2-in-1 Accelerator: Enabling Random Precision Switch for
Winning Both Adversarial Robustness and Efficiency

Yonggan Fu Yang Zhao Qixuan Yu
Rice University Rice University Rice University
yf22@rice.edu zy34@rice.edu Maki.Yu@rice.edu
Chaojian Li Yingyan Lin
Rice University Rice University
cl114@rice.edu yingyanlin@rice.edu
ABSTRACT KEYWORDS

The recent breakthroughs of deep neural networks (DNNs) and the
advent of billions of Internet of Things (IoT) devices have excited an
explosive demand for intelligent IoT devices equipped with domain-
specific DNN accelerators. However, the deployment of DNN accel-
erator enabled intelligent functionality into real-world IoT devices
still remains particularly challenging. First, powerful DNNs often
come at prohibitive complexities, whereas IoT devices often suffer
from stringent resource constraints. Second, while DNNs are vul-
nerable to adversarial attacks especially on IoT devices exposed to
complex real-world environments, many IoT applications require
strict security. Existing DNN accelerators mostly tackle only one of
the two aforementioned challenges (i.e., efficiency or adversarial ro-
bustness) while neglecting or even sacrificing the other. To this end,
we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator
co-design framework aiming at winning both the adversarial robust-
ness and efficiency of DNN accelerators. Specifically, we first pro-
pose aRandom Precision Switch (RPS) algorithm that can effectively
defend DNNs against adversarial attacks by enabling random DNN
quantization as an in-situ model switch during training and infer-
ence. Furthermore, we propose a new precision-scalable accelerator
featuring (1) a new precision-scalable MAC unit architecture which
spatially tiles the temporal MAC units to boost both the achievable
efficiency and flexibility and (2) a systematically optimized dataflow
that is searched by our generic accelerator optimizer. Extensive ex-
periments and ablation studies validate that our 2-in-1 Accelerator
can not only aggressively boost both the adversarial robustness
and efficiency of DNN accelerators under various attacks, but also
naturally support instantaneous robustness-efficiency trade-offs
adapting to varied resources without the necessity of DNN retrain-
ing. We believe our 2-in-1 Accelerator has opened up an exciting
perspective for robust and efficient accelerator design.

CCS CONCEPTS

« Computer systems organization — Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480082

neural networks, model robustness, precision-scalable accelerators

ACM Reference Format:

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin. 2021.
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both
Adversarial Robustness and Efficiency. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO °21), October 18-22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3466752.3480082

1 INTRODUCTION

Deep neural networks’ (DNNs) performance breakthroughs and the
advent of billions of Internet of Things (IoT) devices have triggered
an increasing demand for DNN-powered intelligent IoT devices.
However, DNNs’ deployments into real-world IoT devices still re-
main challenging. First, powerful DNNs’ prohibitive complexity
stands at odd with the stringent resource constraints of IoT devices
[46, 77, 85]. Second, while DNNs are vulnerable to adversarial at-
tacks, many IoT applications require strict security under dynamic
and complex real-world environments [31]. Therefore, techniques
boosting both DNNs’ efficiency and robustness are highly desired.

To tackle the first challenge, various domain-specific DNN ac-
celerators [11, 36, 41, 44, 45, 88] have been developed to customize
the algorithm-to-hardware mapping methods (i.e., dataflows) and
micro-architecture [89] towards the workloads of DNNs to achieve
orders-of-magnitude acceleration efficiency improvement over gen-
eral computing platforms. In parallel, various techniques have been
proposed to defend DNNs against adversarial attacks, showing
promising performance to address the aforementioned robustness
challenge. Among them, adversarial training [48, 65, 75, 78], which
augments the training set with adversarial samples generated on-
the-fly during training, is currently the most effective method. Fur-
thermore, recognizing that both efficiency and robustness are crit-
ical to many DNN-powered intelligent applications, pioneering
efforts [23, 62, 76] attempt to defend against adversarial attacks
within DNN accelerators. Nevertheless, the art of robustness-aware
DNN accelerators is still in its infancy, and existing defensive ac-
celerators against adversarial attacks rely on additional detection
networks/modules to detect/defend adversarial samples during in-
ference, thus inevitably compromising their accelerator efficiency.

Considering that quantized DNNs are very promising as efficient
DNN solutions and also highly desirable in many IoT applications
[18, 19], we first ask an intriguing question: “Is it possible to leverage

MICRO 21, October 18-22, 2021, Virtual Event, Greece

quantization to boost DNNs’ robustness?", despite the fact that quan-
tized DNNs have been shown to degrade the models’ adversarial
robustness unless being equipped with sophisticated regularization
schemes [69]. This is inspired by (1) [12, 40, 79] showed that random
permutations on the inputs can certifiably defend DNNs against
adversarial attacks, and (2) [79] found that weight perturbations
are a good complement for input perturbations, because they can
narrow the robust generalization gap as weights globally influence
the losses of all examples. We thus hypothesize that quantization
noise can be leveraged to provide similar effects as permutations to
the weights/activations and thus enhance DNNs’ robustness, moti-
vating our random precision switch (RPS) algorithm that wins both
efficiency and robustness of quantized DNNs. Furthermore, moti-
vated by the bottlenecks of existing precision-scalable accelerators,
we further develop a new accelerator to enhance the acceleration ef-
ficiency of RPS equipped DNNS. Specifically, we make the following
contributions:

e We propose an integrated algorithm-accelerator co-design
framework dubbed 2-in-1 Accelerator, aiming at winning
both the adversarial robustness and acceleration efficiency
of DNN accelerators.

o 2-in-1 Accelerator’s algorithm: We provide a new perspective
regarding the role of quantization in DNNs’ robustness, and
propose a Random Precision Switch (RPS) algorithm that can
effectively defend DNNs against adversarial attacks by en-
abling random DNN quantization as an in-situ model switch
during training and inference. RPS equipped DNNs with
fixed-point precisions even outperform their full-precision
counterparts’ robustness.

e 2-in-1 Accelerator’s architecture: We develop a new
precision-scalable accelerator featuring (1) a novel multiply-
accumulate (MAC) architecture which spatially tiles the tem-
poral MAC units to boost both the achievable efficiency and
precision-scalable flexibility and (2) a systematically opti-
mized dataflow searched by our generic accelerator opti-
mizer, surpassing existing precision-scalable accelerators.

e We perform a thorough evaluation of 2-in-1 Accelerator on
six DNN models and four datasets under various adversarial
attacks, and find that our 2-in-1 Accelerator achieves up to
7.58x% better energy efficiency, 4.59%/36.5X higher through-
put over precision-scalable/robustness-aware accelerators,
and up to 24.48% improvement in robust accuracy. We believe
that our 2-in-1 Accelerator framework has not only demon-
strated an appealing and effective real-world DNN solution,
but also opened up an exciting perspective for winning both
robustness and efficiency in DNN accelerators

2 2-IN-1 ACCELERATOR: ALGORITHM

In this section, we present our RPS algorithm that can simultane-
ously boost DNNs’ robustness and efficiency and thus serve as the
algorithmic enabler of our 2-in-1 accelerator.

2.1 Preliminaries of adversarial robustness

[24] finds that DNNs are vulnerable to adversarial attacks, i.e.,
applying a small permutation § within a norm ball (||5]| < €) to the
inputs can mislead DNNs’ decisions. For example, the adversarial

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

permutation § under the £ attack [24] is generated by maximizing
the objective:

max £(fy(x +6),y) (1)

6]l <€
where ¢ is the loss function, 6 is the weights of a DNN f, x and y
are the input and the corresponding label, respectively.
To boost DNNs’ robustness against adversarial attacks, adversar-
ial training optimizing the following minimax problem is currently
the strongest defense method [4]:

i 2 e o - .

2.2 Inspirations from previous works

Previous works show that random smoothing or transformations [12,
28, 40, 81] on the inputs help robustify DNNs and [79] shows that
weight perturbations are good complements for input perturbations
as they globally influence the learning loss of all inputs. Following
this spirit, [15, 30, 79] explicitly introduce randomness and permu-
tations in the models’ weights or activations. On the other hand,
[47, 72, 75] show that model ensemble can help improve robustness
at a cost of efficiency due to the required multiple models. These
two aspects inspire us to rethink the connection between quanti-
zation’s role in the permutations of DNN weights/activations and
model robustness and to view a DNN model under different preci-
sions as an in-situ ensemble to boost both robustness and efficiency.
As introduced in Sec. 2.4, the proposed RPS algorithm can be seen
as an in-situ model switch among different precision choices.

2.3 Poor transferability between precisions

To validate our above hypothesis that a DNN model under different
precisions can be seen as an in-situ ensemble, we empirically check
the robustness of such an ensemble by evaluating the transferability
of adversarial attacks between different precisions. As elaborated
below, we find that the adversarial attacks transfer poorly between
different precisions of an adversarially trained model, regardless of
its adversarial training methods and attack schemes.

Experiment settings. We conduct experiments that adopt
adversarial attacks generated under one precision to attack the
same adversarially trained model quantized to another precision.
In particular, we apply PGD-20 [48] and CW-Inf [8] attacks, to
PreActResNet-18 (following [78]) which is adversarially trained
using different adversarial training methods [48, 78] using an 8-bit
linear quantizer [34] under training settings introduced in Sec. 4.1.
We annotate the robust accuracy evaluated on adversarial examples
in Fig. 1 where the attack precision denotes the precision for gener-
ating attacks which are adopted to attack the same model quantized
to another inference precision. The diagonal elements are the ro-
bust accuracy with the same attack/inference precision and the
non-diagonal elements are the robust accuracy under transferred
attacks from different precisions.

