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ABSTRACT

The recent breakthroughs of deep neural networks (DNNs) and the

advent of billions of Internet of Things (IoT) devices have excited an

explosive demand for intelligent IoT devices equipped with domain-

specific DNN accelerators. However, the deployment of DNN accel-

erator enabled intelligent functionality into real-world IoT devices

still remains particularly challenging. First, powerful DNNs often

come at prohibitive complexities, whereas IoT devices often suffer

from stringent resource constraints. Second, while DNNs are vul-

nerable to adversarial attacks especially on IoT devices exposed to

complex real-world environments, many IoT applications require

strict security. Existing DNN accelerators mostly tackle only one of

the two aforementioned challenges (i.e., efficiency or adversarial ro-

bustness) while neglecting or even sacrificing the other. To this end,

we propose a 2-in-1 Accelerator, an integrated algorithm-accelerator

co-design framework aiming at winning both the adversarial robust-

ness and efficiency of DNN accelerators. Specifically, we first pro-

pose a Random Precision Switch (RPS) algorithm that can effectively

defend DNNs against adversarial attacks by enabling random DNN

quantization as an in-situ model switch during training and infer-

ence. Furthermore, we propose a new precision-scalable accelerator

featuring (1) a new precision-scalable MAC unit architecture which

spatially tiles the temporal MAC units to boost both the achievable

efficiency and flexibility and (2) a systematically optimized dataflow

that is searched by our generic accelerator optimizer. Extensive ex-

periments and ablation studies validate that our 2-in-1 Accelerator

can not only aggressively boost both the adversarial robustness

and efficiency of DNN accelerators under various attacks, but also

naturally support instantaneous robustness-efficiency trade-offs

adapting to varied resources without the necessity of DNN retrain-

ing. We believe our 2-in-1 Accelerator has opened up an exciting

perspective for robust and efficient accelerator design.

CCS CONCEPTS

• Computer systems organization→ Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18ś22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480082

KEYWORDS

neural networks, model robustness, precision-scalable accelerators

ACM Reference Format:

Yonggan Fu, Yang Zhao, Qixuan Yu, Chaojian Li, and Yingyan Lin. 2021.

2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both

Adversarial Robustness and Efficiency. InMICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO ’21), October 18ś22,

2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3466752.3480082

1 INTRODUCTION

Deep neural networks’ (DNNs) performance breakthroughs and the

advent of billions of Internet of Things (IoT) devices have triggered

an increasing demand for DNN-powered intelligent IoT devices.

However, DNNs’ deployments into real-world IoT devices still re-

main challenging. First, powerful DNNs’ prohibitive complexity

stands at odd with the stringent resource constraints of IoT devices

[46, 77, 85]. Second, while DNNs are vulnerable to adversarial at-

tacks, many IoT applications require strict security under dynamic

and complex real-world environments [31]. Therefore, techniques

boosting both DNNs’ efficiency and robustness are highly desired.

To tackle the first challenge, various domain-specific DNN ac-

celerators [11, 36, 41, 44, 45, 88] have been developed to customize

the algorithm-to-hardware mapping methods (i.e., dataflows) and

micro-architecture [89] towards the workloads of DNNs to achieve

orders-of-magnitude acceleration efficiency improvement over gen-

eral computing platforms. In parallel, various techniques have been

proposed to defend DNNs against adversarial attacks, showing

promising performance to address the aforementioned robustness

challenge. Among them, adversarial training [48, 65, 75, 78], which

augments the training set with adversarial samples generated on-

the-fly during training, is currently the most effective method. Fur-

thermore, recognizing that both efficiency and robustness are crit-

ical to many DNN-powered intelligent applications, pioneering

efforts [23, 62, 76] attempt to defend against adversarial attacks

within DNN accelerators. Nevertheless, the art of robustness-aware

DNN accelerators is still in its infancy, and existing defensive ac-

celerators against adversarial attacks rely on additional detection

networks/modules to detect/defend adversarial samples during in-

ference, thus inevitably compromising their accelerator efficiency.

