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ABSTRACT

HardWare-aware Neural Architecture Search (HW-NAS) has recently gained
tremendous attention by automating the design of deep neural networks deployed
in more resource-constrained daily life devices. Despite its promising perfor-
mance, developing optimal HW-NAS solutions can be prohibitively challenging
as it requires cross-disciplinary knowledge in the algorithm, micro-architecture,
and device-specific compilation. First, to determine the hardware-cost to be in-
corporated into the NAS process, existing works mostly adopt either pre-collected
hardware-cost look-up tables or device-specific hardware-cost models. The for-
mer can be time-consuming due to the required knowledge of the device’s com-
pilation method and how to set up the measurement pipeline, while building the
latter is often a barrier for non-hardware experts like NAS researchers. Both of
them limit the development of HW-NAS innovations and impose a barrier-to-entry
to non-hardware experts. Second, similar to generic NAS, it can be notoriously
difficult to benchmark HW-NAS algorithms due to their significant required com-
putational resources and the differences in adopted search spaces, hyperparame-
ters, and hardware devices. To this end, we develop HW-NAS-Bench, the first
public dataset for HW-NAS research which aims to democratize HW-NAS re-
search to non-hardware experts and make HW-NAS research more reproducible
and accessible. To design HW-NAS-Bench, we carefully collected the mea-
sured/estimated hardware performance (e.g., energy cost and latency) of all the
networks in the search spaces of both NAS-Bench-201 and FBNet, on six hard-
ware devices that fall into three categories (i.e., commercial edge devices, FPGA,
and ASIC). Furthermore, we provide a comprehensive analysis of the collected
measurements in HW-NAS-Bench to provide insights for HW-NAS research. Fi-
nally, we demonstrate exemplary user cases to (1) show that HW-NAS-Bench
allows non-hardware experts to perform HW-NAS by simply querying our pre-
measured dataset and (2) verify that dedicated device-specific HW-NAS can in-
deed lead to optimal accuracy-cost trade-offs. The codes and all collected data are
available at https://github.com/RICE-EIC/HW-NAS-Bench.

1 INTRODUCTION

The recent performance breakthroughs of deep neural networks (DNNs) have attracted an explosion
of research in designing efficient DNNs, aiming to bring powerful yet power-hungry DNNs into
more resource-constrained daily life devices for enabling various DNN-powered intelligent func-
tions (Ross, 2020; Liu et al., 2018b; Shen et al., 2020; You et al., 2020a). Among them, HardWare-
aware Neural Architecture Search (HW-NAS) has emerged as one of the most promising techniques
as it can automate the process of designing optimal DNN structures for the target applications,
each of which often adopts a different hardware device and requires a different hardware-cost met-
ric (e.g., prioritizes latency or energy). For example, HW-NAS in (Wu et al., 2019) develops a
differentiable neural architecture search (DNAS) framework and discovers state-of-the-art (SOTA)
DNNs balancing both accuracy and hardware efficiency, by incorporating a loss consisting of both
the cross-entropy loss that leads to better accuracy and the latency loss that penalizes the network’s
latency on a target device.
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the networks on the six hardware devices, which provides insights to not only HW-NAS re-
searchers but also DNN accelerator designers. Other researchers can extract useful insights
from HW-NAS-Bench that have not been discussed in this work.

• We demonstrate exemplary user cases to show: (1) how HW-NAS-Bench can be easily
used by non-hardware experts to develop HW-NAS solutions by simply querying the col-
lected data in our HW-NAS-Bench and (2) dedicated device-specific HW-NAS can indeed
lead to optimal accuracy-cost trade-offs, demonstrating the great necessity of HW-NAS
benchmarks like our proposed HW-NAS-Bench.

2 RELATED WORKS

2.1 HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Driven by the growing demand for efficient DNN solutions, HW-NAS has been proposed to au-
tomate the search for efficient DNN structures under the target efficiency constraints (Fu et al.,
2020b;a; Zhang et al., 2020). For example, (Tan et al., 2019; Howard et al., 2019; Tan & Le,
2019) adopt reinforcement learning based NAS with a multi-objective reward consisting of both the
task performance and efficiency, achieving promising results yet suffering from prohibitive search
time/cost. In parallel, (Wu et al., 2019; Wan et al., 2020; Cai et al., 2018; Stamoulis et al., 2019)
explore the design space in a differentiable manner following (Liu et al., 2018a) and significantly
improve the search efficiency. The promising performance of HW-NAS has motivated a tremendous
interest in applying it to more diverse applications (Fu et al., 2020a; Wang et al., 2020a; Marchisio
et al., 2020) paired with target hardware devices, e.g., Edge TPU (Xiong et al., 2020) and NPU (Lee
et al., 2020), in addition to the widely explored mobile phones.

