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Abstract— This paper presents a novel strategy for the
autonomous deployment of Micro Aerial Vehicle scouts through
constricted aperture-like ingress points, by narrowly fitting
and launching them with a high-precision Mobile Manipu-
lation robot. A significant problem during exploration and
reconnaissance into highly unstructured environments, such
as indoor collapsed ones, is the encountering of impassable
areas due to their constricted and rigid nature. We propose
that a heterogeneous robotic system-of-systems armed with
manipulation capabilities while also ferrying a fleet of micro-
sized aerial agents, can deploy the latter through constricted
apertures that marginally fit them in size, thus allowing them
to act as scouts and resume the reconnaissance mission. This
work’s contribution is twofold: first, it proposes active-vision
based aperture detection to locate candidate ingress points
and a hierarchical search-based aperture profile analysis to
position a MAV’s body through them, and secondly it presents
and experimentally demonstrates the novelty of a system-
of-systems approach which leverages mobile manipulation to
deploy other robots which are otherwise incapable of entering
through extremely narrow openings.

I. INTRODUCTION

Advancing the real-world potential of autonomous robotic

systems by leveraging heterogeneity [1] is an increasingly

pursued area of research. As standalone system classes,

Mobile Manipulation Systems (MMS) have been extensively

deployed in exploration, construction, and inspection [2–

5], while Micro Aerial Vehicles (MAVs) have been utilized

for search and rescue, surveillance, industrial inspection,

and broader commercial activities [6–11]. Exploration of

unknown and unstructured environments remains a core

mission objective with numerous algorithms developed [12–

16]. However their focus remains on finding exploratory

paths which follow collision-free routes achievable by a

single agent –the exploring one– therefore disregarding edge

cases where an agent may only fit through an opening safely

with the help of a second robot. To this end, we argue that a

heterogeneous system-of-systems robotic platform can gain

entry into otherwise inaccessible areas, by autonomously

detecting such marginal ingress opportunities (gaps or aper-

tures) in an unstructured / partially-collapsed environment,

and deploy a different class of miniature robot through them

by leveraging high-precision mobile manipulation.

Motivated by the above, in this work we focus on the prob-

lem of autonomously deploying MAVs through a constrained
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Fig. 1. Autonomous heterogeneous robotic system exploration into a
partially-collapsed setting, by detecting aperture-like ingress points, in-
serting two micro-sized MAV scouts, and conducting visually-servoed
exploration through remote guidance by the MMS. Corresponding video
available at: https://www.youtube.com/watch?v=Avt0Gnv3CAI

arbitrarily-shaped aperture via precise mobile manipulation

for the purpose of continued exploration. First, we propose an

active vision based approach to detect and characterize any

marginal apertures which may lend themselves as ingress op-

portunities. We propose an exhaustive search-based aperture

profile analysis pipeline, to ascertain poses that can lead to

a collision-free insertion of the MAV. Subsequently, we plan

for robot arm trajectories to position and “slip” it through the

aperture, and eventually launch it. Finally, we demonstrate

using the MAV as a micro-scout, with the MMS processing

the wirelessly relayed visual imagery to derive monocular

depth-map estimates and remotely guide the MAV to per-

form visually-servoed exploration. The presented work is

experimentally verified on real world mock-up environment

illustrated in Figure 1 using an autonomous heterogeneous

robotic system comprising a MMS ferrying two mounted

micro-scout MAVs.

The rest of this paper is organized as follows: Section II

presents related work, followed by the problem statement

in III. The proposed approach is detailed in Section IV, while

evaluation is presented in Section V. Finally, conclusions are

drawn in Section VI.

II. RELATED WORK

MAV safe navigation in complex indoor environments

through obstacle avoidance and collision-free planning [17–

20] has been widely studied by the robotics community.