Considering that quantized DNNs are very promising as efficient

DNN solutions and also highly desirable in many IoT applications

[18, 19], we first ask an intriguing question: łIs it possible to leverage
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quantization to boost DNNs’ robustness?", despite the fact that quan-

tized DNNs have been shown to degrade the models’ adversarial

robustness unless being equipped with sophisticated regularization

schemes [69]. This is inspired by (1) [12, 40, 79] showed that random

permutations on the inputs can certifiably defend DNNs against

adversarial attacks, and (2) [79] found that weight perturbations

are a good complement for input perturbations, because they can

narrow the robust generalization gap as weights globally influence

the losses of all examples. We thus hypothesize that quantization

noise can be leveraged to provide similar effects as permutations to

the weights/activations and thus enhance DNNs’ robustness, moti-

vating our random precision switch (RPS) algorithm that wins both

efficiency and robustness of quantized DNNs. Furthermore, moti-

vated by the bottlenecks of existing precision-scalable accelerators,

we further develop a new accelerator to enhance the acceleration ef-

ficiency of RPS equipped DNNs. Specifically, we make the following

contributions:

• We propose an integrated algorithm-accelerator co-design

framework dubbed 2-in-1 Accelerator, aiming at winning

both the adversarial robustness and acceleration efficiency

of DNN accelerators.

• 2-in-1 Accelerator’s algorithm: We provide a new perspective

regarding the role of quantization in DNNs’ robustness, and

propose a Random Precision Switch (RPS) algorithm that can

effectively defend DNNs against adversarial attacks by en-

abling random DNN quantization as an in-situ model switch

during training and inference. RPS equipped DNNs with

fixed-point precisions even outperform their full-precision

counterparts’ robustness.

• 2-in-1 Accelerator’s architecture: We develop a new

precision-scalable accelerator featuring (1) a novel multiply-

accumulate (MAC) architecture which spatially tiles the tem-

poral MAC units to boost both the achievable efficiency and

precision-scalable flexibility and (2) a systematically opti-

mized dataflow searched by our generic accelerator opti-

mizer, surpassing existing precision-scalable accelerators.

• We perform a thorough evaluation of 2-in-1 Accelerator on

six DNN models and four datasets under various adversarial

attacks, and find that our 2-in-1 Accelerator achieves up to

7.58× better energy efficiency, 4.59×/36.5× higher through-

put over precision-scalable/robustness-aware accelerators,

and up to 24.48% improvement in robust accuracy.We believe

that our 2-in-1 Accelerator framework has not only demon-

strated an appealing and effective real-world DNN solution,

but also opened up an exciting perspective for winning both

robustness and efficiency in DNN accelerators

2 2-IN-1 ACCELERATOR: ALGORITHM

In this section, we present our RPS algorithm that can simultane-

ously boost DNNs’ robustness and efficiency and thus serve as the

algorithmic enabler of our 2-in-1 accelerator.

2.1 Preliminaries of adversarial robustness

[24] finds that DNNs are vulnerable to adversarial attacks, i.e.,

applying a small permutation 𝛿 within a norm ball (∥𝛿 ∥ ≤ 𝜖) to the

inputs can mislead DNNs’ decisions. For example, the adversarial

permutation 𝛿 under the ℓ∞ attack [24] is generated by maximizing

the objective:

max
∥𝛿 ∥∞≤𝜖

ℓ (𝑓𝜃 (𝑥 + 𝛿), 𝑦) (1)

where ℓ is the loss function, 𝜃 is the weights of a DNN 𝑓 , 𝑥 and 𝑦

are the input and the corresponding label, respectively.

To boost DNNs’ robustness against adversarial attacks, adversar-

ial training optimizing the following minimax problem is currently

the strongest defense method [4]:

min
𝜃

∑

𝑖

max
∥𝛿 ∥∞≤𝜖

ℓ (𝑓𝜃 (𝑥𝑖 + 𝛿), 𝑦𝑖 ) (2)

2.2 Inspirations from previous works

Previousworks show that random smoothing or transformations [12,

28, 40, 81] on the inputs help robustify DNNs and [79] shows that

weight perturbations are good complements for input perturbations

as they globally influence the learning loss of all inputs. Following

this spirit, [15, 30, 79] explicitly introduce randomness and permu-

tations in the models’ weights or activations. On the other hand,

[47, 72, 75] show that model ensemble can help improve robustness

at a cost of efficiency due to the required multiple models. These

two aspects inspire us to rethink the connection between quanti-

zation’s role in the permutations of DNN weights/activations and

model robustness and to view a DNN model under different preci-

sions as an in-situ ensemble to boost both robustness and efficiency.