As discussed in (Chu et al., 2020), different hardware devices can favor very different network
structures under the same hardware-cost metric, and the optimal network structure can differ signif-
icantly when considering different application-driven hardware-cost metrics on the same hardware
device. As such, it would ideally lead to the optimal accuracy-cost trade-offs if the HW-NAS de-
sign is dedicated for the target device and hardware-cost metrics. However, this requires a good
understanding of both device-specific compilation and hardware-cost characterization, imposing a
barrier-to-entry to non-hardware experts, such as many NAS researchers, and thus limits the devel-
opment of optimal HW-NAS results for numerous applications, each of which often prioritizes a
different application-driven hardware-cost metric and adopts a different type of hardware devices.
As such, our proposed HW-NAS-Bench will make HW-NAS more friendly to NAS researchers,
who are often non-hardware experts, as it consists of comprehensive hardware-cost data in a wide
range of hardware devices for all the networks in two commonly used SOTA NAS search spaces,
expediting the development of HW-NAS innovations.

2.2 NEURAL ARCHITECTURE SEARCH BENCHMARKS

The importance and difficulty of NAS reproducibility and benchmarking has recently gained in-
creasing attention. Pioneering efforts include (Ying et al., 2019; Dong & Yang, 2020; Klyuchnikov
et al., 2020; Siems et al., 2020; Dong et al., 2020). Specifically, NAS-Bench-101 (Ying et al., 2019)
presents the first large-scale and open-source architecture dataset for NAS, in which the ground truth
test accuracy of all the architectures (i.e., 423k) in its search space on CIFAR-10 (Krizhevsky et al.,
2009) are provided. Later, NAS-Bench-201 (Dong & Yang, 2020) further extends NAS-Bench-101
to support more NAS algorithm categories (e.g., differentiable algorithms) and more datasets (e.g.,
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet16-120 (Chrabaszcz et al., 2017)). Most recently,
NAS-Bench-301 (Siems et al., 2020) and NATS-Bench (Dong et al., 2020) are developed to support
benchmarking NAS algorithms on larger search spaces. However, all of these works either merely
provide latency on the server-level GPU (e.g., GTX 1080Ti) or do not consider any hardware-cost
data on real hardware at all, limiting their applicability to HW-NAS (Wu et al., 2019; Wan et al.,
2020; Cai et al., 2018) that primarily targets commercial edge devices, FPGA (Wang et al., 2020b),
and ASIC (Chen et al., 2016; Lin et al., 2017; 2016; Zhao et al., 2020a). This has motivated us to
develop the proposed HW-NAS-Bench, which aims to make HW-NAS more accessible especially
for non-hardware experts and reproducible.
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A concurrent work (published after our submission) is BRP-NAS (Chau et al., 2020), which presents
a benchmark for the latency of all the networks in NAS-Bench-201 (Dong & Yang, 2020) search
space. In comparison, our proposed HW-NAS-Bench includes (1) more device categories (i.e., not
only commercial devices, but also FPGA (Wang et al., 2020b) and ASIC (Chen et al., 2016)), (2)
more hardware-cost metrics (i.e., not only latency, but also energy), and (3) more search spaces (i.e.,
not only NAS-Bench-201 (Dong & Yang, 2020) but also FBNet (Wu et al., 2019)). Additionally, we
(4) add a detailed description of the pipeline to collect the hardware-cost of various devices and (5)
analyze the necessity of device-specific HW-NAS solutions based on our collected data.

3 THE PROPOSED HW-NAS-BENCH FRAMEWORK

3.1 HW-NAS-BENCH’S CONSIDERED SEARCH SPACES

To ensure a wide applicability, our HW-NAS-Bench considers two representative NAS search
spaces: (1) NAS-Bench-201’s cell-based search space and (2) FBNet search space. Both contribute
valuable aspects to ensure our goal of constructing a comprehensive HW-NAS benchmark. Specif-
ically, the former enables HW-NAS-Bench to naturally integrate the ground truth accuracy data
of all NAS-Bench-201’s considered network architectures, while the latter ensures that HW-NAS-
Bench includes the most commonly recognized hardware friendly search space.

