 2, it is clear that using only a portion of
the training dataset for the training process can significantly
reduce the training time. However, lowering the training time
would be of little use if doing so results in high prediction
errors. Therefore, it is important to examine the errors to
ensure that they are still acceptable.

The testing prediction errors are presented in Figure 3.
From the graph, we can divide the datasets into three main
categories, as indicated in Table II. The first category consists

2The training time of the mhdTime dataset is not included in this figure
because, as its size is very large relative to the experimental datasets, it has a
very large training time and thus skews the proportions of the graph, making
the trend lines for the other datasets harder to see. The mhdTime dataset does,
however, follow the same pattern observed with the other datasets.
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Fig. 2. Training times as the size of the training dataset decreases. The x-axis represents the size of the training dataset used relative to its original size (and,
since the testing dataset would have an equal original size, relative to the testing dataset). The y-axis represents the number of seconds required for training.
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Fig. 3. Testing prediction errors on the 18 experimental datasets. The x-axis represents the size of the training dataset that was used relative to its original
size. The y-axis represents the prediction error after weights and biases from training a certain size of the training dataset were used to compress the entire
testing dataset. Note that, for example, “1” in the y-axis represents 100% error.



TABLE 11
EXPERIMENTAL DATASETS ORGANIZED BY TESTING PREDICTION
PERFORMANCE
CV (Testin; CV (Trainin

Dataset Category Dataset) # Dataset) #
Astro Good 0.067231 0.060980
Fish Good 3.547695 3.590917
Sedov-Pres Good 0.000473 0.000473
yf17Temp Good 0.007613 0.015392
Swept Good 0.127470 0.042109
Rarefaction Good 0.043189 0.044695
Maclaurin-Pres Good 0.174820 0.175301
Maclaurin-Temp Good 0.629824 0.631273
2DAnnulus Good 0.208714 0.175425
MD-Seg Good 0.221210 0.220753
mhdTime Good 0.594166 0.482194
Blast2 Bad 0.639798 0.639526
Bump Bad 0.641916 0.239242
Sedov-Temp Bad 0.428897 0.428632
yf17Pres Bad 1.381044 0.919403
Inviscid Bad 0.715134 0.509440
Eddy Bad 0.757119 0.658896

[ S3DP [ Special Case [ 0.037480 [ 0.790152 ]

of datasets that have high prediction errors on the testing
dataset, regardless of whether the full training dataset is used
for training or whether only a portion of it is used. The second
category includes datasets that have low prediction errors when
the full training dataset is used, as well as frequently have
low errors when a portion of the training dataset is used. The
third category, which only contains a single dataset, indicates
a dataset that has a high prediction error when the full training
dataset is used, but its prediction error decreases significantly
when only a portion of it is used.

The first category (high prediction errors regardless of the
size of the training dataset) consists of the datasets Bump,
Sedov-Temp, yfl7Pres, Inviscid, Eddy, and Blast2. The coef-
ficient of variation (CV), defined as the ratio of the standard
deviation to the mean, measures the dispersion of a frequency
or probability distribution. CVs are often expressed as per-
centages; the higher the percentage is, the higher the extent of
variability relative to the mean of the population is. As can be
verified in Table II, all of these datasets have high CV values.
This validates the theory from the previous work [5] that the
CV can be a good indicator of whether the autoencoder is
well-suited for compressing a given dataset.

The second category (low prediction errors on the full
training dataset as well as often low prediction errors on a
portion of the training dataset) contains the datasets Astro,
Fish, Sedov-Pres, yfl7Temp, Swept, Rarefaction, Maclaurin-
Pres, Maclaurin-Temp, 2DAnnulus, MD-Seg, and mhdTime.
With one exception, all of these datasets have low CV values,
again validating the previous theory. The one exception to this
is the Fish dataset: it has a very high CV of over 3.5, yet it
still performs well with the autoencoder. This is likely because
this dataset contains a large number of zero values.

One dataset that appears to be an outlier to both of these
groups is the S3DP dataset. When training was performed

on the full training dataset and those weights and biases
were then used to compress the testing dataset, the testing
prediction error was very high—about 74.6%. However, when
smaller amounts of the training dataset were used to generate
weights and biases, the testing error gradually decreased until
it reached a prediction error around only 21.2%; that error was
reached when 5% of the training dataset was used for training.
This is likely because the training and testing datasets of S3DP
are very different: as mentioned in Table II, the training part
of S3DP has a CV of around 0.79, but the testing part has
a CV of under 0.04. It is also noteworthy that S3DP is the
only experimental dataset in these experiments to have such a
vast difference of CVs between the training and testing parts.
From this, we can conclude that reducing the amount of the
training dataset used to generate weights and biases can not
only drastically reduce the training time without significantly
increasing the error, but it could also improve the prediction
accuracy for datasets whose training and testing portions have
very different CV values.