As introduced in Sec. 2.4, the proposed RPS algorithm can be seen

as an in-situ model switch among different precision choices.

2.3 Poor transferability between precisions

To validate our above hypothesis that a DNN model under different

precisions can be seen as an in-situ ensemble, we empirically check

the robustness of such an ensemble by evaluating the transferability

of adversarial attacks between different precisions. As elaborated

below, we find that the adversarial attacks transfer poorly between

different precisions of an adversarially trained model, regardless of

its adversarial training methods and attack schemes.

Experiment settings. We conduct experiments that adopt

adversarial attacks generated under one precision to attack the

same adversarially trained model quantized to another precision.

In particular, we apply PGD-20 [48] and CW-Inf [8] attacks, to

PreActResNet-18 (following [78]) which is adversarially trained

using different adversarial training methods [48, 78] using an 8-bit

linear quantizer [34] under training settings introduced in Sec. 4.1.

We annotate the robust accuracy evaluated on adversarial examples

in Fig. 1 where the attack precision denotes the precision for gener-

ating attacks which are adopted to attack the same model quantized

to another inference precision. The diagonal elements are the ro-

bust accuracy with the same attack/inference precision and the

non-diagonal elements are the robust accuracy under transferred

attacks from different precisions.

Observations. As observed from Fig. 1 (a)∼(c), we can find that

(1) training and attacking at the same low precisions indeed no-

tably degrade the robust accuracy, as shown in the diagonals of

Fig. 1, aligning with observations in [43]; (2) it’s more difficult for

adversarial attacks generated under one precision to fool the same

adversarially trained model quantized to a different precision, re-

gardless of the relative difference between the two precisions; (3) the
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(a) Trained with FGSM-RS
Attack with PGD-20

(b) Trained with PGD-7
Attack with CW-Inf

(c) Trained with PGD-7
Attack with PGD-20

(d) Trained with PGD-7 + RPS Training
Attack with PGD-20

Figure 1: Visualizing the transferability of adversarial at-

tacks between different precisions, where the robust accu-

racy under different training methods (PGD-7 and FGSM-

RS) and attacks (PGD-20 and CW-Inf) is annotated.

poor transferability is consistent across different adversarial train-

ing and attack methods; and (4) the average robust accuracies of all

precisions under white-box attacks are consistently higher than the

full-precision models trained with the corresponding adversarial

training methods, indicating that randomly selecting an inference

precision can potentially provide effective defense.The full-precision

accuracies of PreActResNet-18 trained with PGD-7/FGSM-RS are

51.2%/47.1%, respectively.

Analysis. The key conclusion is that for white-box attacks, ad-

versarial attacks generated at one precision transfer poorly to an-

other precision. We hypothesize that this poor transferability is

because adversarial perturbations are shielded by the quantization

noise between the two precisions, which can not be effectively

learned by gradient-based attacks.

2.4 RPS towards robust DNNs

Motivated by the poor transferability between different precisions

of a trained model, we propose the RPS algorithm to boost both

model robustness and efficiency via enabling random DNN quanti-

zation as an in-situ model switch during training and inference.

RPS training.We propose the RPS training pipeline to (1) main-

tain a decent natural accuracy when the model is directly quantized

to different precisions during inference, and (2) further increase

the difficulty of transferring adversarial examples between differ-

ent precisions. To this end, we adversarially train a model from

scratch via (1) randomly selecting a precision from a candidate set

in each iteration for generating adversarial examples and updat-

ing the model with the selected precision, and (2) equipping the

model with switchable batch normalization (SBN) [25, 35] to inde-

pendently record the statistics of different precisions given their

corresponding adversarial examples. In particular, randomly select-

ing a training precision improves the capability of instant precision

switch during inference and SBN enlarges the gap between different

inference/attack precisions inspired by [25, 35, 80] which separately

handles the statistics of different inputs. As shown in Fig. 1 (d), the

same adversarially trainedmodel equipped with RPS training shows

larger robust gaps between different inference/attack precisions,

especially under larger precision, as compared to the corresponding

ones in Fig. 1 (c). Note that during inference, the multiplication and

addition operations of SBN can be fused into the scale factors of lin-

ear quantizers [34] and the model bias, respectively, thus does not

require additional modules over existing low precision accelerators.

