Published as a conference paper at ICLR 2021

HW-NAS-BENCH: HARDWARE-AWARE NEURAL AR-
CHITECTURE SEARCH BENCHMARK

Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu,
Yue Wang & Yingyan Lin

Department of Electrical and Computer Engineering

Rice University
{c1l114,zy42,y£22,yz87,2zy34,hy34,qyl2,yw68,yingyan.lin}@rice.edu

ABSTRACT

HardWare-aware Neural Architecture Search (HW-NAS) has recently gained
tremendous attention by automating the design of deep neural networks deployed
in more resource-constrained daily life devices. Despite its promising perfor-
mance, developing optimal HW-NAS solutions can be prohibitively challenging
as it requires cross-disciplinary knowledge in the algorithm, micro-architecture,
and device-specific compilation. First, to determine the hardware-cost to be in-
corporated into the NAS process, existing works mostly adopt either pre-collected
hardware-cost look-up tables or device-specific hardware-cost models. The for-
mer can be time-consuming due to the required knowledge of the device’s com-
pilation method and how to set up the measurement pipeline, while building the
latter is often a barrier for non-hardware experts like NAS researchers. Both of
them limit the development of HW-NAS innovations and impose a barrier-to-entry
to non-hardware experts. Second, similar to generic NAS, it can be notoriously
difficult to benchmark HW-NAS algorithms due to their significant required com-
putational resources and the differences in adopted search spaces, hyperparame-
ters, and hardware devices. To this end, we develop HW-NAS-Bench, the first
public dataset for HW-NAS research which aims to democratize HW-NAS re-
search to non-hardware experts and make HW-NAS research more reproducible
and accessible. To design HW-NAS-Bench, we carefully collected the mea-
sured/estimated hardware performance (e.g., energy cost and latency) of all the
networks in the search spaces of both NAS-Bench-201 and FBNet, on six hard-
ware devices that fall into three categories (i.e., commercial edge devices, FPGA,
and ASIC). Furthermore, we provide a comprehensive analysis of the collected
measurements in HW-NAS-Bench to provide insights for HW-NAS research. Fi-
nally, we demonstrate exemplary user cases to (1) show that HW-NAS-Bench
allows non-hardware experts to perform HW-NAS by simply querying our pre-
measured dataset and (2) verify that dedicated device-specific HW-NAS can in-
deed lead to optimal accuracy-cost trade-offs. The codes and all collected data are
available at https://github.com/RICE-EIC/HW-NAS-Bench.

1 INTRODUCTION

The recent performance breakthroughs of deep neural networks (DNNs) have attracted an explosion
of research in designing efficient DNNs, aiming to bring powerful yet power-hungry DNNs into
more resource-constrained daily life devices for enabling various DNN-powered intelligent func-
tions (Ross, 2020; Liu et al., 2018b; Shen et al., 2020; You et al., 2020a). Among them, HardWare-
aware Neural Architecture Search (HW-NAS) has emerged as one of the most promising techniques
as it can automate the process of designing optimal DNN structures for the target applications,
each of which often adopts a different hardware device and requires a different hardware-cost met-
ric (e.g., prioritizes latency or energy). For example, HW-NAS in (Wu et al., 2019) develops a
differentiable neural architecture search (DNAS) framework and discovers state-of-the-art (SOTA)
DNNs balancing both accuracy and hardware efficiency, by incorporating a loss consisting of both
the cross-entropy loss that leads to better accuracy and the latency loss that penalizes the network’s
latency on a target device.

Published as a conference paper at ICLR 2021

HW-NAS w/o Our Proposed HW-NAS-Bench
[X X
"‘ Hardware Expertise/

Knowledge Needed

HW-NAS Algorith

ms|
Q
o N
< v,
Efficiency
Searched Architecture

/® HW-NAS Researchers Can Focus On This
& Part With HW-NAS-Bench
S

Possible Architectures Efficiency
Performance
AN

Energy 5
Target Hardware Devices

Hardware-cost Modeling/Collection Pipeline

J

No Hardware Expertise/
Knowledge Needed

D
Our Proposed HW-NAS w/ Our Proposed HW-NAS-Bench
Figure 1: An illustration of our proposed HW-NAS-Bench

