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ABSTRACT

Low-precision deep neural network (DNN) training has gained tremendous atten-
tion as reducing precision is one of the most effective knobs for boosting DNNs’
training time/energy efficiency. In this paper, we attempt to explore low-precision
training from a new perspective as inspired by recent findings in understanding
DNN training: we conjecture that DNNs’ precision might have a similar effect as
the learning rate during DNN training, and advocate dynamic precision along the
training trajectory for further boosting the time/energy efficiency of DNN training.
Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the
precision between two boundary values which can be identified using a simple
precision range test within the first few training epochs. Extensive simulations
and ablation studies on five datasets and eleven models demonstrate that CPT’s
effectiveness is consistent across various models/tasks (including classification and
language modeling). Furthermore, through experiments and visualization we show
that CPT helps to (1) converge to a wider minima with a lower generalization error
and (2) reduce training variance which we believe opens up a new design knob for
simultaneously improving the optimization and efficiency of DNN training. Our
codes are available at: https://github.com/RICE-EIC/CPT.

1 INTRODUCTION

The record-breaking performance of modern deep neural networks (DNNs) comes at a prohibitive
training cost due to the required massive training data and parameters, limiting the development of the
highly demanded DNN-powered intelligent solutions for numerous applications (Liu et al., 2018; Wu

et al., 2018). As an illustration, training ResNet-50 involves 10'® FLOPs (floating-point operations)
and can take 14 days on one state-of-the-art (SOTA) GPU (You et al., 2020b). Meanwhile, the large
DNN training costs have raised increasing financial and environmental concerns. For example, it
is estimated that training one DNN can cost more than $10K US dollars and emit carbon as high
as a car’s lifetime emissions. In parallel, recent DNN advances have fueled a tremendous need for
intelligent edge devices, many of which require on-device in-situ learning to ensure the accuracy
under dynamic real-world environments, where there is a mismatch between the devices’ limited
resources and the prohibitive training costs (Wang et al., 2019b; Li et al., 2020; You et al., 2020a).

To address the aforementioned challenges, extensive research efforts have been devoted to developing
efficient DNN training techniques. Among them, low-precision training has gained significant
attention as it can largely boost the training time/energy efficiency (Jacob et al., 2018; Wang et al.,
2018a; Sun et al., 2019). For instance, GPUs can now perform mixed-precision DNN training with
16-bit IEEE Half-Precision floating-point formats (Micikevicius et al., 2017b). Despite their promise,
existing low-precision works have not yet fully explored the opportunity of leveraging recent findings
in understanding DNN training. In particular, existing works mostly fix the model precision during the
whole training process, i.e., adopt a static quantization strategy, while recent works in DNN training
optimization suggest dynamic hyper-parameters along DNNs’ training trajectory. For example, (Li
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et al., 2019) shows that a large initial learning rate helps the model to memorize easier-to-fit and more
generalizable patterns, which aligns with the common practice to start from a large learning rate for
exploration and anneal to a small one for final convergence; and (Smith, 2017; Loshchilov & Hutter,
2016) improve DNN5’ classification accuracy by adopting cyclical learning rates.

In this work, we advocate dynamic precision training, and make the following contributions:

* We show that DNNs’ precision seems to have a similar effect as the learning rate during DNN
training, i.e., low precision with large quantization noise helps DNN training exploration
while high precision with more accurate updates aids model convergence, and dynamic
precision schedules help DNNs converge to a better minima. This finding opens up a design
knob for simultaneously improving the optimization and efficiency of DNN training.

* We propose Cyclic Precision Training (CPT) which adopts a cyclic precision schedule along
DNNS5’ training trajectory for pushing forward the achievable trade-offs between DNNs’
accuracy and training efficiency. Furthermore, we show that the cyclic precision bounds can
be automatically identified at the very early stage of training using a simple precision range
test, which has a negligible computational overhead.

 Extensive experiments on five datasets and eleven models across a wide spectrum of appli-
cations (including classification and language modeling) validate the consistent effectiveness
of the proposed CPT technique in boosting the training efficiency while leading to a com-
parable or even better accuracy. Furthermore, we provide loss surface visualization for
better understanding CPT’s effectiveness and discuss its connection with recent findings in
understanding DNNs’ training optimization.