RPS inference. Given a model adversarially trained via our RPS

training scheme, the proposed RPS inference randomly selects one

precision from an inference precision set to quantize the model’s

weights and activations during inference. Based on the analysis

in Sec. 2.3, randomly selecting an inference precision can greatly

degrade the effectiveness of adversarial attacks as long as the at-

tacks are not generated under the same precision, as consistently

observed in Figs. 1.

The RPS training and inference algorithms on top of PGD-7 [48]

adversarial training are summarized in Alg. 1, which is similar when

applying on top of other adversarial training methods.

2.5 Instant trade-offs between robustness and
efficiency

In addition to winning both robustness and efficiency, another ben-

efit of our RPS algorithm is the instant trade-off capability between

DNNs’ robustness and efficiency during run-time to adapt to (1)

the safety conditions of the external environments and (2) the re-

maining resource (e.g., battery power) on the device. Specifically,

our RPS achieves this via (1) switching to lower precisions when

enabling random precision inference to trade robustness in less dan-

gerous environments for a higher average efficiency, or (2) directly

adopting a static low precision training under safe environments to

pursue merely high efficiency. This property can be highly desirable

in real world applications especially intelligent IoT ones. We will

next discuss the proposed accelerator that can not only improve

the execution efficiency of DNNs resulting from our RPS algorithm

but also set a new record of precision-scalable acceleration.

3 2-IN-1 ACCELERATOR: ARCHITECTURE

In this section, we introduce our proposed accelerator architecture

dedicated for variable-precision DNNs (e.g., RPS equipped DNNs

in Sec. 2) to achieve much improved acceleration efficiency. In

particular, we first identify and analyze the bottlenecks of existing

precision-scalable accelerators in Sec. 3.1, then present a new MAC

unit architecture in Sec. 3.2 and an automated accelerator optimizer

in Sec. 3.3 that together tackles the aforementioned bottlenecks.

3.1 Bottlenecks of SOTA precision-scalable
accelerators

Despite the impressive performance achieved by SOTA precision-

scalable accelerators [37, 39, 52, 53, 63, 64, 66, 67], they are still

limited in their acceleration performance especially when acceler-

ating more complex variable-precision DNNs, e.g., RPS equipped

DNNs in which all the layers may switch their precision to any pos-

sible precision in a candidate set during inference. The bottlenecks

of SOTA precision-scalable accelerators are described below.
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Algorithm 2 Evolutionary Search for Dataflows

Require: Architecture 𝑎𝑟𝑐ℎ, Workload (layer information and exe-

cution precision), Total cycle number 𝑇𝑜𝑡𝑎𝑙_𝐶𝑦𝑐𝑙𝑒 , Population

size 𝑃𝑠𝑖𝑧𝑒

1: Initialize a 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 of 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 with different loop orders

and tiling factors according to the workload

2: for 𝑐𝑦𝑐𝑙𝑒 ∈ [1,𝑇𝑜𝑡𝑎𝑙_𝐶𝑦𝑐𝑙𝑒] do

3: Select the top 30% 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 from the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 based on

the predicted efficiency of the workload

4: while 𝑠𝑖𝑧𝑒 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) < 𝑃𝑠𝑖𝑧𝑒 do

5: Randomly select two 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 , do crossover, append to

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 if valid

6: Randomly select one 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 , do mutation, append to

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 if valid

7: end while

8: end for

9: return The best 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 in the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Training settings. We adopt four SOTA adversarial training

methods, including FGSM [24], FGSM-RS [78], PGD-7 [48], and

Free [65] and apply our RPS algorithm on top of them. We follow

their original papers for the adversarial training hyper-parameter

settings and follow the model training settings in [48] and [65] for

CIFAR-10/CIFAR-100/SVHN and ImageNet.

Attack settings.We consider the strong attacks including three

white-box attacks PGD [48], AutoAttack [13], CW [8], and one

gradient-free attack Bandits [33], with different numbers of iter-

ations/restarts and permutation strengths 𝜖 = 8, 12, 16. Without

loss of generality, we assume the adversary adopts random preci-

sion from the same inference precision set as our RPS since (1) any

attack precision out of RPS’s inference precision set will merely

increase RPS’s robust accuracy according to Fig. 1, and (2) while

the adversary may select precisions with better attacking success

rates, our RPS can also increase the probability of sampling more

robust precisions for a stronger defense, thus we assume both the

adversary and RPS adopt random precision for simplicity.