Aggressive control accompanied by advanced estimation and

trajectory planning strategies have been demonstrated to

manage flying through gaps [21–24], by relying on monocu-
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lar visual/inertial information. In most works, the gaps have

a priori known convex-shaped structures, while certain more

recent works have come to address flight through structure-

less gaps [25]. All the aforementioned efforts however con-

sider openings with relatively large clearances (5 [cm] in

[25]), to allow for perception uncertainty, and more im-

portantly for reasonable tolerances in control error tracking

during real-world MAV flight. In this work, we focus on

deploying miniaturized MAVs into the tightest possible aper-

tures, by changing the common paradigm and considering

fitting them through, while their propellers are not spinning

such that there is no risk to their structural integrity. This

additionally renders the use of propeller guards / protective

cages / etc. irrelevant, thus keeping the required MAV-scout

body profile at a minimum. Our proposed strategy first

detects aperture proposals for the micro-scout’s deployment,

followed by exhaustive search algorithm of a candidate’s

profile to fit the MAV. This caters to a generic, broad category

of gap-like openings without requiring prior knowledge of

a specific profile shape and/or size. The pipeline is able

to obtain collision-free poses that can marginally “slip” the

MAV body profile through the gap at tight clearances. To

achieve the required high-precision motion, we leverage a

MMS which ferries the MAV and is capable to perform

autonomous motion planning to a) retrieve it from its body,

b) exactly position it to fit through the aperture profile, c)

level it to facilitate safe launching, and d) remotely guide it

past the aperture to achieve continued exploration.

III. PROBLEM SETUP

The problem of exploration of particularly constricted en-

vironments –such as partially collapsed sections of buildings

after catastrophic events– is considered within this work

along the lines of autonomous deployment of heterogeneous

robotic systems. More specifically, we aim to address such

constraints that cannot be overcome by the standalone use of

any one robotic class, but instead require the intelligent com-

bination of the unique capabilities offered by each platform.

Considering robotic operations within highly unstructured

settings, littered with debris and presenting heavy structural

damage, we distinguish two broad classes of navigation

constraints, namely a) obstacles and structures that constitute

significant collision volumes, and b) structural apertures, i.e.

hole-like sections in the environment architecture. Within the

proposed approach, the first class-ones are considered as part

of a groundmap to be navigated while avoiding obstacles

and respecting traversability conditions, while the latter class

of structural apertures lend themselves as opportunities to

gain entrance into caved-down locations that are otherwise

inaccessible.

Given the existence of such ingress/egress points which

can be situated at various points within an unstructured

indoor environment, the natural robotic class of preference

to gain access through them is the Micro Aerial Vehicle. At

the same time however, this work does not consider openings

that are by-design accessible (e.g. doors, windows, hatches),

but highly constricted and arbitrarily shaped apertures that

may be the product of structural failures (wall holes, gaps

in piled-up debris, etc.). As such, their narrow and irregular

shape may preclude even the most aggressively maneuver-

able MAV from flying through them.

A novel robotic deployment approach to address this

scenario is the vision presented in this work, which considers

the careful “shoving” of the aerial robot body into the

constrained aperture until it has come all the way through

the other end, and then follow up with the takeoff and

deployment. This determines the following required robotic

modalities: a) a high-end robotic platform capable of long-

term autonomous exploration and mapping, b) a versatile

manipulation system to perform 6 − DoF positioning and

insertion of a small rigid body into an aperture, and c) one-

or-more MAV class robots miniaturized to the level of being

able to fit through the narrowest possible opening size.

A. Definitions

The overarching mission objective is the exhaustive explo-

ration of an unknown, unstructured location. We assume the

existence of an onboard imaging–and–depth sensor S, and

denote its frame of reference as FS. Within a subset bounded

volume V of the environment, let M be a 3D volumetric map

of it, which is incrementally constructed [26] by using the

sensor S. This is further distinguished into voxels m that in

either of the occupied, free, and unknown subsets Moccupied,

Mfree, Munknown. Moreover, let DS define the 3D-depth

dense pointcloud representation over a view of a subset of

the environment as observed from a certain FS.

We put forward the overarching definitions employed and

the specific problems addressed within this work:

Definition 1 (Aperture) Given the DS dense representation,

an aperture corresponds to a region of a planar subset

of the map which is depressed by at least a 3D-depth

threshold value dC , such that a contour Ca can be detected.

Additionally, given the M volumetric representations, the

aperture region within Ca and up to a depth threshold offset

da from the planar face corresponds to ⊂ Mfree, i.e. it is

a “see-through” hole-like pocket.

Definition 2 (Launch Pose) Given a structural aperture, a

launch pose corresponds to an Euler-angle parametrized

reference pose ξ
ref
MAV = [x, y, z, φ, θ, ψ]T for the MAV

such that the translation part lies past the aperture plane,

and the orientation is bounded by |φ, θ| ≤ αlaunch, where

αlaunch a roll-and-pitch constraint for the aerial robot to be

able to take off safely. It is noted that if this value is too

steep, an underactuated MAV will risk collision with the

environment during aggressive takeoff thrusting.