2 RELATED WORKS

Quantized DNNs. DNN quantization (Courbariaux et al., 2015; 2016; Rastegari et al., 2016; Zhu
et al., 2016; Li et al., 2016; Jacob et al., 2018; Mishra & Marr, 2017; Mishra et al., 2017; Park
et al., 2017; Zhou et al., 2016) has been well explored based on the target accuracy-efficiency trade-
offs. For example, (Jacob et al., 2018) proposes quantization-aware training to preserve the post
quantization accuracy; (Jung et al., 2019; Bhalgat et al., 2020; Esser et al., 2019; Park & Yoo, 2020)
strive to improve low-precision DNNs’ accuracy using learnable quantizers. Mixed-precision DNN
quantization (Wang et al., 2019a; Xu et al., 2018; Elthakeb et al., 2020; Zhou et al., 2017) assigns
different bitwidths for different layers/filters. While these works all adopt a static quantization
strategy, i.e., the assigned precision is fixed post quantization, CPT adopts a dynamic precision
schedule during the training process.

Low-precision DNN training. Pioneering works (Wang et al., 2018a; Banner et al., 2018; Micikevi-
cius et al., 2017a; Gupta et al., 2015; Sun et al., 2019) have shown that DNNs can be trained with
reduced precision. For distributed learning, (Seide et al., 2014; De Sa et al., 2017; Wen et al., 2017;
Bernstein et al., 2018) quantize the gradients to reduce the communication costs, where the training
computations still adopt full precision; For centralized/on-device learning, the weights, activations,
gradients, and errors involved in both the forward and backward computations all adopt reduced
precision. Our CPT can be applied on top of these low-precision training techniques, all of which
adopt a static precision during the whole training trajectory, to further boost the training efficiency.

Dynamic-precision DNNs. There exist some dynamic precision works which aim to derive a
quantized DNN for inference after the full-precision training. Specifically, (Zhuang et al., 2018) first
trains a full-precision model to reach convergence and then gradually decreases the model precision
to the target one for achieving better inference accuracy; (Khoram & Li, 2018) also starts from a
full-precision model and then gradually learns the precision of each layer to derive a mixed-precision
counterpart; (Yang & Jin, 2020) learns a fractional precision of each layer/filter based on the linear
interpolation of two consecutive bitwidths which doubles the computation and requires an extra
fine-tuning step; and (Shen et al., 2020) proposes to adapt the precision of each layer during inference
in an input-dependent manner to balance computational cost and accuracy.

3 THE PROPOSED CPT TECHNIQUE

In this section, we first introduce the hypothesis that motivates us to develop CPT using visualization
examples in Sec. 3.1, and then present the CPT concept in Sec. 3.2 followed by the Precision Range
Test (PRT) method in Sec. 3.3, where PRT aims to automate the precision schedule for CPT.

2



Published as a conference paper at ICLR 2021

Table 1: The test accuracy of ResNet-38/74 trained on CIFAR-100 with different learning rate and
precision combinations in the first stage. Note that the last two stages of all the experiments are
trained with full precision and a learning rate of 0.01 and 0.001, respectively.

ResNet-38 ResNet-74
First-stage LR~ 0.1 0.06 0.03 0.01 0.1 0.06 0.03 0.01
4-bit Acc (%) 69.45 68.63 67.69 6590 70.96 69.54 6826 67.19
6-bit Acc (%) 70.22 68.87 67.15 6610 71.62 70.28 68.84 066.16
8-bit Acc (%) 69.96 68.66 66.75 6499 71.60 70.67 6845 65.85
FP Acc (%) 7045 69.53 6747 6450 71.66 70.00 68.69 65.62

3.1 CPT: MOTIVATION

Hypothesis 1: DNN’s precision has a similar effect as the learning rate. Existing works (Grand-
valet et al., 1997; Neelakantan et al., 2015) show that noise can help DNN training theoretically or
empirically, motivating us to rethink the role of quantization in DNN training. We conjecture that low
precision with large quantization noise helps DNN training exploration with an effect similar to a
high learning rate, while high precision with more accurate updates aids model convergence, similar
to a low learning rate.

Validating Hypothesis 1. Settings: To empirically justify our hypothesis, we train ResNet-38/74

on the CIFAR-100 dataset for 160 epochs following the basic training setting as in Sec. 4.1. In
particular, we divide the training of 160 epochs into three stages: [0-th, 80-th], [80-th,120-th], and
[120-th, 160-th]: for the first training stage of [0-th, 80-th], we adopt different learning rates and
precisions for the weights and activations, while using full precision for the remaining two stages
with a learning rate of 0.01 for the [80-th,120-th] epochs and 0.001 for the [120-th, 160-th] epochs in
all the experiments in order to explore the relationship between the learning rate and precision in the
first training stage.