Observations. As observed from Fig. 1 (a)~(c), we can find that
(1) training and attacking at the same low precisions indeed no-
tably degrade the robust accuracy, as shown in the diagonals of
Fig. 1, aligning with observations in [43]; (2) it’s more difficult for
adversarial attacks generated under one pr?cision to fool the same
adversarially trained model quantized to a different precision, re-
gardless of the relative difference between the two precisions; (3) the

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

c <
L8 4]
2 a
9 o
a [
0 ° o
£ g
o 7 [
= =
& e
£ ® £
Avg
a 5 6 7 8 Avg 5 6 7 8 Avg
Attack Precision Attack Precision
(a) Trained with FGSM-RS (b) Trained with PGD-7
Attack with PGD-20 Attack with CW-Inf
< <
2 L
a a
v v
g g
[o
o]
v v
< <
[[
= =
9 9
= =
£ £

5 6 7 8 Avg 5 6 7 8 Avg

a4 a
Attack Precision Attack Precision

(c) Trained with PGD-7 (d) Trained with PGD-7 + RPS Training
Attack with PGD-20 Attack with PGD-20

Figure 1: Visualizing the transferability of adversarial at-
tacks between different precisions, where the robust accu-
racy under different training methods (PGD-7 and FGSM-
RS) and attacks (PGD-20 and CW-Inf) is annotated.

poor transferability is consistent across different adversarial train-
ing and attack methods; and (4) the average robust accuracies of all
precisions under white-box attacks are consistently higher than the
full-precision models trained with the corresponding adversarial
training methods, indicating that randomly selecting an inference
precision can potentially provide effective defense.The full-precision
accuracies of PreActResNet-18 trained with PGD-7/FGSM-RS are
51.2%/47.1%, respectively.

Analysis. The key conclusion is that for white-box attacks, ad-
versarial attacks generated at one precision transfer poorly to an-
other precision. We hypothesize that this poor transferability is
because adversarial perturbations are shielded by the quantization
noise between the two precisions, which can not be effectively
learned by gradient-based attacks.

2.4 RPS towards robust DNNs

Motivated by the poor transferability between different precisions
of a trained model, we propose the RPS algorithm to boost both
model robustness and efficiency via enabling random DNN quanti-
zation as an in-situ model switch during training and inference.
RPS training. We propose the RPS training pipeline to (1) main-
tain a decent natural accuracy when the model is directly quantized
to different precisions during inference, and (2) further increase
the difficulty of transferring adversarial examples between differ-
ent precisions. To this end, we adversarially train a model from
scratch via (1) randomly selecting a precision from a candidate set
in each iteration for generating adversarial examples and updat-
ing the model with the selected precision, and (2) equipping the
model with switchable batch normalization (SBN) [25, 35] to inde-
pendently record the statistics of different precisions given their
corresponding adversarial examples. In particular, randomly select-
ing a training precision improves the capability of instant precision

MICRO 21, October 18-22, 2021, Virtual Event, Greece

switch during inference and SBN enlarges the gap between different
inference/attack precisions inspired by [25, 35, 80] which separately
handles the statistics of different inputs. As shown in Fig. 1 (d), the
same adversarially trained model equipped with RPS training shows
larger robust gaps between different inference/attack precisions,
especially under larger precision, as compared to the corresponding
ones in Fig. 1 (c). Note that during inference, the multiplication and
addition operations of SBN can be fused into the scale factors of lin-
ear quantizers [34] and the model bias, respectively, thus does not
require additional modules over existing low precision accelerators.

RPS inference. Given a model adversarially trained via our RPS
training scheme, the proposed RPS inference randomly selects one
precision from an inference precision set to quantize the model’s
weights and activations during inference. Based on the analysis
in Sec. 2.3, randomly selecting an inference precision can greatly
degrade the effectiveness of adversarial attacks as long as the at-
tacks are not generated under the same precision, as consistently
observed in Figs. 1.

The RPS training and inference algorithms on top of PGD-7 [48]
adversarial training are summarized in Alg. 1, which is similar when
applying on top of other adversarial training methods.

2.5 Instant trade-offs between robustness and
efficiency

In addition to winning both robustness and efficiency, another ben-
efit of our RPS algorithm is the instant trade-off capability between
DNNs’ robustness and efficiency during run-time to adapt to (1)
the safety conditions of the external environments and (2) the re-
maining resource (e.g., battery power) on the device. Specifically,
our RPS achieves this via (1) switching to lower precisions when
enabling random precision inference to trade robustness in less dan-
gerous environments for a higher average efficiency, or (2) directly
adopting a static low precision training under safe environments to
pursue merely high efficiency. This property can be highly desirable
in real world applications especially intelligent IoT ones. We will
next discuss the proposed accelerator that can not only improve
the execution efficiency of DNNs resulting from our RPS algorithm
but also set a new record of precision-scalable acceleration.

3 2-IN-1 ACCELERATOR: ARCHITECTURE

In this section, we introduce our proposed accelerator architecture
dedicated for variable-precision DNNs (e.g., RPS equipped DNN's
in Sec. 2) to achieve much improved acceleration efficiency. In
particular, we first identify and analyze the bottlenecks of existing
precision-scalable accelerators in Sec. 3.1, then present a new MAC
unit architecture in Sec. 3.2 and an automated accelerator optimizer
in Sec. 3.3 that together tackles the aforementioned bottlenecks.

3.1 Bottlenecks of SOTA precision-scalable
accelerators

Despite the impressive performance achieved by SOTA precision-
scalable accelerators [37, 39, 52, 53, 63, 64, 66, 67], they are still
limited in their acceleration performance especially when acceler-
ating more complex variable-precision DNN, e.g., RPS equipped
DNNs in which all the layers may switch their precision to any pos-
sible precision in a candidate set during inference. The bottlenecks
of SOTA precision-scalable accelerators are described below.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Algorithm 1 The RPS Algorithm

Require: Training dataset D;yqin, model fp, precision set Setg,
total training epochs T, step size @, adversarial dataset D g,
generated on fpy by attackers
=== RPS Training ===
: Equip fp with SBN
: for epoch € [1,T] do
for (x,y) € Dyrain do

Randomly select a precision g from Setgp

Obtain fgq by quantizing fp to g-bit

& = 0 or random initialized

fort € [1,7] do

8 = clipe{8 +a - sign(Vst(fil (x +),y))}

end for

0= 0-Vot(f(x+8).y)
end for
. end for
: === RPS Inference ===
. for x44y € Dygyp do
Randomly select a precision q from Setg
Obtain fgq by quantizing fp to g-bit

R A A o T

[
R T A vl

—_
g

Evaluate § = feq (*ado)
. end for
: return {7}

[
S ©

3.1.1 Dilemma between flexibility and performance.

Bottleneck. While variable-precision DNNs have gained grow-
ing interest thanks to their advantages of enabling instantaneous
energy-accuracy trade-off which is highly desirable in many DNN
applications such as DNN-powered IoT ones, existing precision-
scalable accelerators still struggle in the dilemma between their fa-
vored flexibility (i.e., support a large set of precisions) and achieved
acceleration performance.

Analysis. SOTA precision-scalable accelerators can be catego-
rized into two classes, i.e., temporal and spatial designs. The tem-
poral designs [37, 66] adopt bit-serial MAC units to execute a part
of the bit operations between two operands during each cycle and
then accumulate the results temporally via additional shift logic
circuits to support variable precision inference; while the spatial
architectures [52, 67] first split the execution of high precision
multiplications into several 2-bit multipliers, and then exploit com-
binational logic circuits to dynamically compose and decompose
the 2-bit multipliers to construct variable-precision MAC units.
Both designs have their advantages and disadvantages:

On the one hand, temporal designs are inferior in their achieved
throughput under lower precisions (<8-bit) compared with spatial
designs as validated in [7], since the area of their required shifters
and accumulators are determined by their supported highest preci-
sion and thus can dominate the area cost, limiting their efficiency
normalized over area [67]. On the other hand, spatial designs can
only support a limited set of predefined precisions, e.g., 2-/4-/8-/16-
bit for Bit Fusion [67], if considering an affordable cost for their
required configurability logic circuits due to the spatial constraints
of their MAC units, while the precision choices in temporal designs
are more flexible as higher precisions can naturally be supported
by using more temporal cycles. Therefore, there exists a dilemma

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

2

[10.030 " e
% 02 .Bit Fusion 10025 1
— . Stripes 10020 .
X H 1
-

S 041

2

K=

=]

3

2

£ 00

=

Precision (bit)

Figure 2: Throughput under different precisions of Bit Fu-
sion and Stripes for accelerating ResNet-50 on ImageNet.

between the achieved flexibility and efficiency in SOTA precision-
scalable accelerators.

Validation. To validate the above analysis, we show the through-
put under different precisions (the same for weights and inputs)
of two representative spatial and temporal precision-scalable ac-
celerators (i.e., Bit Fusion [67] and Stripes [37]) in Fig. 2, when
accelerating ResNet-50 on ImageNet. The detailed simulation set-
tings can be found in Sec. 4.1. We can observe that (1) Bit Fusion
achieves a higher throughput compared with Stripes under its sup-
ported precisions (i.e., <8-bit, the most commonly adopted preci-
sions in quantized DNNs [5, 16, 38, 59]); (2) Bit Fusion leads to
under-utilization of the hardware resources under its unsupported
precisions where it has to adopt the closest supported but higher
precision; (3) Bit Fusion shows inferior throughput under preci-
sions larger than 8-bit since it has to execute each Bit Bricks four
times when the operands’ precision is higher than 8-bit. In con-
trast, while the temporal design, Stripes, is inferior to Bit Fusion
under Bit Fusion’s supported low precisions, it scales well with the
precision, e.g., a consistent improvement in throughput as the exe-
cution precision decreases. This set of experiments demonstrates
that SOTA precision-scalable accelerators inevitably suffer from
the dilemma to trade-off between their achieved flexibility and
efficiency, motivating our proposed new accelerator.