NAS-Bench-201 Search Space. Inspired from the search space used in the most popular cell-based
NAS, NAS-Bench-201 adopts a fixed cell search space, where each architecture consists of a prede-
fined skeleton with a stack of the searched cell that is represented as a densely-connected directed
acyclic graph (DAG). Specifically, it considers 4 nodes and 5 representative operation candidates for
the operation set, and varies the feature map sizes and the dimensions of the final fully-connected
layer to handle its considered three datasets (i.e., CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and ImageNet16-120 (Chrabaszcz et al., 2017)), leading to a total of 3× 56 = 46875 architectures.
Training log and accuracy are provided for each architecture. However, NAS-Bench-201 can not be
directly used for HW-NAS as it only includes theoretical cost metrics (i.e., FLOPs and the number
of parameters (#Params)) and the latency on a server-level GPU (i.e., GTX 1080Ti). HW-NAS-
Bench enhances NAS-Bench-201 by providing all the 46875 architectures’ measured/estimated
hardware-cost on six devices, which are primarily targeted by SOTA HW-NAS works.

FBNet Search Space. FBNet (Wu et al., 2019) constructs a layer-wise search space with a fixed
macro-architecture, which defines the number of layers and the input/output dimensions of each
layer and fixes the first and last three layers with the remaining layers to be searched. In this way,
the network architectures in the FBNet (Wu et al., 2019) search space have more regular structures
than those in NAS-Bench-201, and have been shown to be more hardware friendly (Fu et al., 2020a;
Ma et al., 2018). The 9 considered pre-defined cell candidates and 22 unique positions lead to a
total of 922 ≈ 1021 unique architectures. While HW-NAS researchers can develop their search
algorithms on top of the FBNet (Wu et al., 2019) search space, tedious efforts are required to build
the hardware-cost look-up tables or models for each target device. HW-NAS-Bench provides the
measured/estimated hardware-cost on six hardware devices for all the 1021 architectures in
the FBNet search space, aiming to make HW-NAS research more friendly to non-hardware
experts and easier to be benchmarked.

3.2 HARDWARE-COST COLLECTION PIPELINE AND THE CONSIDERED DEVICES

To collect the hardware-cost data for all the architectures in both the NAS-Bench-201 and FBNet
search spaces, we construct a generic hardware-cost collection pipeline (see Figure 2) to automate
the process. The pipeline mainly consists of the target devices and corresponding deployment tools
(e.g., compilers). Specifically, it takes all the networks as its inputs, and then compiles the net-
works to (1) convert them into the device’s required execution format and (2) optimize the execution
flow, the latter of which aims to optimize the hardware performance on the target devices. For
example, for collecting the hardware-cost in an Edge GPU, we first set the device in the Max-N
mode to fully make use of all available resources following (Wofk et al., 2019), and then set up
the embedded power rail monitor (Texas Instruments Inc.) to obtain the real-measured latency and
energy via sysfs (Patrick Mochel and Mike Murphy.), averaging over 50 runs. We can see that
the hardware-cost collection pipeline requires various hardware domain knowledge, includ-
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Table 2: Two types of correlation coefficients (larger means more correlated) between the real-
measured hardware-cost of the whole architectures and the approximated hardware-cost based on
100 randomly sampled architectures from the FBNet search space.

Correlation Coefficient Types Datasets
Latency on Energy on Latency on Latency on Latency on
Edge GPU Edge GPU Raspi 4 Edge TPU Pixel 3

Pearson Correlation Coefficient
CIFAR-100 0.9200 0.9116 0.9219 0.4935 0.9324
ImageNet 0.8634 0.9640 0.9897 0.7153 0.9162

Kendall Rank Correlation Coefficient
CIFAR-100 0.7373 0.7240 0.7470 0.3551 0.8593
ImageNet 0.7111 0.8379 0.9163 0.5806 0.8064

FPGA: FPGA is a widely adopted AI acceleration platform featuring a higher hardware flexibility
than ASIC and more decent hardware efficiency than commercial edge devices. To collect hardware-
cost data in this platform, we first develop a SOTA chunk based pipeline structure (Shen et al., 2017;
Zhang et al., 2020) implementation, compile all the architectures using the standard Vivado HLS
toolflow (Xilinx Inc., a), and then obtain the hardware-cost on a Xilinx ZC706 board with a Zynq
XC7045 SoC (Xilinx Inc., b).