Results: As shown in Tab. 1, we can observe that as the learning rate is sufficiently reduced for the first
training stage, adopting a lower precision for this stage will lead to a higher accuracy than training
with full precision. In particular, with the standard initial learning rate of 0.1, full precision training
achieves a 1.00%/0.70% higher accuracy than the 4-bit one on ResNet-38/74, respectively; whereas
as the initial learning rate decreases, this accuracy gap gradually narrows and then reverses, e.g., when
the initial learning rate becomes le-2, training with [0-th, 80-th] of 4-bit achieves a 1.40%/1.57%
higher accuracy than the full precision ones.

Insights: This set of experiments show that (1) when the initial learning rate is low, training with lower

initial precisions consistently leads to a better accuracy than training with full precision, indicating
that lowering the precision introduces a similar effect of favoring exploration as that of a high learning
rate; and (2) although a low precision can alleviate the accuracy drop caused by a low learning rate, a
high learning rate is in general necessary to maximize the accuracy.

Hypothesis 2: Dynamic precision helps DNN gen-
eralization. Recent findings in DNN training have
motivated us to better utilize DNN precision to
achieve a win-win in both DNN accuracy and ef-
ficiency. Specifically, it has been discussed that (1)
DNNss learn to fit different patterns at different train-
ing stages, e.g., (Rahaman et al., 2019; Xu et al.,
2019) reveal that DNN training first learns lower-
frequency components and then high-frequency fea-
tures, with the former being more robust to pertur- 0 20 40 60 80 100 120 140 160

bations and noises; and (2) dynamic learning rate  pjoyre 1. Test accuEr%(::c;sevolution of ResNet-

schedules help to improve the optimization in DNN 74”0 ~TEAR-100 under different schedules.
training, e.g., (Li et al., 2019) points out that a large

initial learning rate helps the model to memorize easier-to-fit and more generalizable patterns while
(Smith, 2017; Loshchilov & Hutter, 2016) show that cyclical learning rate schedules improve DNNs’
classification accuracy. These works inspire us to hypothesize that dynamic precision might help
DNNss to reach a better optimum in the optimization landscape, especially considering the similar
effect between the learning rate and precision validated in our Hypothesis 1.
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Figure 2: Loss landscape visualization after convergence of ResNet-74 on CIFAR-100 trained with
different precision schedules, where wider contours with larger intervals indicate a better local minima
and a lower generalization error as analyzed in (Li et al., 2018).

Validating Hypothesis 2. Our Hypothesis 2 has been consistently confirmed by various empirical
observations. For example, a recent work (Fu et al., 2020) proposes to progressively increase the
precision during the training process, and we follow their settings to validate our hypothesis.

Settings: We train a ResNet-74 on CIFAR-100 using the same training setting as (Wang et al., 2018b)
except that we quantize the weights, activations, and gradients during training; for the progressive
precision case we uniformly increase the precision of weights and activations from 3-bit to 8-bit in
the first 80 epochs and adopt static 8-bit gradients, while the static precision baseline uses 8-bit for
all the weights/activations/gradients.

Results: Fig. 1 shows that training with progressive precision schedule achieves a slightly higher
accuracy (+0.3%) than its static counterpart, while the former can reduce training costs. Furthermore,
we visualize the loss landscape (following the method in (Li et al., 2018)) in Fig. 2(b): interestingly
the progressive precision schedule helps to converge to a better local minima with wider contours,
indicating a lower generalization error (Li et al., 2018) over the static 8-bit baseline in Fig. 2(a).

The progressive precision schedule in (Fu et al., 2020) relies on manual hyper-parameter tuning. As
such, a natural following question would be: what kind of dynamic schedules would be effective
while being simple to implement for different tasks/models? In this work, we show that a simple
cyclic schedule consistently benefits the training convergence while boosting the training efficiency.

3.2 CPT: THE KEY CONCEPT

WA-8/ GE-8 WA-3/GE-8
WA-4/GE-8
a WA-5/ GE-8
WA-6/GE-8
Cyclic ‘ WA-7/ GE-8
Precision l WA-8/ GE-8
Training

The key concept of CPT draws inspiration from
(Li et al., 2019) which demonstrates that a large
initial learning rate helps the model to learn
more generalizable patterns. We thus hypothe- S
size that a lower precision that leads to a short- Training
term poor accuracy might actually help the DNN
exploration during training thanks to its associ-
ated larger quantization noise, while it is well
known that a higher precision enables the learn-
ing of higher-complexity, fine-grained patterns
that is critical to better convergence. Together,
this combination could improve the achieved ac-
curacy as it might better balance coarse-grained exploration and fine-grained optimization during
DNN training, which leads to the idea of CPT. Specifically, as shown in Fig. 3, CPT varies the
precision cyclically between two bounds instead of fixing the precision during training, letting the
models explore the optimization landscape with different granularities.

Static

—

W: Weight A: Activation G: Gradient E: Error
Figure 3: Static vs. Cyclic Precision Training
(CPT), where CPT cyclically schedules the pre-
cision of weights and activations during training.