3.1.2 Heavy shift-add overhead for variable-precision.

Bottleneck. To support variable-precision configurability, exist-
ing precision-scalable accelerators require a heavy shift-add over-
head, e.g., the shifters in the bit-serial units of the temporal de-
signs [37] and the shifters for composing various 2-bit multipliers
in the spatial designs [67] introduce significant or even dominant
area and energy costs.

Analysis from related works. The size of the required shifters
and accumulators in the temporal designs are determined by its high-
est supported precision and thus can dominate the area cost [67],
e.g., the shifter and the accumulator use up around 90% of the total
area in a temporal design supporting up to 16-bit, greatly limit-
ing their achievable benefits and leading to inferior normalized
efficiency per area. Similar observations have been drawn in [7]
that compared with spatial designs, temporal designs have a worse
normalized performance, i.e., throughput/area. On the other hand,
for spatial designs, [7] shows that their MAC unit can require up
to 4.4x the area of a standard MAC unit due to the overhead of
their scalable units using sub-computation parallelism, and [63]
also finds that the shift-add logic circuit in Bit Fusion for support-
ing precision-scalable configuration occupies a surprisingly large
area (67%) and consumes a majority of power consumption (79%).

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

Temporal Spatial Ours

43.0%
60.9% 67.0%

[M Multiplier M Shift-add 1 Register|

Figure 3: Area breakdown of the MAC units based on SOTA
temporal/spatial designs and our proposed design.

These observations motivate us to explore a new precision-salable
accelerator to reduce the shift-add logic overhead and thus to better
allocate the limited area for more MAC units.

Validation. In Fig. 3, we show the area breakdown of the MAC
units in Bit Fusion [67], a temporal design reported by Bit Fusion,
as well as our proposed architecture introduced in Sec. 3. We can
see that the shift-add logic occupies 60.9%/67.0% of the total area
in the MAC units of the temporal/spatial designs. In contrast, our
design reduces the area of shift-add logic to 39.7% via the techniques
proposed in Sec. 3, thus leading to a better performance/area.

3.1.3 Fixed or limited dataflow optimization.

Bottleneck. The dataflow of DNN accelerators largely impacts
their acceleration efficiency [21, 49, 82, 87]. For variable-precision
DNNS (e.g., RPS equipped ones), each layer might be executed at any
precision of the candidate precision set, making it more challenging
to find an optimal dataflow for all the cases. For example, a 20-
layer DNN with 5 precision choices correspond to a total of 100
different dataflows to be explored for achieving the best average
efficiency, in contrast to only 20 for its static layer-wise mixed-
precision counterpart.

Analysis. As analyzed in Eyeriss [11, 20, 86, 87], dataflows can
be described as the tiling strategies, including the loop order and
tiling factors, across each memory hierarchy. Most of existing
precision-scalable accelerators adopt a fixed dataflow within their
memory hierarchies or only conduct a limited dataflow optimiza-
tion. In particular, [37, 63, 66] all use a fixed NoC (Network-on-
Chip as defined in [11]) design, i.e., fixing the tiling strategies along
both the two dimensions of the MAC array; and Bit Fusion [67]
provides a dataflow optimization tool which only considers the
loop order optimization for the global buffer and thus lacks flexi-
ble dataflow support for other memory hierarchies. Considering
that different networks/layers with different precisions might favor
different dataflows, a more comprehensive optimizer is necessary
to find the optimal dataflow for further boosting the efficiency of
precision-scalable accelerators.

3.2 The proposed MAC unit architecture

In this subsection, we introduce the proposed MAC unit architec-
ture. Specifically, we show how a vanilla spatial-temporal MAC
unit architecture in Sec. 3.2.1 is evolved into our proposed MAC
unit architecture step by step through the optimization methods in
Sec. 3.2.2 ~ 3.2.3, and finally present the overall accelerator archi-
tecture in Sec. 3.2.4.

3.2.1 A spatial-temporal design.
Key idea. As analyzed in Sec. 3.1.1, there exists an inevitable

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Input (8-bit)
fg e R

y

> >

Spatial-Temporal Design

Temporal Design (Proposed)

Spatial Design

Figure 4: The MAC unit of the temporal design, spatial de-
sign, and our spatial-temporal design which spatially tiles
the temporal units to marry the advantages of both tempo-
ral and spatial designs for variable precision execution. For
8-bit weight and input in this case, it takes 8 cycles, 1 cycles,
and 4 cycles for the temporal, spatial, and our design.

trade-off between bit-level flexibility and acceleration efficiency in
temporal and spatial designs. As both flexibility and efficiency are
critical for real applications, we propose a new spatial-temporal
MAC unit architecture which spatially tiles the temporal units to
combine the advantages of both temporal and spatial designs. In
Fig. 4, we show an overview of the MAC unit in the (a) temporal, (b)
spatial, and (c) our proposed spatial-temporal designs. We tile the
temporal units, i.e., bit-serial units, in the same manner as the Bit
Bricks in Bit Fusion [67] so that they can be dynamically composed
to support variable precisions, e.g., each of the four bit-serial units
takes four cycles to calculate a 2-bit X 2-bit partial product, the
results of which are then fused via shift and accumulation to obtain
the final 4-bit x 4-bit results.

Advantages of the spatial-temporal design. First, our
spatial-temporal design maintains a high flexibility in the execu-
tion precision choices. Spatial designs [67] can only support limited
precision choices (like 2-/4-/8-/16-bit) while our design can flexi-
bly support more commonly used precision, e.g, each of the four
bit-serial units can take three cycles to calculate a total of four
3-bit X 3-bit products, or one 6-bit X 6-bit product via dynamic
composition. Second, the smaller size (i.e., the supported maximal
precision) of the bit-serial units in our spatial-temporal design will
help mitigate the area bottleneck caused by the shift-add logic for
precision configuration. In particular, one major bottleneck of tem-
poral designs when supporting a high bit-level flexibility is that
their shifters and accumulators within each bit-serial module are
determined by their highest supported precision, e.g., dominating a
90% of the area in a 16-bit bit-serial unit, as pointed out by [67]. Our
spatial-temporal design tackles this bottleneck via spatially com-
posing bit-serial units of smaller sizes, i.e., each bit-serial unit can
support up to 4-bit X 4-bit to constrain the maximal size required
by the shifters. More importantly, the number of the required shift-
add logic within the bit-serial unit and between different units for
dynamic composition can be aggressively reduced with further
optimization as introduced in Sec. 3.2.2 ~ 3.2.3.

Note that Bit Fusion also adopts a temporal-spatial manner for
16-bit inference by temporally executing 8-bit inference with their
spatial unit for four cycles to compose a 16-bit result to avoid more
complex logic for precision configurability, e.g., shifters of larger
sizes. However, their temporal execution of the spatial units cannot
benefit the bit-level flexibility like our design which spatially tiles
the temporal units.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Input (2m-bit) Weight (2m-bit) Output (2m-bit)
Shape: (4,1) Shape: (4,1) Shape: (1, 1)

= H H H H H H 3
msB (m-bit) { afl a¥all all |[b|bF 6502 " - .
VA oy @b x 22™ + aff b x 2™ + aFBE x 2™ + afBE x 2!
LSB (m-bit) {ag ol ol ak |bf L bl b ‘Z;(i O i 0 ;b ;b)

p
] T e o
f<<zn)

<<m
L
%
H
%
<<2m I
Reorganize the

bit-level split
and allocation

Figure 5: Reorganizing the bit-level split and allocation re-
duces the number of shifters by 1/n (n=4 in this case, denot-
ing the number of partial sums) when handling the inputs
and weights of 2m-bit. Here al.L/bl.L is the first m-bit LSB of
inputs/weights and afl /bf{ is the remaining MSBs of the i-th
partial sum.

Spatial-temporal scheduling for different precisions. In
our design, each bit-serial unit supports up to 4-bit X 4-bit cal-
culation and each MAC unit adopts up to four bit-serial units for
calculating one partial sum, i.e., supporting up to 8-bit X 8-bit calcu-
lation. For dealing with the precision higher than 8-bit, we follow
Bit Fusion to temporally execute the whole MAC unit and then ac-
cumulate their results, considering that (1) the cost of more complex
precision configurability under higher precisions will be higher and
(2) 8-bit or lower precisions are sufficient for most DNN inference
without accuracy degradation [5, 16, 38, 59].

Next, we introduce the detailed schedule of our MAC unit that
is conducted spatially across the bit-serial units and temporally
across cycles under each precision. Specifically, for operands with
precisions no more than 4-bit, each bit-serial unit will independently
calculate one partial sum of the final output; For operands with up to
6-bit X 6-bit / 8-bit X 8-bit, each of the four bit-serial units calculates
a partial product with up to 3-bit X 3-bit / 4-bit X 4-bit, and then
all the partial products will be composed to the final result via shift
and accumulation; For operands with more irregular precisions like
5-bit X 5-bit, we split it into (3-bit+2-bit)x(3-bit+2-bit), i.e., four bit-
serial units will take the computation of 3-bit X 3-bit, 2-bit X 2-bit,
and two 3-bit X 2-bit, respectively, and similarly, operands with 7-
bit can be split into (4-bit+3-bit); and for operands higher than 8-bit,
the calculation will be split to no more than 8-bit and temporally
executed by the whole MAC unit as mentioned above, e.g., 12-bit
X 12-bit can be split into four 6-bit X 6-bit, each of which will be
sequentially executed by the MAC unit and then accumulated. The
above analysis also works for asymmetrical precisions, e.g., 4-bit
X 2-bit which takes only two cycles for each bit-serial units to
complete the execution.