4.1.2 Accelerator Setup.

Accelerator development and synthesis. In order to evaluate

our proposed accelerator, we implement a custom cycle-accurate

simulator, aiming to model the behavior of the synthesized cir-

cuits. The design parameters in the simulator are obtained from

gate-level netlists and SRAM which are generated based on a com-

mercial 28nm technology using the Synopsys Design Compiler and

Memory compiler provided by the foundry. Specifically, proper ac-

tivity factors are set at the input ports of the memory/computation

units, and the energy is calculated using PrimeTime [73].

Baselines. We benchmark with two SOTA precision-scalable

accelerators Bit Fusion [67] and Stripes [37], and one robustness-

aware accelerator DNNGuard [76]. For a fair comparison, we adopt

the same memory area and MAC array area with Bit Fusion, and

we modify the unit energy of Bit Fusion’s official simulator to scale

it from 45nm to 28nm following the rule in [1]. For Stripes, thanks

to the clear description of the design in their paper and the easy

representation, we built a cycle-accurate simulator for it with the

same memory/MAC array area with Bit Fusion and our design, and

optimize its dataflow with our automated optimizer.

Table 1: Evaluating RPS on two networks and three adver-

sarial trainingmethods FGSM [24], FGSM-RS [78], and PGD-

7 [48] on CIFAR-10 under different PGD attacks.

PreActResNet-18 WideResNet-32

Adversarial

Training Method

Natural

(%)

PGD-20

(%)

PGD-100

(%)

Natural

(%)

PGD-20

(%)

PGD-100

(%)

FGSM 67.04 41.48 41.37 66.76 40.78 40.55

FGSM + RPS 80.58 64.08 63.56 64.09 50.70 48.72

FGSM-RS 86.08 41.76 41.13 89.95 45.33 44.77

FGSM-RS + RPS 82.11 59.33 59.32 87.87 60.07 59.12

PGD-7 82.02 51.17 50.93 85.25 54.61 54.36

PGD-7 + RPS 82.16 65.15 64.88 81.52 66.75 66.28

Table 2: EvaluatingRPS on twonetworks trainedwith FGSM-

RS [78] and PGD-7 [48] on CIFAR-100.

PreActResNet-18 WideResNet-32

Adversarial

Training Method

Natural

(%)

PGD-20

(%)

PGD-100

(%)

Natural

Acc (%)

PGD-20

(%)

PGD-100

(%)

FGSM-RS 57.6 26.14 25.88 67.29 25.35 24.78

FGSM-RS + RPS 51.09 36.75 37.18 64.95 39.18 38.36

PGD-7 56.31 27.97 27.77 60.36 31.06 30.86

PGD-7 + RPS 56.2 41.74 42.1 58.41 40.45 40.5

Table 3: EvaluatingRPS on twonetworks trainedwith FGSM-

RS [78] and PGD-7 [48] on the SVHN dataset.

PreActResNet-18 WideResNet-32

Adversarial

Training Method

Natural

(%)

PGD-20

(%)

PGD-100

(%)

Natural

(%)

PGD-20

(%)

PGD-100

(%)

FGSM-RS 88.68 44.62 43.59 92.20 42.62 40.88

FGSM-RS + RPS 86.46 53.51 53.92 93.83 57.99 57.42

PGD-7 86.81 51.53 50.98 91.07 54.39 53.53

PGD-7 + RPS 87.22 61.84 61.64 91.05 65.59 64.62

Table 4: Evaluating RPS on top of two adversarial training

methods (FGSM-RS [78] and Free [65]) on ResNet-50 under

PGD-10 and PGD-50 attacks with 𝜖 = 4 on ImageNet.

Adversarial

Training Method

Natural

(%)

PGD-10

(%)

PGD-50

(%)

FGSM-RS 55.45 30.28 30.18

FGSM-RS + RPS 63.21 37.93 37.12

Free 60.21 32.77 31.88

Free + RPS 64.58 42.88 42.72

Workloads.We adopt six networks (WideResNet-32/ResNet-18

on CIFAR-10 with 32×32 inputs and AlexNet/VGG-16/ResNet-18/50

on ImageNet with 224×224 inputs) under 1∼16-bit as our workloads.

4.2 Evaluate 2-in-1 Accelerator’s algorithm

We evaluate the improvement in robustness via applying the pro-

posed RPS on top of SOTA adversarial training methods. Note that

all the baselines are SOTA adversarial training methods with a

full precision, i.e., no quantization is applied. Our RPS adopts a

precision set of 4∼16-bit by default.