While CPT can be implemented using different cyclic scheduling methods, here we present as an
example an implementation of CPT in a cosine manner:

n n 1 n n t Tn,
Bt = [Bmzn + E(Bmaz - Bmzn)(l - COS( Wjov ’/T))J (1)

where B,,,;,, and B, are the lower and upper precision bound, respectively, in the n-th cycle of
precision schedule, [ -] and % denote the rounding operation and the remainder operation, respectively,
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and B;' is the precision at the ¢-th global epoch which falls into the n-th cycle with a cycle length of
T,,. Note that the cycle length T}, is equal to the total number of training epochs divided by the total
number of cycles denoted as N, where N is a hyper-parameter of CPT. For example, if NV = 2, then
a DNN training with CPT will experience two cycles of cyclic precision schedule during training.
As shown in Sec. 4.3, we find that the benefits of CPT are maintained when adopting different
total number of cyclic precision schedule cycles during training, i.e., CPT is not sensitive to V. A
visualization example for the precision schedule can be found in Appendix A. Additionally, we find
that CPT is generally effective when using different dynamic precision schedule patterns (i.e., not
necessarily the cosine schedule in Eq. (1). We implement CPT following Eq. (1) in this work and
discuss the potential variants in Sec. 4.3.

We visualize the training curve of CPT on ResNet-74 with CIFAR-100 in Fig. 1 and find that it
achieves a 0.91% higher accuracy paired with a 36.7% reduction in the required training BitOPs (bit
operations), as compared to its static fixed precision counterpart. In addition, Fig. 2 (c) visualizes the
corresponding loss landscape, showing the effectiveness of CPT, i.e., such a simple and automated
precision schedule leads to a better convergence with lower sharpness.

3.3 CPT: PRECISION RANGE TEST

The concept of CPT is simple enough to be o] — Resets2
plugged into any model or task to boost the train- T MobleNetv2
ing efficiency. One remaining question is how to
determine the precision bounds, i.e., B,,;,, and
B, .. in Eq. (1), which we find can be automat-
ically decided in the first cycle (i.e., T; = Ty)
of the precision schedule using a simple PRT

/S%ﬂt 5-bit
at a negligible computational cost. Specifically,
PRT starts from the lowest possible precision,

e.g., 2-bit, and gradually increases the precision ,// //

while monitoring the difference in the training 1000 2000 3000 4000

accuracy magnitude averaged over several con- Iterations

secutive iterations; once this training accuracy Figure 4: Illustrating the precision range test for
difference is larger than a preset threshold, in- ResNet-152 and MobileNetV2 on CIFAR-100,
dicating that the training can at least partially where the switching point which exceeds the preset
converge, PRT would claim that the lower bound  threshold is denoted by red circles.

is identified. While the upper bound can be sim-

ilarly determined, there exists an alternative which suggests simply adopting the precision of CPT’s
static precision counterpart. The remaining cycles use the same precision bounds.

Fig. 4 visualizes the PRT for ResNet-152/MobileNetV2 trained on CIFAR-100. We can see that the
lower precision bound identified when the model experiences a notable training accuracy improvement
for ResNet-152 is 3-bit while that for MobileNetV2 is 4-bit, aligning with the common observation
that ResNet-152 is more robust to quantization than the more compact model MobileNetV2.
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4 EXPERIMENT RESULTS

In this section, we will first describe the experiment setup in Sec. 4.1, benchmarking results over
SOTA training methods across various tasks in Sec. 4.2, and then comprehensive ablation studies of
CPT in Sec. 4.3.

4.1 EXPERIMENT SETUP

Models, datasets and baselines. We consider eleven models (including eight ResNet based mod-
els (He et al., 2016), MobileNetV2 (Sandler et al., 2018), Transformer (Vaswani et al., 2017), and
LSTM (Hochreiter & Schmidhuber, 1997)) and five tasks (including CIFAR-10/100 (Krizhevsky
et al., 2009), ImageNet (Deng et al., 2009), WikiText-103 (Merity et al., 2016), and Penn Tree-
bank (PTB) (Marcus et al., 1993)). Specifically, we follow (Wang et al., 2019b) for implement-
ing MobileNetV2 on CIFAR-10/100. Baselines: We first benchmark CPT over three SOTA static
low-precision training techniques: SBM (Banner et al., 2018), DoReFa (Zhou et al., 2016), and
WAGEUBN (Yang et al., 2020), each of which adopts a different quantizer. Since SBM is the most
competitive baseline among the three based on both their reported and our experiment results, we
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apply CPT on top of SBM, and all the static precision baselines adopt the SBM quantizer unless
specifically stated. Another baseline is the cyclic learning rate (CLR) (Loshchilov & Hutter, 2016)
on top of static precision training, and we follow the best setting in (Loshchilov & Hutter, 2016).