3.22 Opt-1: Reorganize bit-level split/allocation.

Motivation. It’s important to improve bit-level split and alloca-
tion of the inputs/weights for the MAC units in precision-scalable
accelerators, considering that the overhead of the shifters and accu-
mulators for precision configurability is coupled with the workload
patterns [7]. For example, if each bit-serial unit in a MAC unit
processes one bit-level partial product of different outputs, their

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

outputs need to be accumulated by different accumulators, thus
requiring a large area overhead. Therefore, we aim to reorganize
the workloads, more specifically, the bit-level split and allocation
strategy to reduce the required shifters and accumulators in a MAC
unit.

Calculating multiple partial sums in one MAC unit. We
increase the number of bit-serial units in each MAC unit to simul-
taneously calculate multiple partial sums of the same output pixel
as shown in Fig. 5 (a), which implies that the weights come from
different kernel rows (R) and columns (S) while the inputs come
from different input channels (C) for calculating the partial sums.
Therefore, all the partial sums can be directly accumulated in one
accumulator regardless of the execution precision. From a tiling
strategy perspective, we explicitly tile the R, S, or C dimension in the
MAC unit for further improving the area/energy efficiency while
freeing up the used dataflow in the NoC (i.e., MAC array) and global
buffer levels for layerwise optimization as introduced in Sec. 3.3.
Such a flexibility is necessary for dataflow optimization towards
reducing the data movement cost of each layer. More importantly,
simultaneously calculating multiple partial sums also brings out
another opportunity to aggressively reduce the required shifters as
introduced below.

Reorganize the bit-level split and allocation. The number
of shifters for the dynamic composition of bit-serial units can be
reduced via reorganizing the bit-level split and allocation strategy.
Suppose that calculating the i-th partial sum of an operand a; can
be formulated as a; = af.q x 2M + al{‘ x 29 where a{.‘ is the first m-bit
LSB and af[is the remaining MSBs, then the final result of one MAC
unit can be formulated as the sum of the totally n partial sums:

n-1

Z(a?x2m+a{7x20)(blH><2m+b{‘><20) 3)
=0
n-1

= Z (a{'lbf.q><22m+a{1b{“><zm+aiLbe><zm+a{.“b{f x 20) (4)
i=0
n-1 HoH n-1 HoL n-1 LoH n-1 L

= > (@) xo?m o 3 @bk xom w3 @bpH) <24 N (@bbEy 20)
i=0 i=0 i=0 i=0

The original design in Fig. 5 (a) corresponds to Eq. 4 where totally
4n shifters are required for combining the outputs from different
temporal units, whereas the reformulation in Eq. 5 only requires 4
shifters. Inspired by this, instead of accumulating different partial
sums, we adopt a first-reduce-then-shift strategy that the partial
products of the same magnitude (i.e., requiring the same number of
shifts) from different partial sums are organized as a group which
is mapped into a set of bit-serial units as shown in Fig. 5 (b). In
this way, the outputs of the bit-serial units in a group can be di-
rectly summed together without any shifters and the final result
of one MAC unit is the combination of the outputs from different
groups via a group-wise shift-add logic. This is equivalent to ac-
cumulate different partial sums in Fig. 5 (a) as formulated in Eq. 4
but the number of shifters cross the bit-serial units for precision
configurability is reduced by 1/n as shown in Eq. 5.

3.2.3 Opt-2: Fuse the shift-add logic of bit-serial units in one group.
As introduced in Sec. 3.2.2, the outputs from each group of the bit-
serial units can be directly accumulated without any shifter between
the bit-serial units. This property brings another significant benefit
in that all the shift-add logic of the bit-serial units in one group can
be fused into one shift-add logic, named group shift-add, as shown

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

Data Buffer Dispatcher

MAC Array

MICRO 21, October 18-22, 2021, Virtual Event, Greece

1-bit

HE(EEE
10100
|:||:||:|I:I

=1 [Boa'o

-y ™\
Group Group Bltl-JSenal 3
nit [
y .

N A

Figure 6: The overall architecture of the proposed 2-in-1 Accelerator.

in Fig. 6 (the leftmost zoom-in of one group). In particular, since
the total number of shifts is the same for all the bit-serial units in
one group, in each cycle the partial products of all the bit-serial
units in one group can be directly summed together and then fed
into the group shift-add module. Such an optimization reduces the
required number of shifters within the bit-serial units by 1/n.
The synthesized results show that our final MAC unit design in
Fig. 6 achieves 2.3x and 4.88x improvement in throughput/area
and energy-efficiency/operation, respectively, compared with Bit
Fusion under 8-bitx8-bit.

Note that (1) this optimization is specific to our design that

organizes the bit-serial units into groups without the necessity
of having unit-wise shifters and such opportunities do not exist
in previous temporal/spatial designs; and (2) although the group
shift-add can be potentially further combined with the group-wise
shift-add, this will also increase the critical path and limit the system
frequency. Thus, we keep them as two separate parts in our design.
3.2.4 Overall architecture.
The overall 2-in-1 Accelerator architecture is shown in Fig. 6, where
the data is packed by a dispatcher which is implemented by a
multiplexer to enable different granularities (i.e., 1/2/4/8-bit) for
accessing the data buffer, and then passed to the MAC array as
described in Sec. 3.2.1~ 3.2.3 for further processing. To this end,
our 2-in-1 Accelerator can (1) fully achieve the “win-win” in robust-
ness and efficiency on top of the proposed RPS algorithm, and (2)
support instantaneous robustness-efficiency trade-offs as validated
in Sec. 4.4.

3.3 The proposed automated optimizer

It is well-known that both the dataflow and micro-architecture of a
DNN accelerator are critical to its achievable efficiency. For example,
[49] shows that different dataflows can result in a 10x difference in
the accelerators’ efficiency. Meanwhile, the number of all possible
dataflows and micro-architectures for an accelerator can easily
explode [83], which can be time-consuming and might not even be
practical to manually identify, thus it can be greatly useful to have
a generic accelerator optimizer that can automatically search for
both the optimal dataflow and micro-architecture given the target
acceleration efficiency and hardware resource (e.g., area). To this
end, we propose an automated optimizer with two modes, i.e., (1)
search for merely dataflows and (2) search for both the dataflows
and micro-architectures given an area budget.

Searching for merely dataflows. For this mode, we adopt an
evolutionary algorithm [51]. Specifically, the searchable factors in-
clude the tiling factors for each data dimension and the loop order

for each memory hierarchy. Note that the optimal refresh location,
which is the one occupying the most memory size without caus-
ing overflow, can be automatically derived since all the memory
sizes are fixed in this mode. If all possible refresh locations cause
overflows, the corresponding design is invalid and discarded. As
shown in Alg. 2, we start from a population of randomly initialized
for-loop descriptions and in each cycle, select the top 30% designs
in terms of efficiency as a new population, and then conduct (1)
crossover (i.e., generate a new design via randomly selecting two
designs from the population and inserting one design’s loop order
in one memory hierarchy or tiling factors of one data dimension to
the other design) and (2) mutation (i.e., generate a new design from
arandomly selected dataflow via randomly permuting its loop order
in one memory hierarchy or tiling factors of one data dimension to
another choice). After enlarging the pool to the original population
size, we will start a new cycle and iterate this process until reach-
ing a predefined maximal cycle number. Note that in both modes,
we adopt an open-sourced generic performance predictor of DNN
accelerators [90] to obtain the efficiency for a given dataflow and
micro-architecture pair.

Searching for both dataflows and micro-architectures. The
search engine under this mode can be built on top of that for the
above mode. Specifically, we predefine a design space with a set of
available choices for the MAC array size and memory sizes in each
memory hierarchy which are then synthesized to acquire the unit
energy and area; and then adopt another evolutionary algorithm
similar to Alg. 2 to explore the design space, where the efficiency
of an micro-architecture is measured by calculating its average
energy/throughput under different precisions after optimizing the
dataflow via Alg. 2.

Note that for a fair comparison with the baselines, in this work
we only optimize the dataflow of each workload and adopt the same
memory/MAC array area as our baselines.

4 EXPERIMENT RESULTS

4.1 Experiment Setup

4.1.1 Algorithm Setup.

Networks & datasets. We evaluate our RPS algorithm on three
networks and four datasets which are the most commonly used
ones in the robustness literature [48, 65, 78], i.e., PreActResNet-18
and WideResNet-32 on CIFAR-10/CIFAR-100/SVHN and ResNet-
50 on ImageNet. We use a linear quantizer [34] for quantizing
weights/activations to the same precision.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Algorithm 2 Evolutionary Search for Dataflows

Require: Architecture arch, Workload (layer information and exe-
cution precision), Total cycle number Total_Cycle, Population
size Psize

1: Initialize a population of dataflow with different loop orders
and tiling factors according to the workload
2: for cycle € [1, Total_Cycle] do
3. Select the top 30% dataflow from the population based on
the predicted efficiency of the workload
4. while size(population) < Psize do

5 Randomly select two dataflow, do crossover, append to
population if valid
6: Randomly select one dataflow, do mutation, append to

population if valid
7. end while
8. end for
9: return The best dataflow in the population

Training settings. We adopt four SOTA adversarial training
methods, including FGSM [24], FGSM-RS [78], PGD-7 [48], and
Free [65] and apply our RPS algorithm on top of them. We follow
their original papers for the adversarial training hyper-parameter
settings and follow the model training settings in [48] and [65] for
CIFAR-10/CIFAR-100/SVHN and ImageNet.