4.2.1 Benchmark on CIFAR-10/CIFAR-100/SVHN/ImageNet.

Benchmark on CIFAR-10. As summarized in Tab. 1, we can

observe that (1) RPS consistently enhances the robust accuracy

under PGD attacks, largely outperforming SOTA adversarial train-

ing methods with a full precision. In particular, RPS achieves a

13.98%/12.14% higher robust accuracy under PGD-20 attacks on

PreActResNet-18 and WideResNet-32, respectively, while notably

improving the efficiency thanks to the low precision execution as
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Table 5: Evaluating RPS on two networks trained by PGD-7

under more strong attacks with 𝜖=8 and 12 on CIFAR-10.

PreActResNet-18 WideResNet-32

Attack Type PGD-7 PGD-7 + RPS PGD-7 PGD-7 + RPS

AutoAttack (𝜖=8) 47.18 54.56 51.66 58.54

AutoAttack (𝜖=12) 27.59 35.83 30.71 39.83

CW-Inf (𝜖=8) 57.88 71.44 62.13 72.10

CW-Inf (𝜖=12) 46.70 65.57 50.14 66.99

Bandits (𝜖=8) 59.75 71.75 63.49 68.50

Bandits (𝜖=12) 46.04 70.52 49.77 67.01

Table 6: Evaluating RPS against the customized adaptive at-

tack E-PGD on top of PreActResNet-18 on CIFAR-10/100.

CIFAR-10 CIFAR-100

Adversarial

Training Method

Natural

(%)

E-PGD

-20 (%)

E-PGD

-100 (%)

Natural

(%)

E-PGD

-20 (%)

E-PGD

-100 (%)

PGD-7 82.02 51.17 50.93 56.31 27.97 27.77

PGD-7 + RPS 82.16 60.14 60.08 56.23 37.58 37.89

evaluated in Sec. 4.3; and (2) RPS also enhances the robust accuracy

by 13.57%∼22.60% under PGD-20 attacks on top of FGSM/FGSM-RS.

Benchmark on CIFAR-100. The observations on CIFAR-100

are consistent with those on CIFAR-10. In particular, RPS achieves

a 10.61%/13.77% and 13.83%/9.39% higher robust accuracy on top of

FGSM-RS/PGD-7 training under PGD-20 attacks on PreActResNet-

18 and WideResNet-32, respectively.

Benchmark on SVHN. As shown in Tab. 3, RPS achieves a

8.89%∼15.37% and 10.31%∼11.20% higher robust accuracy under

PGD-20 attacks and a comparable natural accuracy on top of FGSM-

RS and PGD-7 training, respectively, indicating that RPS is generally

effective on various tasks.

Benchmark on ImageNet.We further evaluate RPS on a larger

scale dataset, i.e, ImageNet, as shown in Tab. 4. We can observe that

RPS achieves a triple-win in terms of the natural accuracy, robust

accuracy, and model efficiency on top of both adversarial training

methods. In particular, RPS achieves a 7.65%/10.11% higher robust

accuracy over FGSM-RS [78] and Free [65], respectively, under the

PGD-10 attack, indicating our RPS’s scalability and applicability on

large-scale and complex datasets.

4.2.2 Benchmark under more attacks.

Considering many defense methods are found to be ineffective

under stronger attacks, we evaluate RPS against more attack

methods with different permutation strengths. As observed from

Tab. 5, RPS consistently improves the robust accuracy across dif-

ferent attacks/models/distortions, e.g., a higher robust accuracy

of 6.88%∼9.12% under Auto-Attack, which is currently one of the

strongest adaptive attacks, and more surprisingly, 9.97%∼18.87%

under the CW-Inf attack, where we find the poor transferability

between different attack/inference precisions is more notable. In

addition, RPS achieves a 5.01%∼24.48% higher robustness accuracy

under the Bandits attack which is a gradient-free attack, indicating

that RPS does not suffer from the obfuscated gradient problem [4].

In fact, we find RPS does not show any characteristic behavior for

obfuscated gradients discussed in [4].