Then the problems addressed are given as follows:

Problem 1 (Volumetric Exploration) It is defined as the

Receding Horizon-based execution of motion plans which

maximize the cumulative expected observation of unknown

environment subsets Munknown using the S depth sensor

model. The concept is addressed in relevant works [12, 27–

29]. In this paper, a relevant policy is executed, but assumed
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to (almost) immediately reach the maximum-possible explo-

ration gain, due to some intentionally imposed environment

constraints. This problem is mentioned for completeness.

Problem 2 (Visually-Servoed Exploration) Defined as a

reduced-order exploration problem, considering map-free

[30, 31] robotic operation. It pertains to a reduced-modality

sensor SV (imaging-only) visiting uncharted locations of an

unknown environment guided by a visual-servoing policy,

and acquiring visual imagery. According to this paradigm,

the goal is to inspect certain regions of the map, without

providing consistent and comprehensive mapping, by making

use of a limited-resources miniaturized robot.

Problem 3 (Constricted Aperture MAV Deployment) Defined

as the problem of “fitting” the body of a miniaturized MAV

through an aperture which has been selected for its potential

to be an ingress point into an otherwise occluded part of

the environment. More specifically, we focus on proposing

the apparatus and algorithm to find a viable launch pose –as

per the above definition– that can be achieved via 6 − DoF

manipulation of the MAV held by a mobile robotic arm.

B. Heterogeneous Robotic System Setup

The proposed heterogeneous robotic system is closely tied

to the aforementioned problem formulation. It is therefore

presented as part of the overarching problem setup.

At the core lies a Mobile Manipulation System [32]

comprising a differential-drive 4-wheeled base and a 6−DoF

arm and parallel gripper, while also incorporating LiDAR and

camera based perception systems (mounted in eye-in-hand

configuration) allowing it to flexibly scan the environment

additionally to its inherent manipulation capabilities. Based

on established open-source works and products of own prior

contributions, it is armed with multi-modal Simultaneous

Localization and Mapping, volumetric reconstruction, explo-

ration, Model Predictive Control, and manipulation motion

planning pipelines [27, 33–36]. It is mentioned that it relies

exclusively on on-board perception (no external motion-

capture support), executed all missions fully autonomously.

The MMS additionally acts as a carrier [37] for a number

of miniaturized RYZE Tello MAVs, which are mounted

on launching apparatuses positioned into holster-like attach-

ments on the main robot body. The launching apparatuses

can be retrieved by the MMS by use of the arm and gripper.

The MAVs represent a class of computational resource-

limited robots, which are however sized to 0.1 [m]-scale

form factor making them ideal to fit through narrow open-

ings. They support WiFi (2.4 Ghz) communication, offering

electronically stabilized video streaming, and are equipped

with onboard optical stabilization making them capable of

executing remote velocity command-based navigation. In

our proposed approach, they are envisioned as remotely

piloted (by the MMS) micro-scouts, feeding back an encoded

video stream to the main robot carrier which leverages its

superior computational resources to calculate the Visual-

Servoed Exploration policy –as per the above definition– that

guides the MAV actions. The overall system architecture is

visualized in Figure 2.

MMS “Carrier” Robot

MAV Micro Scouts

Video Streaming

MAV Commanding

Remote Imagery Processing

Fig. 2. The heterogeneous robotic system considered within our approach:
A “carrier” MMS with significant computational resources, and a set of
mounted micro-sized MAV scouts, deployed for remote visually-servoed
exploration past constricted openings.

IV. PROPOSED APPROACH

This section outlines our contributions towards mobile

manipulation-based micro-robotic scout deployment through

constricted structural apertures.

A. Overarching Architecture

Robotic exploration missions are generally performed by

operating in surroundings that are considered rigid, or present

opportunities to reconfigure the environment accessibility

through mobile manipulation of certain non-static entities

[38, 39]. Our approach focuses on rigid environments (e.g.

with large debris that cannot be cleared), which however

present extremely limited access through very narrow open-

ings. This is the takeoff point for our pipeline: we consider

that the robot already performs autonomous exploration

based on an pre-established receding horizon next-best-view

approach, and we initiate at the point where no feasible

exploration routes offer any further exploration gain [29],

i.e. the robot is “stuck”. Figure3 presents a flowchart of

this paper’s algorithmic components which are subsequently

elaborated, illustrating the overarching logic of how these

fundamental capabilities contributed through our work can

be applied to autonomously gain entry into extremely con-

stricted settings, by coordinating a heterogeneous robotic

deployment which involves MMS and miniaturized MAV

robots.