More details about the pipeline for each of the aforementioned devices are provided in the Ap-
pendix D for better understanding.

In our HW-NAS-Bench, to estimate the hardware-cost of the networks in the FBNet search space
(Wu et al., 2019) when being executed on the commercial edge devices (i.e., Edge GPU, Raspi 4,
Edge TPU, and Pixel 3), we sum up the hardware-cost of all unique blocks (i.e., “block” in the
FBNet space (Wu et al., 2019)) within the network architectures. To validate that such an approxi-
mation is close to the corresponding real-measured results, we conduct experiments, as summarized
in Table 2, to calculate two types of correlation coefficients between the measured and the approx-
imated hardware-cost based on 100 randomly sampled architectures from the FBNet search space.
We can see that our approximated hardware-cost is highly correlated with the real-measured one,
except for the case on the Edge TPU, which we conjecture is caused by the adopted in-house Edge
TPU compiler (Google LLC., c). More visualization results can be found in the Appendix A.

4 ANALYSIS ON HW-NAS-BENCH

In this section, we provide analysis and visualization of the hardware-cost and corresponding accu-
racy data (the latter only for architectures in NAS-Bench-201) for all the architectures in the two con-
sidered search spaces. Specifically, our analysis and visualization confirm that (1) commonly used
theoretical hardware-cost metrics such as FLOPs do not correlate well with the measured/estimated
hardware-cost; (2) hardware-cost of the same architectures can differ a lot when executed on differ-
ent devices; and (3) device-specific HW-NAS is necessary because optimal architectures resulting
from HW-NAS targeting on one device can perform poorly in terms of the hardware-cost when being
executed on another device.

4.1 CORRELATION BETWEEN COLLECTED HARDWARE-COST AND THEORETICAL ONES

To confirm whether commonly used theoretical hardware-cost metrics align with real-
measured/estimated ones, we summarize the calculated correlation between the collected hardware-
cost in our HW-NAS-Bench and the theoretical metrics (i.e., FLOPs and #Params), based on the
data for all the architectures in both search spaces on all the six considered hardware devices where
a total of four different datasets are involved.

Table 3: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost and
theoretical ones considering the NAS-Bench-201 search space, where coefficients <0.5 are bolded.

Dataset Metrics
Edge GPU Raspi 4 Edge TPU Pixel 3 ASIC-Eyeriss FPGA

Latency Energy Latency Latency Latency Latency Energy Latency Energy

CIFAR-10
FLOPs 0.3571 0.4064 0.7394 0.1847 0.6823 0.4178 0.5359 0.8313 0.8313

#Params 0.3571 0.4064 0.7394 0.1847 0.6823 0.4178 0.5359 0.8313 0.8313

CIFAR-100
FLOPs 0.3589 0.4073 0.7384 0.1851 0.6844 0.4197 0.5360 0.8313 0.8313

#Params 0.3589 0.4073 0.7384 0.1851 0.6844 0.4197 0.5360 0.8313 0.8313

ImageNet16-120
FLOPs 0.3544 0.3868 0.6303 0.2635 0.7017 0.4166 0.5363 0.9205 0.9205

#Params 0.3544 0.3868 0.6303 0.2635 0.7017 0.4166 0.5363 0.9205 0.9205
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Table 4: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost and
theoretical ones considering the FBNet search space, where coefficients <0.5 are bolded.