4.2.3 Benchmark under adaptive attacks.

We further evaluate RPS via customizing an adaptive attack [74],

dubbed E-PGD, which generates perturbations based on the ensem-

ble (i.e., the averaged ouptput) of all candidate precisions to make
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Figure 7: Normalized throughput comparison among Bit Fu-

sion, Stripes, and our 2-in-1 Accelerator on top of six net-

works and four execution precisions.

the attacks aware of all precisions, assuming that the adversaries

know the adopted precision set in advance. As shown in Tab. 6,

RPS still achieves a more than 8.97% and 9.61% higher robust accu-

racy over PGD-7 training on CIFAR-10 and CIFAR-100, respectively,

indicating the consistent effectiveness of RPS.

4.3 Evaluate 2-in-1 Accelerator’s architecture

4.3.1 Benchmark with Bit Fusion and Stripes.

Throughput comparison. We compare the throughput of Bit

Fusion, Stripes, and our 2-in-1 Accelerator on top of six networks

and four execution precisions in Fig. 7. All the throughput results

are normalized to that of Bit Fusion. We can observe that our design

outperforms the baselines across all the networks and precisions

with a 1.41× ∼ 2.88× and 1.15× ∼ 4.59× higher throughput over

Bit Fusion and Stripes, respectively. Such improvement mainly

comes from (1) the high throughput/area of our proposed MAC

unit architecture, and (2) the effectiveness of our automated opti-

mizer in reducing the memory stalls to fully utilize the capability

of our MAC unit. For example, when using ResNet-50 on ImageNet

with 4x4-bit, our MAC unit design boosts the throughput by 2.25×

over Bit-Fusion, and our automated optimizer further improves the

throughput by 1.28× via reducing the memory stalls. In addition,

we can observe that Bit Fusion shows a better throughput over

Stripes for execution precisions lower than 8-bit while showing an

inferior throughput at 16-bit, which is consistent with the analysis

in Sec. 3.1.1 showing that Bit Fusion requires to execute each MAC

unit four times for execution precisions higher than 8-bit. Although

our accelerator adopts a similar manner to deal with 16-bit, it can

still achieve a 1.15× higher throughput over Stripes, validating the

superiority of the proposed spatial-temporal MAC design.

Energy efficiency comparison. We compare the energy effi-

ciency of Bit Fusion, Stripes, and our 2-in-1 Accelerator on top of

six networks and four execution precisions in Fig. 8. All the en-

ergy efficiency results are normalized to that of Bit Fusion. We can

observe that our proposed architecture consistently achieves the

best energy efficiency across all the networks and precisions with a

1.91× ∼ 7.58× and 1.25× ∼ 2.85× energy efficiency over Bit Fusion

and Stripes, respectively. Here we fully optimize the dataflow of

Stripes so that it also outperforms Bit Fusion in energy efficiency.
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and the remaining power on the device. We show an example of

executing WideResNet-32 with CIFAR-10 inputs on our 2-in-1 Ac-

celerator with different execution precisions (RPS with 4∼16-bit,

4∼12-bit ,4∼8-bit, and static 4-bit) and record the robust accuracy

and the (averaged) energy efficiency. As shown in Fig. 11, our 2-in-1

Accelerator can instantly switch between high precision sets, low

precision sets, and static low precision to balance the achieved ro-

bustness and efficiency with a comparable natural accuracy (within

81.5%∼84.7%).

5 RELATED WORKS

Adversarial attacks and defenses. [24] shows that small per-

mutations onto the inputs can mislead DNNs’ decisions, which is

known as adversarial attacks. Later, stronger attacks, including both

white-box [8, 13, 48, 54, 58] and black-box ones [3, 10, 27, 32, 33],

are proposed to aggressively degrade the accuracy of the target

DNN models. To defend DNNs against adversarial attacks, ad-

versarial training [48, 65, 75, 78], which augments the training

set with adversarial samples generated during training, is cur-

rently the most effective method. In parallel, other defense meth-

ods [6, 17, 28, 40, 42, 50, 71, 79, 84] have also been proposed. There

has been a continuous competition between adversaries and de-

fenders, and the readers are referred to [2, 9] for more discussions.