Environment Scanning
&

Aperture Detection

Micro-Scout MAV Deployment through Constricted Apertures

Filter Best Traversability-aware Navigation
towards

Aperture of Interest

Aperture Analysis
to

fit Micro-Robot Body

Phase I:

Initial Alignment
to Aperture

Phase II:

Slip-through
Ingress

Manipulation Motion Planning

Phase III:

Position for
Takeoff

Draw MAVs
from

Holsters

Takeoff

Exploration
Stuck ?

Construct
Traversability

Graph

Derive Shortest
Paths to

Reachable Frontiers

Compute
Exploration Gain

Follow Maximally-Exploring Path

Receding Horizon Exploration

More Exploration Gain Left

Enable Autonomous Heterogeneous Robotic System Deployment

Remotely-conducted
Visually-Servoed

Exploration

Fig. 3. Overarching architecture, indicating how the process of aperture-
like ingress point search is autonomously triggered once the robot explo-
ration mission is “stuck”, as well as the sequence of algorithmic steps.
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B. Aperture of Interest Detection

The first module contributed in our work pertains to an

efficient method to detect apertures, i.e. structural regions

that are see-through and hollow, and at least marginally wide

enough to fit the MAV in order to act as ingress points to

further the robotic exploration mission.

We employ a N -frame sliding window of the dense point-

cloud data DN
S

= {DF1

S
, · · · ,DFN

S
}, where all incoming

data are transformed per a common frame FI to acquire a

dense and consistent 3− D representation of the local envi-

ronment manifold. FI is a frame instantaneously coincident

by position and azimuth with FS, and inertially-aligned. We

subsequently perform plane model segmentation, fitting a

major model plane in the general form αx + βy + γz =
δ using RANSAC, including the additional constraint of

arccos(n̂ · ẑ) <= θp, where n̂ = [α β γ]T , ẑ = [0 0 1]T w.r.t

FI and θp = 45◦. The latter ensures that the plane doesn’t

correspond to the ground plane.

The dense pointcloud part that corresponds to the major

model plane DP
S

is extracted and transformed to the “fronto-

parallel” view of the sensor, i.e. it is rotated by Rfp ≡
q(−n̂)→ẑ such that n̂ · ẑ = −1 (to represent the plane as

perpendicular to the depth z-axis of FS). We employ pinhole

camera model-based projection to acquire an equivalent

image representation I with floating-point pixel intensity

characterizing the depth value. It is highlighted important

that the fronto–parallel view transformation is crucial to get

a 2−D projection unaffecetd by skew; working with an image

domain representation significantly reduces the search space.

Taking a binary version Ibinary of I, we first perform dilation

morphological operation to get Iopening followed by Canny

to get Icanny and subsequently perform contour detection to

derive a set of candidate aperture contours AS .

At the same time we compute the 2 − D projection

MAV 2D of the “fronto-parallel” view of the MAV mesh, and

project it onto the I image plane using the pinhole scale factor

for the model plane depth. From the previously detected

contours AS we only keep the ones which correspond to a)

hollow regions, i.e. their I floating point depth differs from

the model plane depth by a value larger than the dC threshold

value, b) marginally wide regions, i.e. their image area is at

least larger than the MAV contour Cm area.

C. Candidate Aperture Filtering

The preceding pipeline can continuously detect candidate

apertures while the eye-in-hand sensor S mounted on the

manipulator arm performs environment scanning motions. It

is expected that during this operation which is conducted

at intermediate-to-longer range from the environment struc-

tures, discretization errors, sensor noise, and the simplified

metric of accepting “large enough” contour areas (in terms

of image moment as mentioned above) will lead to detection

of inappropriate aperture candidates.