Attack settings. We consider the strong attacks including three
white-box attacks PGD [48], AutoAttack [13], CW [8], and one
gradient-free attack Bandits [33], with different numbers of iter-
ations/restarts and permutation strengths € = 8,12, 16. Without
loss of generality, we assume the adversary adopts random preci-
sion from the same inference precision set as our RPS since (1) any
attack precision out of RPS’s inference precision set will merely
increase RPS’s robust accuracy according to Fig. 1, and (2) while
the adversary may select precisions with better attacking success
rates, our RPS can also increase the probability of sampling more
robust precisions for a stronger defense, thus we assume both the
adversary and RPS adopt random precision for simplicity.

4.1.2 Accelerator Setup.

Accelerator development and synthesis. In order to evaluate
our proposed accelerator, we implement a custom cycle-accurate
simulator, aiming to model the behavior of the synthesized cir-
cuits. The design parameters in the simulator are obtained from
gate-level netlists and SRAM which are generated based on a com-
mercial 28nm technology using the Synopsys Design Compiler and
Memory compiler provided by the foundry. Specifically, proper ac-
tivity factors are set at the input ports of the memory/computation
units, and the energy is calculated using PrimeTime [73].

Baselines. We benchmark with two SOTA precision-scalable
accelerators Bit Fusion [67] and Stripes [37], and one robustness-
aware accelerator DNNGuard [76]. For a fair comparison, we adopt
the same memory area and MAC array area with Bit Fusion, and
we modify the unit energy of Bit Fusion’s official simulator to scale
it from 45nm to 28nm following the rule in [1]. For Stripes, thanks
to the clear description of the design in their paper and the easy
representation, we built a cycle-accurate simulator for it with the
same memory/MAC array area with Bit Fusion and our design, and
optimize its dataflow with our automated optimizer.

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

Table 1: Evaluating RPS on two networks and three adver-
sarial training methods FGSM [24], FGSM-RS [78], and PGD-
7 [48] on CIFAR-10 under different PGD attacks.

PreActResNet-18 WideResNet-32
Adversarial Natural PGD-20 PGD-100 Natural PGD-20 PGD-100

Training Method (%) (%) (%) (%) (%) (%)
FGSM 67.04 41.48 41.37 66.76 40.78 40.55
FGSM + RPS 80.58 64.08 63.56 64.09 50.70 48.72
FGSM-RS 86.08 41.76 41.13 89.95 45.33 44.77
FGSM-RS + RPS 82.11 59.33 59.32 87.87 60.07 59.12
PGD-7 82.02 51.17 50.93 85.25 54.61 54.36
PGD-7 + RPS 82.16 65.15 64.88 81.52 66.75 66.28

Table 2: Evaluating RPS on two networks trained with FGSM-
RS [78] and PGD-7 [48] on CIFAR-100.

PreActResNet-18 WideResNet-32
Adversarial Natural PGD-20 PGD-100 Natural PGD-20 PGD-100

Training Method (%) (%) (%) Acc (%) (%) (%)
FGSM-RS 57.6 26.14 25.88 67.29 25.35 24.78
FGSM-RS + RPS 51.09 36.75 37.18 64.95 39.18 38.36
PGD-7 56.31 27.97 27.77 60.36 31.06 30.86
PGD-7 + RPS 56.2 41.74 42.1 58.41 40.45 40.5

Table 3: Evaluating RPS on two networks trained with FGSM-
RS [78] and PGD-7 [48] on the SVHN dataset.

PreActResNet-18 WideResNet-32
Adversarial Natural PGD-20 PGD-100 Natural PGD-20 PGD-100

Training Method (%) (%) (%) (%) (%) (%)
FGSM-RS 88.68 44.62 43.59 92.20 42.62 40.88
FGSM-RS + RPS 86.46 53.51 53.92 93.83 57.99 57.42
PGD-7 86.81 51.53 50.98 91.07 54.39 53.53
PGD-7 + RPS 87.22 61.84 61.64 91.05 65.59 64.62

Table 4: Evaluating RPS on top of two adversarial training
methods (FGSM-RS [78] and Free [65]) on ResNet-50 under
PGD-10 and PGD-50 attacks with € = 4 on ImageNet.

Adversarial Natural PGD-10 PGD-50
Training Method (%) (%) (%)
FGSM-RS 55.45 30.28 30.18
FGSM-RS + RPS 63.21 37.93 37.12
Free 60.21 32.77 31.88
Free + RPS 64.58 42.88 42.72

Workloads. We adopt six networks (WideResNet-32/ResNet-18
on CIFAR-10 with 32x32 inputs and AlexNet/VGG-16/ResNet-18/50
on ImageNet with 224X224 inputs) under 1~16-bit as our workloads.

4.2 Evaluate 2-in-1 Accelerator’s algorithm

We evaluate the improvement in robustness via applying the pro-
posed RPS on top of SOTA adversarial training methods. Note that
all the baselines are SOTA adversarial training methods with a
full precision, i.e., no quantization is applied. Our RPS adopts a
precision set of 4~16-bit by default.

4.2.1 Benchmark on CIFAR-10/CIFAR-100/SVHN/ImageNet.
Benchmark on CIFAR-10. As summarized in Tab. 1, we can
observe that (1) RPS consistently enhances the robust accuracy
under PGD attacks, largely outperforming SOTA adversarial train-
ing methods with a full precision. In particular, RPS achieves a
13.98%/12.14% higher robust accuracy under PGD-20 attacks on
PreActResNet-18 and WideResNet-32, respectively, while notably
improving the efficiency thanks to the low precision execution as

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

Table 5: Evaluating RPS on two networks trained by PGD-7
under more strong attacks with ¢=8 and 12 on CIFAR-10.

PreActResNet-18 WideResNet-32

Attack Type PGD-7 PGD-7+RPS PGD-7 PGD-7 + RPS
AutoAttack (e=8) 47.18 54.56 51.66 58.54
AutoAttack (e=12) 27.59 35.83 30.71 39.83
CW-Inf (e=8) 57.88 71.44 62.13 72.10
CW-Inf (e=12) 46.70 65.57 50.14 66.99
Bandits (e=8) 59.75 71.75 63.49 68.50
Bandits (e=12) 46.04 70.52 49.77 67.01

Table 6: Evaluating RPS against the customized adaptive at-
tack E-PGD on top of PreActResNet-18 on CIFAR-10/100.

CIFAR-10 CIFAR-100
Adversarial Natural E-PGD E-PGD Natural E-PGD E-PGD
Training Method (%) -20 (%) -100 (%) (%) -20 (%) -100 (%)
PGD-7 82.02 51.17 50.93 56.31 27.97 27.77
PGD-7 + RPS 82.16 60.14 60.08 56.23 37.58 37.89

evaluated in Sec. 4.3; and (2) RPS also enhances the robust accuracy
by 13.57%~22.60% under PGD-20 attacks on top of FGSM/FGSM-RS.

Benchmark on CIFAR-100. The observations on CIFAR-100
are consistent with those on CIFAR-10. In particular, RPS achieves
a10.61%/13.77% and 13.83%/9.39% higher robust accuracy on top of
FGSM-RS/PGD-7 training under PGD-20 attacks on PreActResNet-
18 and WideResNet-32, respectively.

Benchmark on SVHN. As shown in Tab. 3, RPS achieves a
8.89%~15.37% and 10.31%~11.20% higher robust accuracy under
PGD-20 attacks and a comparable natural accuracy on top of FGSM-
RS and PGD-7 training, respectively, indicating that RPS is generally
effective on various tasks.

Benchmark on ImageNet. We further evaluate RPS on a larger
scale dataset, i.e, ImageNet, as shown in Tab. 4. We can observe that
RPS achieves a triple-win in terms of the natural accuracy, robust
accuracy, and model efficiency on top of both adversarial training
methods. In particular, RPS achieves a 7.65%/10.11% higher robust
accuracy over FGSM-RS [78] and Free [65], respectively, under the
PGD-10 attack, indicating our RPS’s scalability and applicability on
large-scale and complex datasets.

4.2.2 Benchmark under more attacks.

Considering many defense methods are found to be ineffective
under stronger attacks, we evaluate RPS against more attack
methods with different permutation strengths. As observed from
Tab. 5, RPS consistently improves the robust accuracy across dif-
ferent attacks/models/distortions, e.g., a higher robust accuracy
of 6.88%~9.12% under Auto-Attack, which is currently one of the
strongest adaptive attacks, and more surprisingly, 9.97%~18.87%
under the CW-Inf attack, where we find the poor transferability
between different attack/inference precisions is more notable. In
addition, RPS achieves a 5.01%~24.48% higher robustness accuracy
under the Bandits attack which is a gradient-free attack, indicating
that RPS does not suffer from the obfuscated gradient problem [4].
In fact, we find RPS does not show any characteristic behavior for
obfuscated gradients discussed in [4].

4.2.3 Benchmark under adaptive attacks.

We further evaluate RPS via customizing an adaptive attack [74],
dubbed E-PGD, which generates perturbations based on the ensem-
ble (i.e., the averaged ouptput) of all candidate precisions to make

MICRO 21, October 18-22, 2021, Virtual Event, Greece

- 2-bit X 2-bit - 4-bit X 4-bit
3_77 M5t Fusion o . 2.,
5 stipes | 2 5.
§ 20 (|Mours g .
£1s £
F s
110)
E g
2 2"
oo LML IR IR BIEIS BIEIE RISE | o< LIRS RIS RISE SIS SIS R
Reset 18 WidReshet 2 Resel18_Reshets0 VG616 AesNet) (Reshe 18 WideReshet 3y Reshet 18 _Reshel 50 VGG-16__ ety
CIFAR-10 ImageNet CIFAR-10 ImageNet
(a) (b)
. 8-bit X 8-bit ; 16-bit X 16-bit
5" = 2 2% = e
2 2,
S0 8
5 B
o5 o
2 4
£ S5
=% I
: 10
E.. £
S Gos
z z
" stors Voo o1 _storso_VGo1s Moot et 1s WiaRashra et eshars0_vG-te e
CIFAR-10 ImageNet CIFAR-10 ImageNet

(© (d)

Figure 7: Normalized throughput comparison among Bit Fu-
sion, Stripes, and our 2-in-1 Accelerator on top of six net-
works and four execution precisions.

the attacks aware of all precisions, assuming that the adversaries
know the adopted precision set in advance. As shown in Tab. 6,
RPS still achieves a more than 8.97% and 9.61% higher robust accu-
racy over PGD-7 training on CIFAR-10 and CIFAR-100, respectively,
indicating the consistent effectiveness of RPS.