Dataset Metrics
Edge GPU Raspi 4 Pixel 3 ASIC-Eyeriss FPGA

Latency Energy Latency Latency Latency Energy Latency Energy

CIFAR-100
FLOPs 0.0149 0.1564 0.7713 0.8092 0.8490 0.7854 0.8710 0.8710

#Params -0.0733 0.0202 0.4910 0.3734 0.4297 0.6455 0.5151 0.5151

ImageNet
FLOPs 0.4633 0.6094 0.7531 0.7678 0.8935 0.7970 0.8643 0.8643

#Params 0.0985 0.1840 0.2318 0.2357 0.3202 0.4140 0.4198 0.4198

As summarized in Tables 3 - 4, commonly used theoretical hardware-cost metrics (i.e., FLOPs and
#Params) do not always correlate well with measured/estimated hardware-cost for the architectures
in both the NAS-Bench-201 and FBNet spaces. For example, there exists at least one coefficient
<0.5 on all devices, especially for the cases with real-measured/estimated hardware-cost on com-
monly considered edge platforms including Edge GPU, Edge TPU, and ASIC-Eyeriss. As such,
HW-NAS based on the theoretical hardware-cost might lead to sub-optimal results, motivating HW-
NAS benchmarks like our HW-NAS-Bench. Note that we consider the Kendall Rank Correlation
Coefficients (Abdi, 2007), which is a commonly used correlation coefficient in both recent NAS
frameworks and benchmarks (You et al., 2020b; Siems et al., 2020; Yang et al., 2020).

4.2 CORRELATION AMONG COLLECTED HARDWARE-COST ON DIFFERENT DEVICES

To check how much the hardware-cost of the same architectures on different devices correlate, we
visualize the correlation between the hardware-cost collected from every two paired devices based
on the data for all the architectures in both the NAS-Bench-201 and FBNet search spaces with each
of the architectures associated with 9 different hardware-cost metrics.
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Figure 3: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost in
different devices considering the NAS-Bench-201 search space.
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Figure 4: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost in
different devices considering the FBNet search space.
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Figure 5: Accuracy vs. hardware-cost on different devices considering NAS-Bench-201, where
points in red denote the architectures with the optimal trade-offs between “accuracy on ImageNet16-
120 vs. latency measured on Edge GPU”, of which the architectures represent the ground truth of
HW-NAS targeting Edge GPUs.

The visualization in Figures 3 - 4 indicates that hardware-cost of the same network architectures can
differ a lot when being executed on different devices. More specifically, the correlation coefficients
can be as small as -0.00 (e.g., Edge GPU latency vs. ASIC-Eyeriss energy for the architectures
in the FBNet search space), which is resulting from the large difference in their underlying (1)
hardware micro-architectures and (2) available hardware resources. Thus, the resulting architecture
of HW-NAS targeting one device might perform poorly when being executed on other devices,
motivating device-specific HW-NAS; Furthermore, it is crucial to develop comprehensive hardware-
cost datasets like our HW-NAS-Bench to enable fast development and ensure optimal results of
HW-NAS for different applications.

4.3 OPTIMAL ARCHITECTURES ON DIFFERENT HARDWARE DEVICES

To confirm the necessity of performing device-specific HW-NAS from another perspective, we sum-
marize the test accuracy vs. hardware-cost of all the architectures in NAS-Bench-201 considering
the ImageNet16-120 dataset, and analyze the architectures with the optimal accuracy-cost trade-offs
for different devices.

As shown in Figure 5, such optimal architectures for different devices are not the same. For example,
the optimal architectures on Edge GPU (marked as red points) can perform poorly in terms of the
hardware-cost in other devices, especially in ASIC-Eyeriss and Edge TPU whose hardware-cost
exactly has the smallest correlation coefficient with the hardware-cost measured in Edge GPU, which
is shown in Figure 3. Again, this set of analysis and visualization confirms that HW-NAS targeting
on one device can perform poorly in terms of the hardware-cost when being executed on another
device, thus motivating the necessity of device-specific HW-NAS.

5 USER CASES: BENCHMARK SOTA HW-NAS ALGORITHMS

In this section, we will demonstrate the user cases of our HW-NAS-Bench to show (1) how non-
hardware experts can use it to develop HW-NAS solutions by simply querying the hardware-cost
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Table 5: Inference accuracy and latency comparison of the optimal architectures resulting from
HW-NAS-Bench when targeting different hardware devices.

Targeted Device
Top-1 Acc.(%)

Latency on Latency on Latency on
in HW-NAS Edge GPU (ms) Raspi 4 (ms) FPGA (ms)

Edge GPU 74.11 9.96 31.01 20.19
Raspi 4 73.46 13.88 22.91 15.39
FPGA 73.51 20.65 25.43 13.96

data and (2) dedicated device-specific HW-NAS can indeed often lead to optimal accuracy-cost
trade-offs, again showing the important need for HW-NAS benchmarks like our HW-NAS-Bench to
enable more optimal HW-NAS solutions via device-specific HW-NAS.