To allow a hierarchical focus of attention of the MMS, we

operate by updating a probabilistic belief for each aperture

centroid detection location. We consider the aforementioned

volumetric environment representation M, and for each

voxel mi we update a log-likelihood metric La that corre-

sponds to its probability pa to be a good aperture candidate

based on the sensor detections z1:t as:

La(mi|z1:t) = La(mi|z1:t−1) + La(mi|zt) (1)

with: La(mi) = log[
pa(mi)

1− pa(mi)
]

, where this can be considered as equivalent to a hits-or-

misses update model. It is noted that a “hit” corresponds

to an aperture detection, while “miss” measurements are

integrated for the remaining mi within the sensor’s unob-

structed field of view (by performing raycasting). The overall

operation successfully rejects unstable detections, while the

buildup of the confidence metric pa(mi) allows to prioritize

detections with increased consistency.

D. Planning for Mobile Robot Navigation & Manipulator

Arm Positioning

After acquiring the most consistent candidate aperture

map-point location mA, we compose the corresponding

approach pose Pa = [ta qa]
T , where ta ∈ R3 and qa a unit

quaternion parametrization ∈ SO(3) of the model plane nor-

mal vector. In order to achieve collision-free navigation of the

MMS near the aperture and reach if via the manipulator arm

end-effector, we leverage a sampling based approach sup-

ported by our prior work in connectivity-based groundmap

estimation and traversability-aware wheeled robot navigation

[38].

Originating from the desired setpoint Pa we project a cone

of constant radius ρ = 2 [m] onto the extracted groundmap

plane, and randomly sample candidate poses for the mobile

base within their intersection, which also qualifies as valid

by a collision check query to the volumetric map M. Then,

for each surviving candidate base location bi:

• Given the manipulator’s current end-effector pose

currPee = [currtee currqee]
T , we compute an end-

effector goal pose biPee = [bitee biqee]
T translated

by sampled mobile base location bi and oriented to

maintain sight of characterized aperture, where bitee =

currtee + bi, biqee = currqee · qa · currq
−1
ee

• Leverage the groundmap-connectivity graph of [38], we

compute a reachable MMS motion plan that does not

collide with the environment, or run into traversability

constraints.

• Employ Inverse Kinematics-based collision-aware mo-

tion planning [36] to examine whether a feasible motion

plan for the desired arm end-effector pose biPee exists.

Once a feasible solution is found the pipeline is termi-

nated, the MMS base is commanded to navigate towards

the goal such that the mounted arm workspace reaches the

aperture, while the latter is also maintained within the eye-

in-hand sensor S field-of-view.

E. Aperture Profile Analysis

This section presents our contributed approach to deter-

mine MAV launch poses by analysing the aperture profile.

From a closer vantage point (after having approached the
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aperture of interest with the MMS), we employ again the

previously described pipeline in Section IV-B to get an aper-

ture contour Ca in the binary image Ibinary and the scaled

projection of the MAV contour Cm. We proceed to perform a

hierarchical exhaustive search over the corresponding 2− d

configuration space in order to find a solution where Cm

lies in the interior of Ca (their boundaries remain non-

intersecting):

i) We first create a set G of all possible point-pairs

xi, xj ∈ Ca, xi 6= xj with the additional constraints that

lxi,xj
∈ Ca & ‖lxi,xj

‖ ≥ MCm
i.e. the line segment lxi,xj

formed by joining xi and xj lies in the interior of the aperture

contour Ca and euclidean norm of lxi,xj
is greater than the

length of the Major axis of the MAV contour represented by

MCm
. Following this, we rank the elements of the set G by

employing the following heuristic: mlxi,xj
= min(m1,m2)

where m1 = w1 · ‖lxi,xj
−MCa

‖+w2 · ‖φ∠(lxi,xj
,MCa

)‖
& m2 = w1 · ‖lxi,xj

− mCa
‖ + w2 · ‖φ∠(lxi,xj

,mCa
)‖,

i.e the weighted sum of the difference between length and

orientation of lxi,xj
w.r.t. the Major and Minor axes of the

aperture contour, denoted as MCa
& mCa

respectively. The

set G at this point, contains sorted point-pairs such that the

line segment lxi,xj
a) is closer in length and orientation

w.r.t MCa
& mCa

, b) lies in the interior of Ca, and c) has

Euclidean norm greater than MCm
.

ii) Provided the ranked set G and an empty set V = φ,

∀ lxi,xj
; xi, xj ∈ G, we transform the MAV contour Cm

such that its center of mass is placed at the midpoint of

lxi,xj
, and its Major axis MCm

is oriented along the line

lxi,xj
, to get Ct

m. We proceed to check for intersection of

the aperture and the transformed MAV contours Ca and

Ct
m. If the contours are non-intersecting the corresponding

configuration {p, θ}, where p the mid point and θ the slope

of lxi,xj
are appended to the set of valid configurations V.