Despite the promising performance achieved by SOTA HW-NAS, there exist paramount challenges
that limit the development of HW-NAS innovations. First, HW-NAS requires the collection of
hardware efficiency data corresponding to (all) the networks in the search space. To do so, cur-
rent practice either pre-collects these data to construct a hardware-cost look-up table or adopts
device-specific hardware-cost estimators/models, both of which can be time-consuming to obtain
and impose a barrier-to-entry to non-hardware experts. This is because it requires knowledge about
device-specific compilation and properly setting up the hardware measurement pipeline to collect
hardware-cost data. Second, similar to generic NAS, it can be notoriously difficult to benchmark
HW-NAS algorithms due to the required significant computational resources and the differences in
their (1) hardware devices, which are specific for HW-NAS, (2) adopted search spaces, and (3) hy-
perparameters. Such a difficulty is even higher for HW-NAS considering the numerous choices of
hardware devices, each of which can favor very different network structures even under the same
target hardware efficiency, as discussed in (Chu et al., 2020). While the number of floating-point op-
erations (FLOPs) has been commonly used to estimate the hardware-cost, many works have pointed
out that DNNs with fewer FLOPs are not necessarily faster or more efficient (Wu et al., 2019; 2018;
Wang et al., 2019b). For example, NasNet-A (Zoph et al., 2018) has a comparable complexity in
terms of FLOPs as MobileNetV1 (Howard et al., 2017), yet can have a larger latency than the latter
due to NasNet-A (Zoph et al., 2018)’s adopted hardware-unfriendly structure.

It is thus imperative to address the aforementioned challenges in order to make HW-NAS more
accessible and reproducible to unfold HW-NAS’s full potential. Note that although pioneering NAS
benchmark datasets (Ying et al., 2019; Dong & Yang, 2020; Klyuchnikov et al., 2020; Siems et al.,
2020; Dong et al., 2020) have made a significant step towards providing a unified benchmark dataset
for generic NAS works, all of them either merely provide the latency on server-level GPUs (e.g.,
GTX 1080Ti) or do not provide any hardware-cost data on real hardware, limiting their applicability
to HW-NAS (Wu et al., 2019; Wan et al., 2020; Cai et al., 2018) which primarily targets commercial
edge devices, FPGA, and ASIC. To this end, as shown in Figure 1, we develop HW-NAS-Bench
and make the following contributions in this paper:

e We have developed HW-NAS-Bench, the first public dataset for HW-NAS research aiming
to (1) democratize HW-NAS research to non-hardware experts and (2) facilitate a unified
benchmark for HW-NAS to make HW-NAS research more reproducible and accessible,
covering two SOTA NAS search spaces including NAS-Bench-201 and FBNet, with the
former being one of the most popular NAS search spaces and the latter having been shown
to be one of the most hardware friendly NAS search spaces.

e We provide hardware-cost data collection pipelines for six commonly used hardware de-
vices that fall into three categories (i.e., commercial edge devices, FPGA, and ASIC), in
addition to the measured/estimated hardware-cost (e.g., energy cost and latency) on these
devices for all the networks in the search spaces of both NAS-Bench-201 and FBNet.

e We conduct comprehensive analysis of the collected data in HW-NAS-Bench, such as
studying the correlation between the collected hardware-cost and accuracy-cost data of all

Published as a conference paper at ICLR 2021

the networks on the six hardware devices, which provides insights to not only HW-NAS re-
searchers but also DNN accelerator designers. Other researchers can extract useful insights
from HW-NAS-Bench that have not been discussed in this work.

e We demonstrate exemplary user cases to show: (1) how HW-NAS-Bench can be easily
used by non-hardware experts to develop HW-NAS solutions by simply querying the col-
lected data in our HW-NAS-Bench and (2) dedicated device-specific HW-NAS can indeed
lead to optimal accuracy-cost trade-offs, demonstrating the great necessity of HW-NAS
benchmarks like our proposed HW-NAS-Bench.

2 RELATED WORKS

2.1 HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Driven by the growing demand for efficient DNN solutions, HW-NAS has been proposed to au-
tomate the search for efficient DNN structures under the target efficiency constraints (Fu et al.,
2020b;a; Zhang et al., 2020). For example, (Tan et al., 2019; Howard et al., 2019; Tan & Le,
2019) adopt reinforcement learning based NAS with a multi-objective reward consisting of both the
task performance and efficiency, achieving promising results yet suffering from prohibitive search
time/cost. In parallel, (Wu et al., 2019; Wan et al., 2020; Cai et al., 2018; Stamoulis et al., 2019)
explore the design space in a differentiable manner following (Liu et al., 2018a) and significantly
improve the search efficiency. The promising performance of HW-NAS has motivated a tremendous
interest in applying it to more diverse applications (Fu et al., 2020a; Wang et al., 2020a; Marchisio
et al., 2020) paired with target hardware devices, e.g., Edge TPU (Xiong et al., 2020) and NPU (Lee
et al., 2020), in addition to the widely explored mobile phones.