Training settings. We follow the standard training setting in all the experiments. In particular, for
classification tasks, we follow SOTA settings in (Wang et al., 2018b) for CIFAR-10/100 and (He et al.,
2016) for ImageNet experiments, respectively; and for language modeling tasks, we follow (Baevski
& Auli, 2018) for Transformer on WikiText-103 and (Merity et al., 2017) for LSTM on PTB.

Precision settings. The lower precision bounds in all the experiments are set using the PRT in Sec.3.3
and the upper bound is the same as the precision of the corresponding static precision baselines. We
only apply CPT to the weights and activations (together annotated as FW) and use static precision for
the errors and gradients (together annotated as BW), the latter of which is to ensure the stability of
the gradients (Wang et al., 2018a) (more discussion in Appendix C). In particular, CPT from 3-bit to
8-bit with 8-bit gradient is annotated as FW(3,8)/BW8. The total number of periodic precision cycles,
i.e., IV in Sec.3.3, for all the experiments is fixed to be 32 (see the ablation studies in Sec. 4.3).

Hardware settings and metrics. To validate the real hardware efficiency of the proposed CPT, we
adopt standard FPGA implementation flows. Specifically, we employ the Vivado HLx design flow
to implement FPGA-based accelerators on a Xilinx development board called ZC706 (Xilinx). To
better evaluate the training cost, we consider both calculated GBitOPs (Giga bit operations) and
real-measured latency on the ZC706 FPGA board.

4.2 BENCHMARK WITH SOTA STATIC PRECISION TRAINING METHODS

Benchmark on CIFAR-10/100. Benchmark over SOTA quantizers: We benchmark CPT with three

SOTA static low-precision training methods, as summarized in Tab. 2, when training ResNet-74/164
and MobileNetV2 on CIFAR-10/100, covering both deep and compact DNNs which are represen-
tative difficult cases of low-precision DNN training. Note that the accuracy improvement is the
difference between CPT and the strongest baseline under the same setting. Tab. 2 shows that
(1) our CPT consistently achieves a win-win with both a higher accuracy (+0.19% ~ +1.25%) and a
lower training cost (-21.0% ~ -37.1% computational cost and -14.7% ~ -21.4% latency) under all the
cases on CIFAR-10/100, even for the compact model MobileNetV2, and (2) CPT notably outperforms
the baselines in terms of accuracy under extremely low precision, which is one of the most useful
scenarios for low-precision DNN training. In particular, CPT with periodic precision between 4-bit
and 6-bit boosts the accuracy by +1.25% and +1.07% on ResNet-74/164, respectively, as compared
to the static 6-bit training on CIFAR-10, verifying that CPT leads to a better convergence.

A CPTFW(3,4)/ BW6 % CPT FW(3,6) / BW6 @® CPT FW(3,8)/ BW8
A Static FW4 / BW6 % Static FW6 / BW6 ® Static FW8/BWS8
A Static FW4/BW6 + CLR % Static FW6 / BW6 + CLR @® Static FW8/BWS8 + CLR
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Figure 5: Test accuracy vs. the required GBitOPs when training ResNet-38/74/110/152/164 and
MobileNetV2 on CIFAR-100 using static precision, static precision plus CLR, and CPT methods.
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Table 2: The test accuracy, computational cost, and latency of CPT, DoReFa (Zhou et al., 2016),
WAGEUBN (Yang et al., 2020), and SBM (Banner et al., 2018) for training the ResNet-74/164 and
MobileNetV2 models on CIFAR-10/100.