Otherwise the pair {xi, xj} is appended to the set of initially-

failed options F. If V ≡ ∅ (no valid options found) we

execute to the next step.

iii) As long as V ≡ ∅, we iterate over the elements of the

initially-failed set F, performing a sliding-search along the

line segments lxixj
. More specifically, with the Major axis

of Cm oriented along the line lxixj
and the center of mass

initially positioned at the midpoint, we keep shifting the Cm

along the line lxixj
by one pixel-unit, moving closer towards

one of the end points of l, and until the edge of the Cm

coincides with that end point. This happens interchangeably;

one step-shift on the left is followed by a one-step shift on

the right, and vice versa. During each iteration we check

for contour Ca, Ct
m intersection, and if a valid configuration

[p′, θ] is found, where p′ the left-or-right-shifted center of

mass, it is appended into the valid set V.

Algorithm 1 summarizes this process, and Figure 4

presents relevant illustrations. Additionally, Table I provides

average execution times according to different aperture shape

classes. It is mentioned that V is upper-bound by Nv , return-

ing as soon as a sufficient number of candidate configurations

are found.

Algorithm 1 Aperture profile analysis

Inputs:

Depth sensor pointcloud sliding-window DN
S

Cm ← GetContour(MAV s
proj2D)

Output: Valid & collision-free launch poses: ξMAV

1: \* Part 1: Aperture Characterization *\
2: DN

S ← TransformToFrame(FI)
3: [α β γ δ]← RANSAC(DN

S , θp) ⊲ model plane parameters
4: DP

S ← ExtractInliers(DN
S , [α β γ δ])

5: DP
fp ← FrontoParallelTransform(DP

S )
6: I← ProjectToImagePlane(DP

fp)
7: Ibinary ← Threshold(I)
8: Ca ← GetIngressApertureContour(I)
9: \* Part 2: Aperture profile analysis *\

10: G← {φ} ⊲ set of candidate pair points
11: MCa ,mCa ← GetMajorMinorAxis(Ca)
12: MCm ,mCm ← GetMajorMinorAxis(Cm)
13: for all lxi,xj

; xi, xj ∈ Ca, xi 6= xj do
14: if lxi,xj

∈ Ca & ‖lxi,xj
‖ ≥MCm then

15: G← G+ {xi, xj}

16: for all lxi,xj
; xi, xj ∈ G do

17: m1← w1 · ‖lxi,xj
−MCa‖+ w2 · ‖φ∠(lxi,xj

,MCa)‖
18: m2← w1 · ‖lxi,xj

−mCa‖+ w2 · ‖φ∠(lxi,xj
,mCa)‖

19: mlxixj
← min(m1,m2)

20: G← Sort(G,mlxixj
)

21: V← {φ}
22: F← {φ}
23: for all lxi,xj

; xi, xj ∈ G do

24: t =
(xi+xj)

2
25: θ = slope(lxixj

)
26: T = [Rθ t]
27: CT

m = Transform(Cm, T )
28: if Ca ∩ CT

m then
29: V← V+ {t, θ}
30: else
31: F← F+ {xi, xj}

32: if V = {φ} or len(V) < Nvalid then
33: for all lxi,xj

; xixj ∈ F do
34: V← V+ SlidingCheck(lxixj

)

35: returnV

“Amoeba” Contour (Concave) “U” contour (Highly Concave)

MAV Contour
Aperture Contour

1a) 1b) 1c) 1d)Binary Image Canny Image Relevant Contour Valid Configuration

1e)

2a) 2b) 3a) 3b)

2c) 3c)

Valid Configuration Model Plane

Invalid Configuration

Model Plane

Model Plane

Invalid Configuration

Valid Configuration

Intersection check for contours with concavities

Aperture contour detection for valid launch pose computation

Fig. 4. Top row: 1a) Ibinary , 1b) Icanny , 1c) Detected aperture

contour Ca, 1d) Valid configuration solution (non-intersecting contours),
1e) Corresponding aperture cutout used. Bottom row – “Amoeba” and
“U”-shaped examples: 2a) and 3a) Valid configuration solutions with no
intersection, 2b) and 3b) Corresponding aperture cutouts used, 2c) and 3c)
Example invalid configuration rejected during the Algorithm 1 search.