4.3 Evaluate 2-in-1 Accelerator’s architecture

4.3.1 Benchmark with Bit Fusion and Stripes.

Throughput comparison. We compare the throughput of Bit
Fusion, Stripes, and our 2-in-1 Accelerator on top of six networks
and four execution precisions in Fig. 7. All the throughput results
are normalized to that of Bit Fusion. We can observe that our design
outperforms the baselines across all the networks and precisions
with a 1.41x ~ 2.88% and 1.15X ~ 4.59% higher throughput over
Bit Fusion and Stripes, respectively. Such improvement mainly
comes from (1) the high throughput/area of our proposed MAC
unit architecture, and (2) the effectiveness of our automated opti-
mizer in reducing the memory stalls to fully utilize the capability
of our MAC unit. For example, when using ResNet-50 on ImageNet
with 4x4-bit, our MAC unit design boosts the throughput by 2.25x
over Bit-Fusion, and our automated optimizer further improves the
throughput by 1.28x via reducing the memory stalls. In addition,
we can observe that Bit Fusion shows a better throughput over
Stripes for execution precisions lower than 8-bit while showing an
inferior throughput at 16-bit, which is consistent with the analysis
in Sec. 3.1.1 showing that Bit Fusion requires to execute each MAC
unit four times for execution precisions higher than 8-bit. Although
our accelerator adopts a similar manner to deal with 16-bit, it can
still achieve a 1.15X higher throughput over Stripes, validating the
superiority of the proposed spatial-temporal MAC design.

Energy efficiency comparison. We compare the energy effi-
ciency of Bit Fusion, Stripes, and our 2-in-1 Accelerator on top of
six networks and four execution precisions in Fig. 8. All the en-
ergy efficiency results are normalized to that of Bit Fusion. We can
observe that our proposed architecture consistently achieves the
best energy efficiency across all the networks and precisions with a
1.91X ~ 7.58% and 1.25X ~ 2.85x% energy efficiency over Bit Fusion
and Stripes, respectively. Here we fully optimize the dataflow of
Stripes so that it also outperforms Bit Fusion in energy efficiency.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

> . " > . .
g, 2-bit X 2-bit g, 4-bit X 4-bit
2. 27,

2 2
& F=
w w s,

> >

oo B0

% |

@ 5o @ w0

< 1=

w20 1 20

£ g

> LEITL mrnt Wil Kl =il ’EEitl - (Eil ’int WKl Rt =it Mt d
) ResNet-18 WideResNet-32)ResNet-18_ ResNet50 _ VGG-16 AlexNet, S (ResNet-18 WideResNet-32)ResNet-18 _ ResNet-50 VGG-16 AlexNet
2 (ResNerto w N Yz ® Z 5 Y

CIFAR-10 ImageNet CIFAR-10 ImageNet
(2) (b)

> . . > . .

e 8-bit X 8-bit e 16-bit X 16-bit
s Kl
§ i § =0 s
o, oo ™

> >

D o Do

@ .)

c o0
w .o w

: : 10

g £

5 oo S oo

ResNet-18 WideResNet-32, ResNet-18_ResNet50 _VGG-16___Alexhet, ResNet-18_WideResNet-32/ResNet-18_ResNet-80 _ VGG-16 __ AlexNet
Zz ! Zz @ e 8 Yy
CIFAR-10 ImageNet CIFAR-10 ImageNet
© (d) 'mae

Figure 8: Normalized energy efficiency comparison among
Bit Fusion, Stripes, and our 2-in-1 Accelerator on top of six
networks and four execution precisions.

0.035
0.030 DRAM (Ours) DRAM (Bit Fusion)
0025 .SRAM (Ours) SRAM (Bit Fusion)
2 i comp. (Ours) i Comp. (Bit Fusion)
- 0.020 P. = p.
f=2
= 0015
Q e
< L
W 0010
0000 lemmm [— = —
(ResNet-18 18 ResNet-50 VGG-16 AlexNet,
T T
CIFAR-10 ImageNet

Figure 9: Energy breakdown of our 2-in-1 Accelerator and Bit
Fusion on six networks executed with 4-bitx4-bit.

We also compare the energy breakdown between our design and
Bit Fusion in Fig. 9. We can observe that although DRAM access
still dominates the total energy, the energy costs for both the MAC
computations and data movement (i.e., access DRAM and SRAM)
are all reduced over Bit Fusion. The former is due to the higher
energy efficiency/operation of our MAC unit and the latter is due
to (1) the new opportunities for better mapping strategies brought
by the proposed MAC unit with better throughput/area and output
reuses, and (2) the effectiveness of our automated optimizer on a
more flexible dataflow search space.

Throughput evolution with the execution precision. To
further validate the scalability along different execution precisions
of our 2-in-1 Accelerator over spatial/temporal designs, we evaluate
the throughput under different precisions (the same weight/input
precision) of Bit Fusion, Stripes, and our design, when accelerat-
ing WideResNet-32 on CIFAR-10 and ResNet-50 on ImageNet. As
observed in Fig. 10, our 2-in-1 Accelerator shows both superior ef-
ficiency and flexibility as it (1) consistently outperforms both the
baselines under all the precisions with up to 4.42x higher through-
put, and (2) achieves a consistent improvement in the throughput
as the precision decreases. In addition, under execution precisions
lower than 8-bit which are the common choices of recent quantiza-
tion works [5, 16, 38, 59], our design shows more than 1.82x higher
throughput compared with the best baseline; and under execution
precisions higher than 8-bit which are inferior choices for spatial
designs as analyzed in Sec. 3.1.1, our design still achieves a higher
throughput over Stripes, which benefits from the spatial-temporal
design of our MAC unit.

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

WideResNet-32 on CIFAR-10

Wit Fusion| ! :
[stripes EO‘DG

" .Ours 1008

0.5

0.0

Throughput (X 10°FPS)

Precision (bit)
(a

ResNet-50 on ImageNet

N

o

o
©

©
=

o
N

Throughput (X 103FPS)

Precision (bit)

Figure 10: Throughput under different precisions of Bit Fu-
sion, Stripes, and our 2-in-1 Accelerator for accelerating
WideResNet-32 on CIFAR-10 and ResNet-50 on ImageNet.

4.3.2 Benchmark with robustness-aware accelerators.

Boosting both robustness and efficiency in one accelerator is a
significant feature and benefit of our 2-in-1 Accelerator. We fur-
ther benchmark with a SOTA robustness-aware accelerator DNN-
Guard [76] to show the superiority of our framework. In particu-
lar, we compare the throughput/area of our 2-in-1 Accelerator and
that of DNNGuard on AlexNet, VGG-16, and ResNet-50 which are
reported by [76]. We find that our design achieves a 36.5%/17.9X%,
19.3%/9.5%, and 12.8x/6.4x higher throughput compared with DNN-
Guard when adopting 4~8-bit/4~16-bit for accelerating AlexNet,
VGG-16, and ResNet-50, respectively. This indicates the superiority
and practicality of deploying our 2-in-1 Accelerator in real-world
IoT applications where both security and efficiency matter.

67.5

65.0 .\ /
62.5 1\‘ /
60.0 \ /

57.5

N
IN]

N
[}

—
®

-
kS

55.0

52.5

Robust Accuracy (%)

= -

N 3 o c c
Kouaioiyg ABiauz pazijewionN

50.0

-
o

4-16 4-12 4-8 4
Inference Precision

Figure 11: 2-in-1 Accelerator’s instant robustness-efficiency
trade-off on top of WideResNet-32 and CIFAR-10.

4.4 Instant robustness-efficiency trade-offs of
the 2-in-1 Accelerator

As analyzed in Sec. 2.5, our 2-in-1 Accelerator also features the
capability to enable instant robustness-efficiency trade-offs at run-
time to adapt to both the safety conditions of the environments

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

and the remaining power on the device. We show an example of
executing WideResNet-32 with CIFAR-10 inputs on our 2-in-1 Ac-
celerator with different execution precisions (RPS with 4~16-bit,
4~12-bit ,4~8-bit, and static 4-bit) and record the robust accuracy
and the (averaged) energy efficiency. As shown in Fig. 11, our 2-in-1
Accelerator can instantly switch between high precision sets, low
precision sets, and static low precision to balance the achieved ro-
bustness and efficiency with a comparable natural accuracy (within
81.5%~84.7%).

5 RELATED WORKS

Adversarial attacks and defenses. [24] shows that small per-
mutations onto the inputs can mislead DNNs’ decisions, which is
known as adversarial attacks. Later, stronger attacks, including both
white-box [8, 13, 48, 54, 58] and black-box ones [3, 10, 27, 32, 33],
are proposed to aggressively degrade the accuracy of the target
DNN models. To defend DNNs against adversarial attacks, ad-
versarial training [48, 65, 75, 78], which augments the training
set with adversarial samples generated during training, is cur-
rently the most effective method. In parallel, other defense meth-
ods [6, 17, 28, 40, 42, 50, 71, 79, 84] have also been proposed. There
has been a continuous competition between adversaries and de-
fenders, and the readers are referred to [2, 9] for more discussions.