Benchmark Setting. We adopt a SOTA HW-NAS algorithm, ProxylessNAS (Cai et al., 2018)
for this experiment. As an example to use our HW-NAS-Bench, we use ProxylessNAS to search
over the FBNet (Wu et al., 2019) search space on CIFAR-100 (Krizhevsky et al., 2009), when
targeting different devices in our HW-NAS-Bench by simply querying the corresponding device’s
measured/estimated hardware-cost, which has negligible overhead as compared to the HW-NAS
algorithm itself, without the need for hardware expertise or knowledge during the whole HW-NAS.

5.1 OPTIMAL ARCHITECTURES RESULTING FROM DEVICE-SPECIFIC HW-NAS

Table 5 illustrates that the searched architectures achieve the lowest latency among all architectures
when the target devices of HW-NAS are the same as the one used to measure the architecture’s
on-device inference latency. Specifically, when being executed on an Edge GPU, the searched ar-
chitecture targeting Raspi 4 during HW-NAS leads to about a 50% higher latency, while the searched
architecture targeting FPGA during HW-NAS introduces over a 100% higher latency, than the ar-
chitecture specifically target on the Edge GPU during HW-NAS, under the same inference accuracy.
This set of experiments shows that non-hardware experts can easily use our HW-NAS-Bench to
develop optimal HW-NAS solutions, and demonstrates that device-specific HW-NAS is critical to
guarantee the searched architectures’ on-device performance.

6 CONCLUSION

We have developed HW-NAS-Bench, the first public dataset for HW-NAS research aiming to (1)
democratize HW-NAS research to non-hardware experts and (2) facilitate a unified benchmark for
HW-NAS to make HW-NAS research more reproducible and accessible. Our HW-NAS-Bench cov-
ers two representative NAS search spaces, and provides all network architectures’ hardware-cost
data on six commonly used hardware devices that fall into three categories (i.e., commercial edge
devices, FPGA, and ASIC). Furthermore, we conduct comprehensive analysis of the collected data
in HW-NAS-Bench, aiming to provide insights to not only HW-NAS researchers but also DNN ac-
celerator designers. Finally, we demonstrate exemplary user cases of HW-NAS-Bench to show: (1)
how HW-NAS-Bench can be easily used by non-hardware experts via simply querying the collected
data to develop HW-NAS solutions and (2) dedicated device-specific HW-NAS can indeed lead to
optimal accuracy-cost trade-offs, demonstrating the great necessity of HW-NAS benchmarks like
our proposed HW-NAS-Bench. It is expected that our HW-NAS-Benchcan significantly expedite
and facilitate HW-NAS research innovations.
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Table 7: Left: the marco-architectures of the search space proposed in the FBNet (Wu et al., 2019)
for the ImageNet classification; Right: our modified search space to fit the input image size of the
CIFAR-100 dataset. In the tables, “TBS” means the layer type needs to be searched and “Stride”
denotes the stride of the first block in the stage. Here the modified parameters are emphasized as
bold characters.

Input Shape Block Filter# Block# Stride

2242 × 3 3× 3 conv 16 1 2

1122 × 16 TBS 16 1 1

1122 × 16 TBS 24 4 2

562 × 24 TBS 32 4 2

282 × 32 TBS 64 4 2

142 × 64 TBS 112 4 1

142 × 112 TBS 184 4 2

72 × 184 TBS 352 1 1

72 × 352 1× 1 conv 1984 1 1

72 × 1984 7× 7 avgpool - 1 1
1504 fc 1000 1 -

Input Shape Block Filter# Block# Stride

32
2 × 3 3× 3 conv 16 1 1

32
2 × 16 TBS 16 1 1

32
2 × 16 TBS 24 4 1

32
2 × 24 TBS 32 4 2

16
2 × 32 TBS 64 4 2

8
2 × 64 TBS 112 4 1

8
2 × 112 TBS 184 4 2

4
2 × 184 TBS 352 1 1

4
2 × 352 1× 1 conv 1504 1 1

4
2 × 1504 4× 4 avgpool - 1 1

1504 fc 100 1 -

C MINOR MODIFICATIONS ON THE FBNET SEARCH SPACE WHEN

BENCHMARKING ON CIFAR-100

Here we describe our modification on the FBNet search space when benchmarking on CIFAR-100
(i.e., the setting in Section 5) by comparing the marco-architectures before and after such modifica-
tion in Table 7.