It should be highlighted that ranking the contour point-

to-point line candidates by their proximity to the Major and

6697



Minor axes of the contour shape is intended to prioritize

searching for solutions assuming a mostly convex shape for

the aperture, while remaining an exhaustive-search algo-

rithm allows to uncover solutions for non-trivial shapes with

higher degree of concavity. Figure 4 illustrates the process

and characteristically addressed aperture morphologies. The

valid poses in V are eventually transformed into 3−D “pre-

launch poses” expressed in sensor frame of reference FS and

forwarded to the subsequent step.

TABLE I

EXECUTION TIMES OF CONTOUR FITTING PER SHAPE CLASS

Contour Shape Average Solution Time [s]

Orthogonal (Fully Convex) 0.88
Collapsed (Light Concave) 0.97

Amoeba (Concave) 1.10
U-shaped (Highly Concave) 1.13

F. Planning for MAV Launch

In this section we detail the process involved in the motion

planning for 6− DoF manipulation of the MAV to “slip” it

through the aperture, and followingly positioning it at an

appropriate launch pose ξ
ref
MAV that respects the takeoff con-

straints as described in the previous section. To begin with,

we define the “initial” pose for the end-effector frame Fee0

that corresponds to the arm configuration at the beginning

of the pipeline. We proceed to plan the entire sequence for

MAV deployment in a piece-wise manner. For a “pre-launch

pose” ξMAV (centered within the aperture plane) given by

the preceding pipeline, we proceed as follows:

Phase I) We examine a goal setpoint g = dl · n̂+[x y z]T

applying an offset of dl of ξMAV (centered along the normal

n̂ of the model plane). This offset dl represents the length

of a custom 3D printed “launching apparatus” that is conve-

niently grasped by the gripper at one end with a supporting

structure at the other end which firmly holds the MAV in

place, and at the same time allows it to takeoff without

significant friction. The computed motion plan begins from

the “initial” pose and ends at g, where the MAV should be

sitting within the launching apparatus which is held by the

gripper, and centered near the aperture and rotated by the

pose that can fit within its contour.

Phase II) At this stage, we proceed to find a collision-

free ingress trajectory that gently “slips” the MAV through

the aperture till the MAV egresses. With g as start state

and ξMAV as end effector goal state, we compute the

corresponding motion plan.

Phase III) At this last step, the MAV should have

egressed from the back side of the aperture and held by the

elongated apparatus. We proceed to plan to attain the launch

pose configuration ξ
ref
MAV as per the definition 2 with the

start state as ξMAV . It is highlighted that this last motion is

mostly rotational in nature, since the MAV launch constraints

|φ, θ| ≤ αlaunch refer to its roll and pitch during takeoff.

Following the success of all the three planning phases,

we ultimately compute the required plan to grasp the MAVs

which are carried by the MMS at a priori known holster-

like mounting arrangements. It is important to note that

although the mounting arrangement is known, collision-free

manipulation planning is executed regardless to account for

the existence of nearby obstacles.

The entire sequence of trajectories computed by the

motion plans is executed, starting by grasping the MAV,

positioning it at the “initial” pose g, and moving it along

Phases I–III , where the MAV is ready to takeoff based on

an appropriately timed command.

G. Visual-Servoed MAV Exploration

This final section refers to the implemented policy for

Visual-Servoed exploration with the MAV. The algorithmic

components the facilitate this scheme are not the authors’

work, however our contribution in this part centers around the

utility of a computationally-endowed MMS carrier robot as

a remote-commander of highly miniaturized robotic systems

that can afford minimal functionalities. In this case, the

MAV is capable of transmitting visual-only imagery, which

is monocular and compressed.

We propose a pipeline that leverages a trained model for

monocular depth estimation [40]; the network is deployed

on the MMS onboard powerful GPU and provides dense

depth map estimates of the visual imagery relayed by the

MAV. We divide the estimated depth image into three column

subsets, and follow-up with pixel-averaging that allows us to

compute a 3 × 1 action vector. A simple control allocation

comprises of three actions: forward (f), clockwise yaw (r),

counter-clockwise yaw (l), and aims to move and/or orient

the MAV towards a region of greater depth.