Robustness of quantized models. As both robustness and ef-
ficiency are critical for most DNN applications, pioneering works
have strived to design robust quantized DNNs. In particular, [22, 56]
propose robust binary neural networks (BNNs) and [61] adopts
tanh-based quantization to increase robustness, while these works
have been observed to suffer from the obfuscated gradient prob-
lem [4, 57], which is a false sense of security. Later, [43] finds that
quantized DNNs are actually more vulnerable to adversarial attacks
due to the error amplification effect, i.e., the magnitude of adver-
sarial perturbation is amplified when passing through the DNN
layers. To tackle this effect, [43, 68] propose robustness-aware regu-
larization methods for DNN training, and [69] retrains the network
via feedback learning [70]. In addition, [55] searches for layerwise
precision and [26] constructs a unified formulation to balance and
enforce the models’ robustness and compactness. In contrast, our
RPS algorithm leverages quantization to aggressively enhance ro-
bustness, which even largely surpasses the full-precision models.

Precision-scalable accelerators. To support variable preci-
sions for different DNN models/layers, various precision-scalable
accelerators have been proposed to dynamically and flexibly handle
the varied workloads, which can be categorized into two classes,
i.e., temporal and spatial designs. For temporal designs, pioneering
works, such as Stripes [37], LOOM [66], and Tartan [14], adopt
bit-serial MAC units to provide precision configurability, which
can flexibly handle any prevision yet suffer from inferior efficiency
per area over their spatial counterparts [7, 67], and more recently
UNPU [39] fabricates a bit-serial DNN accelerator to support vari-
able weight precisions while the activations use full precision. For
spatial designs, Bit Fusion [67] proposes to use combinational logic
to dynamically compose and decompose 2-bit multipliers to con-
struct variable-precision MAC units; Later, BitBlade [63] improves
Bit Fusion via pulling out the shifting logic of each MAC unit
and sharing it across the multipliers to reduce the area overhead;

MICRO 21, October 18-22, 2021, Virtual Event, Greece

DVAFS [52, 53] propose to turn off parts of the multipliers at low
precision to increase the energy efficiency at a constant throughput;
and DeepRecon [64] skips parts of the pipeline stages of a floating-
point-multiplier to support either one 16-bit, two 12-bit, or four
8-bit multiplications. Detailed benchmarks for different precision-
scalable MAC unit architectures can be found in [7]. Our proposed
MAC unit architecture marries the best of both temporal and spa-
tial designs and is integrated to construct a new precision-scalable
accelerator, which consistently outperforms SOTA designs under
various settings.

Robustness-aware DNN accelerators. Despite their impor-
tance for real-world applications, the art of robustness-aware DNN
accelerators is still in its infancy. Pioneering works [23, 62, 76] aim
to defend against adversarial attacks within DNN accelerators at a
cost of additional detection networks/modules. In particular, [62]
proposes an end-to-end framework based on the voting results
of multiple detectors, in parallel with the execution of the target
DNN to detect malicious inputs during inference; [76] proposes an
elastic heterogeneous DNN accelerator architecture to orchestrate
the simultaneous execution of the target DNN and the detection
network for detecting adversarial samples via an elastic manage-
ment of the on-chip buffer and PE computing resources; [23] builds
an algorithm-architecture co-designed system to detect adversarial
attacks during inference via a random forest module applied on
top of the extracted features from the run-time activations. In ad-
dition, [60] builds a robustness-aware accelerator based on BNNs
which, however, suffers from the obfuscated gradient problem [4]
and [29] strives to speed up the attack generation instead of the
defense. Nevertheless, all the existing defensive accelerators rely
on additional detection networks/modules to detect adversarial
samples at inference time, and thus inevitably introduce additional
energy/latency/area overheads that compromise efficiency. In con-
trast, our work exploits the robustness within a DNN model via
the proposed RPS algorithm to win both robustness and efficiency
within one accelerator without introducing any extra modules.

6 CONCLUSION

Existing DNN accelerators mostly tackle only either efficiency or
adversarial robustness while neglecting or even sacrificing the other.
In this work, we propose the 2-in-1 Accelerator, aiming at winning
both the adversarial robustness and efficiency of DNN accelera-
tors. 2-in-1 Accelerator integrates a Random Precision Switch (RPS)
algorithm that can effectively defend DNNs against adversarial
attacks and a new precision-scalable accelerator featuring a spatial-
temporal MAC unit architecture to boost both the achievable ef-
ficiency and flexibility and a systematically optimized dataflow
generated by our generic accelerator optimizer. Extensive experi-
ments and ablation studies validate our 2-in-1 Accelerator’s effec-
tiveness and we believe our 2-in-1 Accelerator has opened up a new
perspective for designing robust and efficient accelerators.

ACKNOWLEDGMENTS

The work is supported by the NSF RTML program (Award number:
1937592), the NSF NeTS program (Award number: 1801865), and
the NSF MLWINS program (Award number: 2003137).

—

[

MICRO 21, October 18-22, 2021, Virtual Event, Greece

REFERENCES

[1] [n.d.]. The scaling of MOSFETs, Moore’s law, and ITRS. http://userweb.eng.gla.

ac.uk/fikru.adamu-lema/Chapter_02.pdf

Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep
learning in computer vision: A survey. Ieee Access 6 (2018), 14410—-14430.
Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias
Hein. 2020. Square attack: a query-efficient black-box adversarial attack via
random search. In European Conference on Computer Vision. Springer, 484-501.
Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial examples.
In International Conference on Machine Learning. PMLR, 274-283.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak.
2020. LSQ+: Improving low-bit quantization through learnable offsets and better
initialization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 696—697.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. 2018. Thermometer
encoding: One hot way to resist adversarial examples. In International Conference
on Learning Representations.

Vincent Camus, Linyan Mei, Christian Enz, and Marian Verhelst. 2019. Review
and benchmarking of precision-scalable multiply-accumulate unit architectures
for embedded neural-network processing. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 9, 4 (2019), 697-711.

Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp). IEEE,
39-57.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. 2018. Adversarial attacks and defences: A survey. arXiv
preprint arXiv:1810.00069 (2018).

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.
Zoo: Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security. 15-26.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367-379.

[12] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial

robustness via randomized smoothing. In International Conference on Machine
Learning. PMLR, 1310-1320.

Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks. In International
Conference on Machine Learning. PMLR, 2206-2216.

Alberto Delmas, Sayeh Sharify, Patrick Judd, and Andreas Moshovos. 2017. Tartan:
Accelerating fully-connected and convolutional layers in deep learning networks
by exploiting numerical precision variability. arXiv preprint arXiv:1707.09068
(2017).

Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein,
Jean Kossaifi, Aran Khanna, and Anima Anandkumar. 2018. Stochastic activation
pruning for robust adversarial defense. arXiv preprint arXiv:1803.01442 (2018).
Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. 2019. Learned step size quantization. arXiv preprint
arXiv:1902.08153 (2019).

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410
(2017).

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, and
Yingyan Lin. 2021. CPT: Efficient Deep Neural Network Training via Cyclic
Precision. arXiv:cs.LG/2101.09868

Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakr-
ishnan, Zhangyang Wang, and Yingyan Lin. 2020. FracTrain: Fractionally
Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training.
arXiv:cs.CV/2012.13113

Yonggan Fu, Zhongzhi Yu, Yongan Zhang, Yifan Jiang, Chaojian Li, Yongyuan
Liang, Mingchao Jiang, Zhangyang Wang, and Yingyan Lin. 2021. InstantNet:
Automated Generation and Deployment of Instantaneously Switchable-Precision
Networks. arXiv:cs.LG/2104.10853

Yonggan Fu, Yongan Zhang, Yang Zhang, David Cox, and Yingyan Lin. 2021.
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks,
Bitwidths, and Accelerators. arXiv:cs.LG/2106.06575

Angus Galloway, Graham W Taylor, and Medhat Moussa. 2017. Attacking bina-
rized neural networks. arXiv preprint arXiv:1711.00449 (2017).

Yiming Gan, Yuxian Qiu, Jingwen Leng, Minyi Guo, and Yuhao Zhu. 2020.
Ptolemy: Architecture support for robust deep learning. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 241—
255.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[25

[26

[27

(28]

™~
29,

[30

(31]

[32

@
&

(34

[35

[36

w
=

[38

[39

[41

[42

[43]

[44

[46

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin

Luis Guerra, Bohan Zhuang, Ian Reid, and Tom Drummond. 2020. Switchable
Precision Neural Networks. arXiv preprint arXiv:2002.02815 (2020).

Shupeng Gui, Haotao Wang, Chen Yu, Haichuan Yang, Zhangyang Wang, and Ji
Liu. 2019. Model compression with adversarial robustness: A unified optimization
framework. arXiv preprint arXiv:1902.03538 (2019).

Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian
Weinberger. 2019. Simple black-box adversarial attacks. In International Confer-
ence on Machine Learning. PMLR, 2484-2493.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten.
2017. Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117 (2017).

Haoqiang Guo, Lu Peng, Jian Zhang, Fang Qi, and Lide Duan. 2019. Hardware
Accelerator for Adversarial Attacks on Deep Learning Neural Networks. In 2019
Tenth International Green and Sustainable Computing Conference (IGSC). IEEE,
1-8.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. 2019. Parametric noise injec-
tion: Trainable randomness to improve deep neural network robustness against
adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 588-597.

Xing Hu, Yang Zhao, Lei Deng, Ling Liang, Pengfei Zuo, Jing Ye, Yingyan Lin,
and Yuan Xie. 2021. Practical Attacks on Deep Neural Networks by Memory
Trojaning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 40, 6 (2021), 1230-1243. https://doi.org/10.1109/TCAD.2020.2995347
Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. 2018. Black-
box adversarial attacks with limited queries and information. In International
Conference on Machine Learning. PMLR, 2137-2146.