As discussed in (Chu et al., 2020), different hardware devices can favor very different network
structures under the same hardware-cost metric, and the optimal network structure can differ signif-
icantly when considering different application-driven hardware-cost metrics on the same hardware
device. As such, it would ideally lead to the optimal accuracy-cost trade-offs if the HW-NAS de-
sign is dedicated for the target device and hardware-cost metrics. However, this requires a good
understanding of both device-specific compilation and hardware-cost characterization, imposing a
barrier-to-entry to non-hardware experts, such as many NAS researchers, and thus limits the devel-
opment of optimal HW-NAS results for numerous applications, each of which often prioritizes a
different application-driven hardware-cost metric and adopts a different type of hardware devices.
As such, our proposed HW-NAS-Bench will make HW-NAS more friendly to NAS researchers,
who are often non-hardware experts, as it consists of comprehensive hardware-cost data in a wide
range of hardware devices for all the networks in two commonly used SOTA NAS search spaces,
expediting the development of HW-NAS innovations.

2.2 NEURAL ARCHITECTURE SEARCH BENCHMARKS

The importance and difficulty of NAS reproducibility and benchmarking has recently gained in-
creasing attention. Pioneering efforts include (Ying et al., 2019; Dong & Yang, 2020; Klyuchnikov
et al., 2020; Siems et al., 2020; Dong et al., 2020). Specifically, NAS-Bench-101 (Ying et al., 2019)
presents the first large-scale and open-source architecture dataset for NAS, in which the ground truth
test accuracy of all the architectures (i.e., 423k) in its search space on CIFAR-10 (Krizhevsky et al.,
2009) are provided. Later, NAS-Bench-201 (Dong & Yang, 2020) further extends NAS-Bench-101
to support more NAS algorithm categories (e.g., differentiable algorithms) and more datasets (e.g.,
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet16-120 (Chrabaszcz et al., 2017)). Most recently,
NAS-Bench-301 (Siems et al., 2020) and NATS-Bench (Dong et al., 2020) are developed to support
benchmarking NAS algorithms on larger search spaces. However, all of these works either merely
provide latency on the server-level GPU (e.g., GTX 1080Ti) or do not consider any hardware-cost
data on real hardware at all, limiting their applicability to HW-NAS (Wu et al., 2019; Wan et al.,
2020; Cai et al., 2018) that primarily targets commercial edge devices, FPGA (Wang et al., 2020b),
and ASIC (Chen et al., 2016; Lin et al., 2017; 2016; Zhao et al., 2020a). This has motivated us to
develop the proposed HW-NAS-Bench, which aims to make HW-NAS more accessible especially
for non-hardware experts and reproducible.

Published as a conference paper at ICLR 2021

A concurrent work (published after our submission) is BRP-NAS (Chau et al., 2020), which presents
a benchmark for the latency of all the networks in NAS-Bench-201 (Dong & Yang, 2020) search
space. In comparison, our proposed HW-NAS-Bench includes (1) more device categories (i.e., not
only commercial devices, but also FPGA (Wang et al., 2020b) and ASIC (Chen et al., 2016)), (2)
more hardware-cost metrics (i.e., not only latency, but also energy), and (3) more search spaces (i.e.,
not only NAS-Bench-201 (Dong & Yang, 2020) but also FBNet (Wu et al., 2019)). Additionally, we
(4) add a detailed description of the pipeline to collect the hardware-cost of various devices and (5)
analyze the necessity of device-specific HW-NAS solutions based on our collected data.

3 THE PROPOSED HW-NAS-BENCH FRAMEWORK

3.1 HW-NAS-BENCH’S CONSIDERED SEARCH SPACES

To ensure a wide applicability, our HW-NAS-Bench considers two representative NAS search
spaces: (1) NAS-Bench-201’s cell-based search space and (2) FBNet search space. Both contribute
valuable aspects to ensure our goal of constructing a comprehensive HW-NAS benchmark. Specif-
ically, the former enables HW-NAS-Bench to naturally integrate the ground truth accuracy data
of all NAS-Bench-201’s considered network architectures, while the latter ensures that HW-NAS-
Bench includes the most commonly recognized hardware friendly search space.