We employ this simple policy to visually servo the MAV

towards unexplored regions past the ingress point, and addi-

tionally leverage the relayed imagery to conduct automated

detection of objects of interest using the [41] pipeline.

V. EVALUATION

We assessed our pipeline in an experimental study with

an in-house developed autonomous Mobile Manipulation

System, augmented as a heterogeneous robotic system by

acting as a micro-scout MAV carrier. It is mentioned that the

presented mission relies exclusively on on-board perception

(no motion-capture) and is executed autonomously.

The specific mock-up environment setup illustrated in

Figure 5 is littered with unstructured obstacle configurations,

including boxes, wooden planks, concrete blocks, bricks, and

other materials pertaining to a collapsed building interior.

The mission process follows the outline presented in Sub-

section IV-A; the arrangement is such that soon after the

beginning of the experiment, no further exploration route can

be found due to ground navigation constraints. This initiates

a scanning process of the environment with our aperture

detection algorithm examining the local structure around the

MMS. The most consistently detection is probabilistically

ranked higher than erratic ones, and indeed corresponds to

the environment slot annotated in the Figure.

This is designed to lead into a caved-up corridor like

space (with raised irregular walls left-and-right; the top part

of the mockup is however left open to allow overhead
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Fig. 5. Top row: a) Partially-collapsed mockup environment with a caved-in corridor hidden behind a constricted ingress point, b) − d) Scanning to
detect apertures yields numerous detections, but only one (the ingress point) ranks consistently. e) Selected aperture approached and analyzed. Middle

and Lower row: Sequential deployment of MAV micro-scouts by i) picking them up from the MMS body, ii) aligning them to the aperture, iii) inserting
them, iv) flat-aligning them for takeoff. Deep-learned monocular depth prediction based visually-servoed guidance of the MAVs leads one robot to the
corridor right segment (discovering a fire extinguisher) and the other to the left (discovering a chair).

visibility during the experiment). The MMS navigates in

a collision-and-traversability-aware [38] manner, positioning

itself against the aperture, and the Phases of Manipulation

Planning for MAV launch are executed. It is noted that 2

MAVs are available, one carried on the left and the other on

the right side of the MMS body. These are inserted into the

aperture and launched in sequence; as soon as the exploration

mission of the first is terminated, the second one is deployed.

As previously elaborated, each MAV micro-sout relays

a x264-encoded video stream back to the MMS, which

is leveraged by a deep-learned monocular camera depth

prediction pipeline. Such an approach is excellently tailored

to this case; potential communication latencies (leading to

irregular image updates) and the image-stream quality is

prone to lead to dubious monocular SLAM results if a

first-principle approach were employed instead. Also, the

MMS onboard computational resources naturally allow for

the deployment of this network. The MAV is therefore guided

by our simple visually-servoed exploration guidance scheme,

proceeding down the mockup corridor avoiding the box

pillars, exiting the door, and turning either left or right to

continue down the building hallway. It is noted that although

a directionality bias can be applied to make each MAV favor

a right-or-left turn direction, this approach is not guaranteed

to lead to different exploration routes for the 2 consecutively

deployed aerial micro-scouts.

In the case presented, each robot proceeds down different

directions, and an object detection and classification pipeline

[41] can be used to terminate each sequence as we have

placed a fire extinguisher and a chair on either corridor side.

Although this exploration does not lead to comprehensive

mapping past the constricted aperture, the heterogeneous

robotic system manages to acquire semantic information

which should be viewed as vital in the context of autonomous

robotic reconnaissance operations during catastrophic events.

VI. CONCLUSIONS

In this work, an autonomous heterogeneous robotic sys-

tem deployment pipeline was proposed, centered around a

“carrier” MMS and a set of micro-sized MAVs. The overar-

ching vision is to tackle cases of highly constricted ingress

points into caved-in locations, via the autonomous mobile

manipulation-based careful insertion and launch of MAVs

through them, in order to act as micro-robot scouts. This

paper contributes a) an approach for the detection of such

apertures and a methodology for hiearchical analysis in order

to “fit” robot bodies through them, b) an overarching archi-

tecture for a heterogeneous robotic solution capable of these

tasks, and c) the novelty of a system-of-systems approach

that leverages mobile manipulation for the deployment of

other robots which are otherwise incapable of entering such

extreme apertures in a safe way. The proposed pipeline was

evaluated in experimental study comprising relevant robotic

systems and a partially-collapsed mockup environment.
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