Model Method Precision (FW/BW) CIFAR-10 Acc (%) CIFAR-100 Acc (%) GBitOPs Latency (hour)
DoReFa 8/8 91.16 69.31 2.67¢8 44.6
WAGEUBN 8/8 91.35 69.61 2.67e8 44.6
ResNet74 SBM 8/8 92.57 71.44 2.67¢8 44.6
esivet Proposed CPT 3-8/8 93.23 72.35 1.68¢8 35.04
Improv. +0.66 +0.91 -37.1% 21.4%
DoReFa 6/6 90.94 69.01 1.50e8 332
WAGEUBN 6/6 91.01 69.37 1.50e8 332
ResNet74 SBM 6/6 91.15 70.31 1.50e8 33.2
esNet- Proposed CPT 3-6/6 92.4 70.83 1.05¢8 275
Improv. +1.25 +0.52 -30.0% -17.2%
DoReFa 8/8 91.40 70.90 6.04¢8 101.9
WAGEUBN 8/8 9225 71.86 6.04e8 101.9
ResNet.164 SBM 8/8 93.63 72.53 6.04¢8 101.9
esiet Proposed CPT 3-8/8 93.83 729 3.8¢8 80.5
Improv. +0.20 +0.37 -371% -21.0%
DoReFa 6/6 91.13 70.53 3.40¢8 76.7
WAGEUBN 6/6 92.44 71.50 3.40e8 76.7
ResNet.164 SBM 6/6 91.95 70.34 3.40e8 76.7
esivet- Proposed CPT 3-6/6 93.02 71.79 2.37¢8 63.5
Improv. +1.07 +0.29 -30.3% -17.2%
DoReFa 8/8 91.03 70.17 1.49¢8 262
WAGEUBN 8/8 92.32 71.45 1.49¢8 26.2
) SBM 8/8 93.57 75.28 1.49¢8 26.2
MobileNetV2  p; 1 0ced CPT 4-8/8 93.76 75.65 1.04¢8 216
Improv. +0.19 +0.37 -30.2% -17.6%
DoReFa 6/6 90.25 68.4 8.39¢7 18.4
WAGEUBN 6/6 91.00 71.05 8.397 184
) SBM 6/6 91.56 7231 8.39¢7 18.4
MobileNetV2 - p.; 1 0ced CPT 4-6/6 91.81 73.18 6.63¢7 157
Improv. +0.25 +0.87 -21.0% -14.7%

Benchmark over CLR on top of SBM: We further benchmark CPT with CLR (Loshchilov & Hutter,
2016) (inherit its besting setting on CIFAR-100), with both being applied on top of SBM as it achieves
the best performance among SOTA quantizers as shown in Tab. 2, based on more DNN models and
precision as shown in Fig. 5. We can see that (1) CPT still consistently outperforms all the baselines
with a better accuracy and efficiency trade-off, and (2) CLR on top of SBM leads to a negative
effect on the test accuracy, which we conjecture is caused by both the instability of gradients and the
sensitivity of gradients to the learning rate under low-precision training, as discussed in (Wang et al.,
2018a), showing that CPT is more applicable to low-precision training than CLR.

Loss landscape visualization: To better understand the superior performance achieved by CPT, we
visualize the loss landscape following the method in (Li et al., 2018), as shown in Fig. 6 covering
both non-compact and compact models and two low-precision settings (i.e., 6-bit and 8-bit) which are
bottlenecks for low-precision DNN training. We can observe that, again, both standard and compact
DNNss trained with CPT experience wider contours with less sharpness, indicating that CPT helps
DNN training optimization to converge to better local optima.

Benchmark on ImageNet. To verify the scalability of CPT on more complex tasks and larger models,
we benchmark CPT with the SOTA static precision training method SBM (Banner et al., 2018) on
ResNet-18/34/50 with ImageNet, under which it is challenging for low-precision training such as
4-bit to work. As shown in Tab. 3, we can observe that CPT still achieves a reduced computational
cost (up to -30.4%) with a comparable accuracy (-0.20% ~ +0.06%). In particular, CPT works well

A\
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Figure 6: Loss landscape visualization of ResNet-110 and MobileNetV2 trained on CIFAR-100.
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Table 3: The test accuracy and computational cost of ResNet-18/34/50 on ImageNet, trained with the
proposed CPT and SBM (Banner et al., 2018).

Model Method Precision (FW/BW) Acc (%) GBitOPs Precision Acc(%) GBitOPs

SBM 8/8 69.60 2.86e9 6/6 69.30 1.61e9
Proposed CPT 4-8/8 69.64 1.99¢9 4-6/6 69.33 1.27¢9

ResNet-18
Improv. +0.04 -30.4% +0.03 -21.1%
SBM 8/8 73.32 5.77¢9 6/6 72.82 3.24¢9
ResNet-34 Proposed CPT 4-8/8 73.12 4.03e7 4-6/6 72.74 2.57¢9
Improv. -0.20 -30.2% -0.08 -20.7%
SBM 8/8 76.29 6.47¢9 6/6 75.72 3.63e9
Proposed CPT 4-8/8 76.35 4.51e9 4-6/6 75.74 2.87¢9

ResNet-50
Improv. +0.06 -30.3% +0.02 -20.9%

on ResNet-50, leading to both a slightly higher accuracy and a better training efficiency, indicating the
scalability of CPT with model complexity, and thus, its potential application in large scale training, in
addition to on-device training scenarios.