NAS-Bench-201 Search Space. Inspired from the search space used in the most popular cell-based
NAS, NAS-Bench-201 adopts a fixed cell search space, where each architecture consists of a prede-
fined skeleton with a stack of the searched cell that is represented as a densely-connected directed
acyclic graph (DAG). Specifically, it considers 4 nodes and 5 representative operation candidates for
the operation set, and varies the feature map sizes and the dimensions of the final fully-connected
layer to handle its considered three datasets (i.e., CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and ImageNet16-120 (Chrabaszcz et al., 2017)), leading to a total of 3 x 56 = 46875 architectures.
Training log and accuracy are provided for each architecture. However, NAS-Bench-201 can not be
directly used for HW-NAS as it only includes theoretical cost metrics (i.e., FLOPs and the number
of parameters (#Params)) and the latency on a server-level GPU (i.e., GTX 1080Ti). HW-NAS-
Bench enhances NAS-Bench-201 by providing all the 46875 architectures’ measured/estimated
hardware-cost on six devices, which are primarily targeted by SOTA HW-NAS works.

FBNet Search Space. FBNet (Wu et al., 2019) constructs a layer-wise search space with a fixed
macro-architecture, which defines the number of layers and the input/output dimensions of each
layer and fixes the first and last three layers with the remaining layers to be searched. In this way,
the network architectures in the FBNet (Wu et al., 2019) search space have more regular structures
than those in NAS-Bench-201, and have been shown to be more hardware friendly (Fu et al., 2020a;
Ma et al., 2018). The 9 considered pre-defined cell candidates and 22 unique positions lead to a
total of 922 ~ 102! unique architectures. While HW-NAS researchers can develop their search
algorithms on top of the FBNet (Wu et al., 2019) search space, tedious efforts are required to build
the hardware-cost look-up tables or models for each target device. HW-NAS-Bench provides the
measured/estimated hardware-cost on six hardware devices for all the 10%! architectures in
the FBNet search space, aiming to make HW-NAS research more friendly to non-hardware
experts and easier to be benchmarked.

3.2 HARDWARE-COST COLLECTION PIPELINE AND THE CONSIDERED DEVICES

To collect the hardware-cost data for all the architectures in both the NAS-Bench-201 and FBNet
search spaces, we construct a generic hardware-cost collection pipeline (see Figure 2) to automate
the process. The pipeline mainly consists of the target devices and corresponding deployment tools
(e.g., compilers). Specifically, it takes all the networks as its inputs, and then compiles the net-
works to (1) convert them into the device’s required execution format and (2) optimize the execution
flow, the latter of which aims to optimize the hardware performance on the target devices. For
example, for collecting the hardware-cost in an Edge GPU, we first set the device in the Max-N
mode to fully make use of all available resources following (Wofk et al., 2019), and then set up
the embedded power rail monitor (Texas Instruments Inc.) to obtain the real-measured latency and
energy via sysfs (Patrick Mochel and Mike Murphy.), averaging over 50 runs. We can see that
the hardware-cost collection pipeline requires various hardware domain knowledge, includ-

Published as a conference paper at ICLR 2021

Devices and ion Tools

b4 A
Possible Architectures I' E?. @% }@
oo oo 4 !
II TensorFlow Lite PyTorch C Implementation

1R o =

orch =

‘ ’ { Y =

¥

)
Efficiency Performance A

§ j i
TR T
- It ooe ?
= u W

HW-NAS-Bench

)

v

1

1

! 1

! 1

! 1

g ! 1
F ' 7 ,
LYYy [‘ :I 1@ eee : [Edge TPU Compiler lensorRT Hardwva:e" iragma eoe :
v 4| Coral = '

! = 1

{ . L v .

! 1

! 1

! 1

! 1

! 1

! 1

! 1

1

]

Configure Devices in Advance Using Hardware Experts Knowledge .

Figure 2: Ilustrating the hardware-cost collection pipeline applicable to various hardware devices.

ing machine learning development frameworks, device compilation, embedded systems, and
device measurements, imposing a barrier-to-entry to non-hardware experts.