D DETAILS OF THE PIPELINE USED TO COLLECT HARDWARE-COST DATA

D.1 COLLECT PERFORMANCE ON THE EDGE GPU

NVIDIA Edge GPU Jetson TX2 (Edge GPU) (NVIDIA Inc., a) is a commonly used commercial
edge device, consisting of a quad-core Arm Cortex-A57, a dual-core NVIDIA Denver2, a 256-core
Pascal GPU, and a 8GB 128-bit LPDDR4, for various deep learning applications including classifi-
cation (Li et al., 2020), segmentation (Siam et al., 2018), and depth estimation (Wofk et al., 2019),
targeting IoT, and self-driving environments. Although widely-used TensorFlow (Abadi et al., 2016)
and PyTorch (Paszke et al., 2019) can be directly used in Edge GPUs, to achieve faster inference,
TensorRT (NVIDIA Inc., b), a C++ library for high-performance inference on NVIDIA GPUs, is
more commonly used as the runtime environment in Edge GPUs when only benchmarking inference
performance (Wang et al., 2019a; NVIDIA Inc., c).

We pre-set the Edge GPU to the max-N mode to make full use of the resource on it following (Wofk
et al., 2019). When plugging Edge GPUs into the hardware-cost collection pipeline, we first com-
pile the PyTorch implementations of the network architectures in both NAS-Bench-201 and FBNet
search spaces to TensorRT format models. In this way, the resulting hardware-cost can benefit
from the optimized inference implementation within the TensorRF runtime environment. And then
we benchmark the architectures in Edge GPUs to further measure the energy and latency using
the sysfs (Patrick Mochel and Mike Murphy.) of the embedded INA3221 (Texas Instruments Inc.)
power rails monitor.

D.2 COLLECT PERFORMANCE ON RASPI 4

Raspberry Pi 4 (Raspi 4) (Raspberry Pi Limited.) is the latest Raspberry Pi device, which is a popular
hardware platform for general purpose IoT applications (Zhao et al., 2015; Basu et al., 2020) and is
able to support deep learning applications with specifical framework designs (Google LLC., f; Zhang
et al., 2019; Geiger & Team, 2020). We choose the type of Raspi 4 with a Broadcom BCM2711 SoC
and a 4GB LPDDR4 (Raspberry Pi Limited.). Similar to Edge GPUs, Raspi 4 can run architectures
in the TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), or TensorFlow Lite (Google
LLC., f) runtime environments. We utilize TensorFlow Lite (Google LLC., f) as it can further boost
the inference efficiency.
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To collect hardware-cost operating on Respi 4, an official TensorFlow Lite interpreter is pre-
configured in the Raspi 4, following the settings in (Google LLC., 2020). We benchmark the possi-
ble architectures in HW-NAS-Bench on Raspi 4 after compiling them to the TensorFlow Lite (Abadi
et al., 2016) format to measure the resulting latency.

D.3 COLLECT PERFORMANCE ON THE EDGE TPU

Edge TPU (Google LLC., a) is a series of dedicated ASIC accelerators developed by Google, target-
ing AI inference at the edge, which can be used for classification, pose estimation, and segmenta-
tion (Xiong et al., 2020; Google LLC., b) with extremely high efficiency (e.g., 2.32× more efficient
than a single SOTA desktop GPU, GTX 2080 Ti, in terms of the number of fixed-point operations
per watt (Google LLC., d)). In our proposed collection pipeline, we choose the Dev Board (Google
LLC., a) which provides the most functions among all products.

To collect hardware-cost in Edge TPUs, all the architectures to be benchmarked will first be con-
verted to the TensorFlow Lite (Google LLC., f) format from their Keras (Chollet et al., 2015) imple-
mentation. After that, an in-house compiler (Google LLC., c) will be used to convert the TensorFlow
Lite models into a more compressed format. This pipeline uses the least converting tools to make
sure that the most operations are supported, as compared to other options (e.g., converting from the
PyTorch-ONNX (Bai et al., 2020) implementation). Only the latency is collected on the Edge TPU
since it lacks accurate embedded power rails monitor. We do not consider the FBNet’s search space
for the Edge TPU, and more details are in the Appendix A.