CPT for boosting accuracy: An important perspec- Typple 4: The test accuracy of ResNet-18/34

tive of CPT is its potential to improve training Opti— on ImageNet: CPT (8_32) vs. full precision‘
mality in addition to efficiency. We illustrate CPT’s

.. . Network Method Precision Acc (%)
advantage in improving the final accuracy through Full Procision o) 6976
training ResNet-18/34 on ImageNet using CPT and  ResNet-18  Proposed CPT 8-32 70.67
static full precision. As shown in Tab. 4, CPT on Improv. +0.91
ResNet-18/34 achieves a 0.91%/0.84% higher accu- Full Precision 32 1330
i e : 8 ResNet-34  Proposed CPT 8-32 74.14
racy than their full precision counterparts on Ima- Tmprov. +0.84

geNet, indicating that CPT can be adopted as a gen-
eral technique to improve the final accuracy in addition to efficient training.

Benchmark on WikiText-103 and PTB. We also apply CPT on language modeling tasks (including
WikiText-103 and PTB) (see Tab. 5) to show that CPT is also applicable to natural language processing
models. Tab. 5 shows that (1) CPT again consistently achieves a win-win in terms of accuracy (i.e.,
perplexity - the lower the better) and training efficiency, and (2) language modeling models/tasks
are more sensitive to quantization, especially in LSTM models, as it always adapts to a larger lower
precision bound, which is consistent with SOTA observations (Hou et al., 2019).

Table 5: The test accuracy and computational cost of (1) Transformer on WikiText-103 and (2)
2-LSTM (two-layer LSTM) on PTB, trained with CPT and SBM (Banner et al., 2018).

Model / Dataset Method Precision (FW/BW)  Perplexity GBitOPs Precision Perplexity GBitOPs
SBM 8/8 31.77 1.44¢6 6/8 32.41 9.87¢5
Transformer Proposed CPT 4-8/8 30.22 1.0e6 4-6/8 31.0 7.66e5
WikiText-103 Improv. 155 30.2% 141 224%
SBM 8/8 96.95 4.03e3 6/8 97.47 2.77e3
2-LSTM Proposed CPT 5-8/8 96.39 3.09¢3 5-6/8 97.0 2.48e3
PTB Improv. -0.56 232% 0.47 105%

4.3 ABLATION STUDIES OF CPT

FWG,12/BWI2

FW(.,10yBW10 FW(,16/BW16

CPT with different precision ranges. We also evaluate _n v &

CPT under a wide range of upper precision bounds, which 2 o T T % 1
correspond to a different target efficiency, to see if CPT 571 & e Lf ’L
still works well. Fig. 7 plots a boxplot with each exper- 5" u u
iment being repeated ten times. We can see that (1) re- & /™™ ;L ﬁj o
gardless of the adopted precision ranges, CPT consistently p; TL T e
achieves a win-win (a +0.74% ~ +2.03% higher accuracy ol Lj‘ HJ

and a -18.3% ~ -48.0% reduction in computational cost), T e i
especially under lower precision scenarios, and (2) CPT " Log (GBItOPs) e
even shrinks the accuracy variance, which better aligns  Figure 7: Training ResNet-74 on CIFAR-
with the practical goal of efficient training. 100 with CPT and its static counterpart.

CPT with different adopted numbers of precision schedule cycles. To evaluate CPT’s sensitivity
to the total number of adopted cyclic precision schedule cycles, we apply CPT on ResNet-38/74 and
CIFAR-100 when using different numbers of schedule cycles. Fig. 8 plots the mean of the achieved
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Figure 8: The achieved test accuracy of CPT under different adopted numbers of precision schedule
cycles, as compared to the static precision baseline SBM, when training ResNet-38/74 on CIFAR-100.

accuracy based on ten repeated experiments. We can see that (1) different choices for the total number
of cycles lead to a comparable accuracy (within 0.5% accuracy) on CIFAR-10/100; and (2) CPT with
different number of precision schedule cycles consistently outperforms the static baseline SBM in the
achieved accuracy. Based on this experiment, we set N = 32 for simplicity.

CPT with different cyclic precision schedule patterns. We also evaluate CPT using other cyclic
precision schedule patterns in addition to the cosine one, including a triangular schedule motivated
by (Smith, 2017) and a cosine annealing schedule as the learning rate schedule in (Loshchilov &
Hutter, 2016), with all adopting 32 cyclic cycles for fairness. Experiments in Tab. 6 show that (1) CPT
with different schedule patterns is consistently effective, and (2) CPT with the other two schedule
patterns even surpasses the cosine one in some cases but underperforms on compact models. We
leave how to determine the optimal cyclic pattern for a given model and task as a future work.

Table 6: CPT with different precision schedules into cyclic precision training for ResNet-74/164 and
MobileNetV2 on CIFAR-100. Cosine (CPT) is the current schedule adopted by CPT.