V. GUIDANCE ON TRAINING DATASET PROPORTION

A question that may arise here is how much of the training
dataset we should use in order to generate weights and biases.
Since we can assume that the “full” training dataset is equal to
the size of the testing dataset, we could consider, for example,
50% of the training dataset to be essentially the same as 50%
of the testing dataset.
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Fig. 4. Testing prediction errors on only the datasets that work well with the
autoencoder. This graph contains the same data as Figure 3 except that the
datasets with bad prediction errors have been removed.

Figure 4 displays the testing prediction errors of datasets
that work well with the autoencoder. From this graph, it
appears that almost all of the datasets which work well with
the autoencoder still have difficulty performing well when only
1% of the training dataset is used; thus, we can eliminate this
proportion from our examination.

Figure 5 shows the prediction errors of the “good” datasets
as the size of the training dataset decreases from 100% to 5%
of the size of the testing dataset. While some of these datasets
may appear to have drastic shifts, it is important to remember
that the compression autoencoder prototype is error-bounded;
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Fig. 5. Testing prediction errors on only the datasets that work well with
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version of Figure 4.

therefore, a jump from a mean error of, for example, 2% to 6%
may not significantly impact the accuracy if the error-bound
is held constant. (The inclusion of an error-bound also means
that a jump in error could decrease the compression ratio;
however, this could then indicate a trade-off between training
speed, accuracy, and compression ratio.) Most of these “good”
datasets appear to hold well all the way down to 10%, and
most of them do not significantly increase their error for 5%
either. However, there are two datasets whose mean testing
errors do significantly increase when the size of the training
dataset is reduced from 10% to 5%: Sedov-Pres and yf17Temp.
The testing error of Sedov-Pres increases by around 10z when
the training dataset’s proportion is reduced from 10% to 5%,
while the testing error of yfl7Temp increases by almost 3z.
This likely also has to do with CV values: At 0.000473, Sedov-
Pres has the lowest CV of the experimental datasets; yfl77Temp
has the second lowest at just 0.007613. None of the other
experimental datasets have a CV that is even in the same
magnitude as these two datasets; the others are all at least
one order of magnitude higher. Thus, we can conclude that the
amount of the training dataset that should be used is dependent
on the CV: If the CV is relatively low, but above 0.01, then
around 5% of the training dataset could be used to generate
weights and biases. (The same proportion would apply if the
training and testing CVs are very different from one another,
as was in the previously mentioned case of S3DP.) If, however,
the CV is an order of magnitude lower than 0.01 — as is the
case with yfl17Temp — then a higher proportion of the training
dataset should be used to generate weights and biases. As
the CV continues to decrease, a larger portion of the training
dataset should be used to generate weights and biases.

VI. RELATED WORK

Several works have looked into reducing the training times
involved in machine learning. For example, Nguyen and
Widrow [8] describe a method involving initializing adaptive
weights in a two-layer neural network and show that, on one
example, it significantly reduces the training time of a neural

network from two days to just four hours. Thomson et al.,
meanwhile, [9] propose using unsupervised clustering in a
program’s feature space to significantly reduce the amount of
time required for training in a machine learning-based com-
piler. Laurent et al. [10] looked into using batch normalization
in recurrent neural networks and found that one such effect of
doing so was reduced training times.

Work has also previously been done to attempt to reduce
the training time of the CAE. Liu et al. [7] looked into the
possibility of using transfer learning with the CAE and found
that doing so could reduce training times without significantly
increasing the error in most cases.

VII. CONCLUSION

In this paper, we evaluate the performance when different
proportions of a training dataset are used for generating
weights and biases to compress a testing dataset. We conduct
experiments on 18 datasets and categorize them based on their
results. From this categorization, we can find that if a dataset
performed well on the compression autoencoder when the
full training dataset was used to generate weights and biases,
then it will likely also perform well when only a portion of
the training dataset is used. The size of the training dataset
(relative to the size of the testing dataset) that should be used
depends on the value of the CV. We also find that, in cases
where the training and testing portions of the dataset have
very different CVs, reducing the size of the training dataset
will likely improve the prediction accuracy. By showing how
the training time can be significantly lowered when reducing
the amount of the training dataset used, and displaying how
this can still yield results with suitable accuracy, we alleviate
one of the major limitations of the compression autoencoder.
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