Andrew Ilyas, Logan Engstrom, and Aleksander Madry. 2018. Prior convic-
tions: Black-box adversarial attacks with bandits and priors. arXiv preprint
arXiv:1807.07978 (2018).

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704-2713.

Qing Jin, Linjie Yang, and Zhenyu Liao. 2020. Adabits: Neural network quan-
tization with adaptive bit-widths. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2146-2156.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1-12.

Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas
Moshovos. 2016. Stripes: Bit-serial deep neural network computing. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
1-12.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun
Kwak, Sung Ju Hwang, and Changkyu Choi. 2019. Learning to quantize deep
networks by optimizing quantization intervals with task loss. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4350-4359.
Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,
and Hoi-Jun Yoo. 2018. UNPU: A 50.6 TOPS/W unified deep neural network
accelerator with 1b-to-16b fully-variable weight bit-precision. In 2018 IEEE Inter-
national Solid-State Circuits Conference-(ISSCC). IEEE, 218-220.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. 2018. Certified
adversarial robustness with additive noise. arXiv preprint arXiv:1809.03113 (2018).
Weitao Li, Pengfei Xu, Yang Zhao, Haitong Li, Yuan Xie, and Yingyan Lin. 2020.
TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators towards Local
and in Time Domain. IEEE Press, 832-845. https://doi.org/10.1109/ISCA45697.
2020.00073

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun
Zhu. 2018. Defense against adversarial attacks using high-level representation
guided denoiser. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 1778-1787.

JiLin, Chuang Gan, and Song Han. 2019. Defensive quantization: When efficiency
meets robustness. arXiv preprint arXiv:1904.08444 (2019).

Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Pre-
dictiveNet: An energy-efficient convolutional neural network via zero predic-
tion. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 1-4.
https://doi.org/10.1109/ISCAS.2017.8050797

Yingyan Lin, Sai Zhang, and Naresh R. Shanbhag. 2016. Variation-Tolerant
Architectures for Convolutional Neural Networks in the Near Threshold Voltage
Regime. In 2016 IEEE International Workshop on Signal Processing Systems (SiPS).
17-22. https://doi.org/10.1109/SiPS.2016.11

Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
2018. On-Demand Deep Model Compression for Mobile Devices: A Usage-Driven
Model Selection Framework. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys "18). Association
for Computing Machinery, New York, NY, USA, 389-400. https://doi.org/10.

1145/3210240.3210337

Xuanging Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2018. Towards
robust neural networks via random self-ensemble. In Proceedings of the European
Conference on Computer Vision (ECCV). 369-385.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 135-147.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017.
On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017).
Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193-212.

Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 2017.
DVAFS: Trading computational accuracy for energy through dynamic-voltage-
accuracy-frequency-scaling. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 488-493.

Bert Moons and Marian Verhelst. 2016. A 0.3-2.6 TOPS/W precision-scalable
processor for real-time large-scale ConvNets. In 2016 IEEE Symposium on VLSI
Circuits (VLSI-Circuits). IEEE, 1-2.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2574-2582.
Priyadarshini Panda. 2020. QUANOS: adversarial noise sensitivity driven hybrid
quantization of neural networks. In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design. 187-192.

Priyadarshini Panda, Indranil Chakraborty, and Kaushik Roy. 2019. Discretization
based solutions for secure machine learning against adversarial attacks. IEEE
Access 7 (2019), 70157-70168.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506-519.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372-387.

Eunhyeok Park and Sungjoo Yoo. 2020. PROFIT: A Novel Training Method for
sub-4-bit MobileNet Models. arXiv preprint arXiv:2008.04693 (2020).

Yi-Fan Qin, Rui Kuang, Xiao-Di Huang, Yi Li, Jia Chen, and Xiang-Shui Miao.
2020. Design of High Robustness BNN Inference Accelerator Based on Binary
Memristors. IEEE Transactions on Electron Devices 67, 8 (2020), 3435-3441.
Adnan Siraj Rakin, Jinfeng Yi, Boqing Gong, and Deliang Fan. 2018. Defend deep
neural networks against adversarial examples via fixed and dynamic quantized
activation functions. arXiv preprint arXiv:1807.06714 (2018).

Bita Darvish Rouhani, Mohammad Samragh, Mojan Javaheripi, Tara Javidi, and
Farinaz Koushanfar. 2018. Deepfense: Online accelerated defense against adversar-
ial deep learning. In 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 1-8.

Sungju Ryu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim. 2019. Bitblade: Area
and energy-efficient precision-scalable neural network accelerator with bitwise
summation. In Proceedings of the 56th Annual Design Automation Conference 2019.
1-6.

Tayyar Rzayev, Saber Moradi, David H Albonesi, and Rajit Manchar. 2017. Deep-
Recon: Dynamically reconfigurable architecture for accelerating deep neural
networks. In 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 116-124.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. 2019. Adversarial
training for free! arXiv preprint arXiv:1904.12843 (2019).

Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas
Moshovos. 2018. Loom: Exploiting weight and activation precisions to accelerate
convolutional neural networks. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). IEEE, 1-6.

Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit fusion: Bit-level dynamically compos-
able architecture for accelerating deep neural network. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 764-775.
Moran Shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yuri Nahshan, Alex
Bronstein, and Uri Weiser. 2020. Robust quantization: One model to rule them
all. arXiv preprint arXiv:2002.07686 (2020).

Chang Song, Elias Fallon, and Hai Li. 2020. Improving Adversarial Robustness in
Weight-quantized Neural Networks. arXiv preprint arXiv:2012.14965 (2020).
Chang Song, Zuoguan Wang, and Hai Li. 2019. Feedback Learning for Improving
the Robustness of Neural Networks. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA). IEEE, 686-693.

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency

(71

[72]

[73

[74

[75

(76

(77

(81

[82

o0
&

[84

(85

(86

[87

(8]

[89

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.
2017. Pixeldefend: Leveraging generative models to understand and defend
against adversarial examples. arXiv preprint arXiv:1710.10766 (2017).

Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. 2017.
Ensemble methods as a defense to adversarial perturbations against deep neural
networks. arXiv preprint arXiv:1709.03423 (2017).

Synopsys. [n. d.]. PrimeTime PX: Signoff Power Analysis. https://www.synopsys.
com/support/training/signoff/primetimepx-fcd.html, accessed 2019-08-06.
Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
2020. On adaptive attacks to adversarial example defenses. arXiv preprint
arXiv:2002.08347 (2020).

Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan Goodfellow, Dan Boneh,
and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204 (2017).

Xingbin Wang, Rui Hou, Boyan Zhao, Fengkai Yuan, Jun Zhang, Dan Meng, and
Xuehai Qian. 2020. Dnnguard: An elastic heterogeneous dnn accelerator architec-
ture against adversarial attacks. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 19-34.

Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard
Baraniuk, Zhangyang Wang, and Yingyan Lin. 2020. Dual Dynamic Inference:
Enabling More Efficient, Adaptive, and Controllable Deep Inference. IEEE Journal
of Selected Topics in Signal Processing 14, 4 (2020), 623-633. https://doi.org/10.
1109/JSTSP.2020.2979669

Eric Wong, Leslie Rice, and J Zico Kolter. 2019. Fast is better than free: Revisiting
adversarial training. In International Conference on Learning Representations.
Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020. Adversarial Weight Pertur-
bation Helps Robust Generalization. Advances in Neural Information Processing
Systems 33 (2020).

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V
Le. 2020. Adversarial examples improve image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 819-828.
Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2017. Miti-
gating adversarial effects through randomization. arXiv preprint arXiv:1711.01991
(2017).

Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,
Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNCchip:
An Automated DNN Chip Predictor and Builder for Both FPGAs and ASICs
(FPGA °20). Association for Computing Machinery, New York, NY, USA, 40-50.
https://doi.org/10.1145/3373087.3375306

Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,
Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNCchip:
An Automated DNN Chip Predictor and Builder for Both FPGAs and ASICs. In Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA °20). 40-50.

Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv preprint arXiv:1704.01155
(2017).

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen,
Richard G. Baraniuk, Zhangyang Wang, and Yingyan Lin. 2020. Draw-
ing early-bird tickets: Towards more efficient training of deep networks.
arXiv:cs.LG/1909.11957

Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng Li,
Vikas Chandra, and Yingyan Lin. 2020. DNA: Differentiable Network-Accelerator
Co-Search. arXiv:cs.LG/2010.14778

Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng Li,
Vikas Chandra, and Yingyan Lin. 2021. DIAN: Differentiable Accelerator-Network
Co-Search Towards Maximal DNN Efficiency. In 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). 1-6. https://doi.org/
10.1109/ISLPED52811.2021.9502478

Yang Zhao, Xiaohan Chen, Yue Wang, Chaojian Li, Haoran You, Yonggan Fu,
Yuan Xie, Zhangyang Wang, and Yingyan Lin. 2020. SmartExchange: Trading
Higher-Cost Memory Storage/Access for Lower-Cost Computation. IEEE Press,
954-967. https://doi.org/10.1109/ISCA45697.2020.00082

Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and Yingyan
Lin. 2020. DNN-Chip Predictor: An Analytical Performance Predictor for DNN
Accelerators with Various Dataflows and Hardware Architectures. In ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1593-1597. https://doi.org/10.1109/ICASSP40776.2020.9053977

Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and Yingyan
Lin. 2020. DNN-Chip Predictor: An Analytical Performance Predictor for
DNN Accelerators with Various Dataflows and Hardware Architectures.
arXiv:cs.LG/2002.11270