ResNet-74 ResNet-164 MobileNetV2
Schedule FW(3,8)/BW8 FW(3,6)/BW6 FW(3,8)/BW8 FW(3,6)/BW6 FW(4,8)/BW8 FW(4,6)/ BW6
Cosine (our CPT) 72.35 70.83 72.7 71.77 75.65 73.18
Triangular 71.61 71.22 72.94 72.37 74.92 71.37
Cosine anneal 71.37 70.80 724 72.03 74.59 73.12

5 DISCUSSIONS ABOUT FUTURE WORK

The theoretical perspective of CPT. There has been a growing interest in understanding and optimiz-
ing DNN training. For example, (Li et al., 2019) shows that training DNNs with a large initial learning
rate helps the model to memorize more generalizable patterns faster and better. Recently, (Zhu et al.,
2020) showed that under a convexity assumption the convergence bound of reduced-precision DNN
training is determined by a linear combination of the quantization noise and learning rate. These
findings regarding DNN training seem to be consistent with the effectiveness of our CPT.

The hardware support for CPT. Recent progresses in mixed-precision DNN accelerators (Lee et al.,
2019; Kim et al., 2020) with dedicated modules for supporting dynamic precisions are promising to
support our CPT. We leave the optimal accelerator design for CPT as our future works.

6 CONCLUSION

We hypothesize that DNNs’ precision has a similar effect as the learning rate when it comes to
DNN training, i.e., low precision with large quantization noise helps DNN training exploration while
high precision with more accurate updates aids model convergence, and thus advocate that dynamic
precision schedules help DNN training optimization. We then propose the CPT framework which
adopts a periodic precision schedule for low-precision DNN training in order to boost the achievable
Pareto frontier of task accuracy and training efficiency. Extensive experiments and ablation studies
verify that CPT can reduce computational cost during training while achieving a comparable or even
better accuracy. Our future work will strive to identify more theoretical grounds for such dynamic
low-precision training.
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A VISUALIZATION OF THE PRECISION SCHEDULE IN CPT

Fig. 9 visualizes the precision schedule FW(3,8) with eight cycles for training on CIFAR-10/100.

Table 7: The test accuracy of ResNet-38/74 on CIFAR-10 trained with CPT enabled at different
epochs. Note that the lowest training precision is applied before enabling CPT in all the experiments.

Network  Starting Epoch 0 60 80 100 120 160 (No CPT)

ResNet-38 FW(@3,8)/BW8 70.24 69.60 68.37 68.04 67.65 62.3
FW(@3,6)/BW6 69.30 68.65 68.00 67.83 67.85 62.3
ResNet-74 FW(3,8)/BW8 7235 70.55 69.44 69.19 68.96 64.2
FW@3,6)/BW6 70.83 7032 69.25 68.72 68.56 64.2
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Figure 9: Visualization of the precision schedule FW(3,8) with eight cycles, where the red line is the
cosine-manner schedule and the blue line is the adopted precision after rounding.

B ABLATION STUDY: THE STARTING EPOCH FOR ENABLING CPT

‘We conduct another ablation study to explore whether CPT is always necessary during the whole
training process. We start from training with the lowest precision in the precision range of CPT, and
then enable CPT at different epochs to see the influence on the final accuracy. Specifically, we train
ResNet-38/74 on CIFAR-100 for 160 epochs, considering two CPT precision ranges with different
starting epochs to enable CPT as shown in Tab. 7. We consistently observe that (1) an early starting
epoch of CPT leads to a better accuracy on all the considered precision ranges and networks, and
(2) even enabling CPT at a later training stage still leads to a notable better accuracy than training
without CPT.

C ABLATION STUDY: CPT ON TOP OF GRADIENTS

We decide not to apply CPT on top of gradients since (1) the T,ple 8: Training ResNet-74 on
resulting instability of low precision gradients during train- C[FAR-100 with static precision
ing (Wang et al., 2018a) can harm the final convergence, and
(2) generally the required precision of gradients is higher than
that of weights and activations, so that the benefit of applying FW BW  Accuracy (%)
CPT on top of gradients in terms of efficiency is limited.

and CPT on top of gradient only.

6 6 70.31
To validate this, we show the results of applying CPT on top 6 8 70.51
of gradients with fixed precision for weights and activations in 6 68 69.45
Tab. 8. As expected, CPT on top of gradients can hardly benefit 6 6-10 70.32
either accuracy or efficiency as compared with its static preci- 6 6-12 69.59
sion baseline. Therefore, we decide to adopt fixed precision for 6 6-16 70.24

gradients in all other experiments.
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