Robustness of quantized models. As both robustness and ef-

ficiency are critical for most DNN applications, pioneering works

have strived to design robust quantized DNNs. In particular, [22, 56]

propose robust binary neural networks (BNNs) and [61] adopts

tanh-based quantization to increase robustness, while these works

have been observed to suffer from the obfuscated gradient prob-

lem [4, 57], which is a false sense of security. Later, [43] finds that

quantized DNNs are actually more vulnerable to adversarial attacks

due to the error amplification effect, i.e., the magnitude of adver-

sarial perturbation is amplified when passing through the DNN

layers. To tackle this effect, [43, 68] propose robustness-aware regu-

larization methods for DNN training, and [69] retrains the network

via feedback learning [70]. In addition, [55] searches for layerwise

precision and [26] constructs a unified formulation to balance and

enforce the models’ robustness and compactness. In contrast, our

RPS algorithm leverages quantization to aggressively enhance ro-

bustness, which even largely surpasses the full-precision models.

Precision-scalable accelerators. To support variable preci-

sions for different DNN models/layers, various precision-scalable

accelerators have been proposed to dynamically and flexibly handle

the varied workloads, which can be categorized into two classes,

i.e., temporal and spatial designs. For temporal designs, pioneering

works, such as Stripes [37], LOOM [66], and Tartan [14], adopt

bit-serial MAC units to provide precision configurability, which

can flexibly handle any prevision yet suffer from inferior efficiency

per area over their spatial counterparts [7, 67], and more recently

UNPU [39] fabricates a bit-serial DNN accelerator to support vari-

able weight precisions while the activations use full precision. For

spatial designs, Bit Fusion [67] proposes to use combinational logic

to dynamically compose and decompose 2-bit multipliers to con-

struct variable-precision MAC units; Later, BitBlade [63] improves

Bit Fusion via pulling out the shifting logic of each MAC unit

and sharing it across the multipliers to reduce the area overhead;

DVAFS [52, 53] propose to turn off parts of the multipliers at low

precision to increase the energy efficiency at a constant throughput;

and DeepRecon [64] skips parts of the pipeline stages of a floating-

point-multiplier to support either one 16-bit, two 12-bit, or four

8-bit multiplications. Detailed benchmarks for different precision-

scalable MAC unit architectures can be found in [7]. Our proposed

MAC unit architecture marries the best of both temporal and spa-

tial designs and is integrated to construct a new precision-scalable

accelerator, which consistently outperforms SOTA designs under

various settings.

Robustness-aware DNN accelerators. Despite their impor-

tance for real-world applications, the art of robustness-aware DNN

accelerators is still in its infancy. Pioneering works [23, 62, 76] aim

to defend against adversarial attacks within DNN accelerators at a

cost of additional detection networks/modules. In particular, [62]

proposes an end-to-end framework based on the voting results

of multiple detectors, in parallel with the execution of the target

DNN to detect malicious inputs during inference; [76] proposes an

elastic heterogeneous DNN accelerator architecture to orchestrate

the simultaneous execution of the target DNN and the detection

network for detecting adversarial samples via an elastic manage-

ment of the on-chip buffer and PE computing resources; [23] builds

an algorithm-architecture co-designed system to detect adversarial

attacks during inference via a random forest module applied on

top of the extracted features from the run-time activations. In ad-

dition, [60] builds a robustness-aware accelerator based on BNNs

which, however, suffers from the obfuscated gradient problem [4]

and [29] strives to speed up the attack generation instead of the

defense. Nevertheless, all the existing defensive accelerators rely

on additional detection networks/modules to detect adversarial

samples at inference time, and thus inevitably introduce additional

energy/latency/area overheads that compromise efficiency. In con-

trast, our work exploits the robustness within a DNN model via

the proposed RPS algorithm to win both robustness and efficiency

within one accelerator without introducing any extra modules.

6 CONCLUSION

Existing DNN accelerators mostly tackle only either efficiency or

adversarial robustness while neglecting or even sacrificing the other.

In this work, we propose the 2-in-1 Accelerator, aiming at winning

both the adversarial robustness and efficiency of DNN accelera-

tors. 2-in-1 Accelerator integrates a Random Precision Switch (RPS)

algorithm that can effectively defend DNNs against adversarial

attacks and a new precision-scalable accelerator featuring a spatial-

temporal MAC unit architecture to boost both the achievable ef-

ficiency and flexibility and a systematically optimized dataflow

generated by our generic accelerator optimizer. Extensive experi-

ments and ablation studies validate our 2-in-1 Accelerator’s effec-

tiveness and we believe our 2-in-1 Accelerator has opened up a new

perspective for designing robust and efficient accelerators.
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