D.4 COLLECT PERFORMANCE ON PIXEL 3

Pixel 3 (Google LLC., e) is one of the latest Pixel mobile phones that are widely used as the target
platform by recent NAS works (Xiong et al., 2020; Howard et al., 2019; Tan et al., 2019) and
machine learning framework benchmark (Google LLC., f). In our implementation, the Pixel 3 is
pre-configured to use its big cores following the setting in (Xiong et al., 2020; Tan et al., 2019).
Similar to the case of Raspi 4, we first convert the possible architectures in the search spaces of
our proposed HW-NAS-Bench into the TensorFlow Lite format and then use the official benchmark
binary files to measure the latency for each architecture.

D.5 COLLECT PERFORMANCE ON ASIC-EYERISS

For hardware-cost data collection in ASIC, we consider Eyeriss (ASIC-Eyeriss) which is a SOTA
ASIC accelerator (Chen et al., 2016). The Eyeriss chip features 168 processing elements (PEs)
which are connected through a configurable dedicated on-chip network into a 2D array. A 128KB
SRAM is shared by all PEs and further divided into multiple banks, each of which can be assigned
to fit the input feature maps or partial sums. Thanks to these configurable hardware settings, we can
adopt the optimal algorithm-to-hardware mappings for different network architectures when being
executed on Eyeriss to minimize the energy or latency by maximizing data reuse opportunities for
different layers.

In order to find the optimal mappings and evaluate the performance metrics on Eyeriss,
we adopt SOTA performance simulators for DNN accelerators (1) Accelergy (Wu et al.,
2019)+Timeloop (Parashar et al., 2019) and (2) DNN-Chip Predictor (Zhao et al., 2020b). Both
of the simulators can characterize the Eyeriss’s micro-architecture, perform mapping exploration,
and predict the energy cost and latency metrics. Given the Eyeriss accelerator and layer information
(e.g, layer type, feature map size, and kernel size) in both NAS-Bench-201 and FBNet, Accel-
ergy+Timeloop reports the energy cost and latency characterization through an integrated mapper
that finds the optimal mapping for such layer when being executed in Eyeriss. The inputs to DNN-
Chip Predictor are the same as those to Accelergy+Timeloop, except that we can set the optimization
metric as energy/latency/energy-delay product. DNN-Chip Predictor identifies the optimal mapping
for the optimization metric and generates the estimated hardware-cost. We report the average pre-
diction from the two simulators as the estimated hardware-cost of Eyeriss, and more details can be
found in Appendix B.
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Table 8: Our implemented FPGA accelerators for HW-NAS-Bench vs. SOTA FPGA accelerators,
considering VGG16 on the ImageNet dataset and using Zynq XC70Z45 as the FPGA device.

(Zhang et al., 2018) (Xiao et al., 2017) Our Implementation

Resource Utilization 680/900 DSP 824/900 DSP 723/900 DSP

Performance (GOP/s) 262 230 291

D.6 COLLECT PERFORMANCE ON FPGA

FPGA is a widely adopted AI acceleration platform which can offer a higher flexibility in terms of
the hardware resources for accelerating AI algorithms. For collecting hardware-cost data in FPGA,
we construct a SOTA chunk based pipeline structure (Zhang et al., 2018; Shen et al., 2017) as our
FPGA implementation. By configuring multiple sub-accelerators (chunks) and assigning different
layers to different sub-accelerators(chunks), we can balance the throughput and hardware resource
consumption. To further free up our implantation’s potential to reach the performance frontier across
different architectures, we additionally configure hardware settings such as the number of PEs, in-
terconnection method of PEs, and tiling/scheduling of the operations, which are commonly adopted
by FPGA accelerators (Chen et al., 2017; Zhang et al., 2015; Yang et al., 2016). We then compile all
the architectures using the standard Vivado HLS toolflow (Xilinx Inc., a) and obtain the bottleneck
latency, the maximum latency across all sub-accelerators (chunks) of the architectures on a Xilinx
ZC706 development board with Zynq XC7045 SoC (Xilinx Inc., b).

To verify our implementation, we compare our implementation’s performance with SOTA FPGA
accelerators (Zhang et al., 2018; Xiao et al., 2017) given the same architecture and dataset as shown
in Table 8. We can see that our implementation achieves SOTA performance and thus provides
insightful and trusted hardware-cost estimation for the HW-NAS-Bench.
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