Next, we briefly introduce the six considered hardware devices (as summarized in Table 1) and the
specific configuration required to collect the hardware-cost data on each device.

Edge GPU: NVIDIA Edge GPU Jetson TX2 (Edge GPU) is a commercial device with a 256-core
Pascal GPU and a 8GB LPDDR4, targeting IoT applications (NVIDIA Inc., a). When plugging
an Edge GPU into the above hardware-cost collection pipeline, we first compile the network ar-
chitectures in both NAS-Bench-201 and FBNet spaces to (1) convert them to the TensorRT format
and (2) optimize the inference implementation within NVIDIA’s recommended TensorRT runtime
environment, and then execute them in the Edge GPU to measure the consumed energy and latency.

Raspi 4: Raspberry Pi 4 (Raspi 4) is the latest Raspberry Pi device (Raspberry Pi Limited.), con-
sisting of a Broadcom BCM2711 SoC and a 4GB LPDDR4. To collect the hardware-cost oper-
ating on it, we compile the architecture candidates to (1) convert them into the TensorFlow Lite
(TFLite) (Abadi et al., 2016) format and (2) optimize the implementation using the official inter-
preter (Google LLC., 2020) in Raspi 4, where the interpreter will be pre-configured.

Edge TPU: An Edge TPU Dev Board (Edge TPU) (Google LLC., a) is a dedicated ASIC accelerator
developed by Google, targeting Artificial Intelligence (Al) inference for edge applications. Similar
to the case when using Raspi 4, all the architectures are converted into the TFLite format. After that,
an Edge TPU compiler will be used to convert the pre-built TFLite model into a more compressed
format which is compatible to the pre-configured runtime environment in the Edge TPU.

Pixel 3: Pixel 3 is one of the latest Pixel mobile phones (Google LLC., e), which are widely used as
the target platforms by recent NAS works (Xiong et al., 2020; Howard et al., 2019; Tan et al., 2019).
To collect the hardware-cost in Pixel 3, we first convert all the architectures into the TFLite format,
then use TFLite’s official benchmark binary file to obtain the latency, when configuring the Pixel 3
device to only use its big cores for reducing the measurement variance as in (Xiong et al., 2020; Tan
etal., 2019).

ASIC-Eyeriss: For collecting the hardware-cost data in ASIC, we consider a SOTA ASIC acceler-
ator, Eyeriss (Chen et al., 2016). Specifically, we adopt the SOTA ASIC accelerator’s performance
simulators: (1) Accelergy (Wu et al., 2019)+Timeloop (Parashar et al., 2019) and (2) DNN-Chip Pre-
dictor (Zhao et al., 2020b), both of which automatically identify the optimal algorithm-to-hardware
mapping methods for each architecture and then provide the estimated hardware-cost of the network
execution in Eyeriss.

Table 1: Important details about the six hardware devices considered by our HW-NAS-Bench.

Devices H Edge GPU Raspi 4 Edge TPU Pixel 3 ASIC-Eyeriss FPGA
. Latency (ms) Latency (ms) Latency (ms)
Collected Metrics H Energy (mJ) Latency (ms) Latency (ms) Latency (ms) Energy (mJ) Energy (mJ)
Collecting Method ” Measured Measured Measured Measured Estimated Estimated
. . TensorFlow Edge TPU TensorFlow Accelergy+Timeloop / Vivado
Runtime Environment H TensorRT Lite Runtime Lite DNN-Chip Predictor HLS
Customizing Hardware? || X X X X v 4
Category I Commercial Edge Devices ASIC FPGA

5

Published as a conference paper at ICLR 2021

Table 2: Two types of correlation coefficients (larger means more correlated) between the real-
measured hardware-cost of the whole architectures and the approximated hardware-cost based on
100 randomly sampled architectures from the FBNet search space.

Latency on Energy on Latency on Latency on Latency on

Correlation Coefficient Types Datasets H Edge GPU Edge GPU Raspi 4 Edge TPU Pixel 3
Pearson Correlation Coefficient CIFAR-100 || 0.9200 09116 0.9219 0.4935 0.9324
ImageNet || 0.8634 0.9640 0.9897 0.7153 09162

. . CIFAR-100 || 0.7373 0.7240 0.7470 0.3551 0.8593

Kendall Rank Correlation Coefficient “p, oo Ney H 07111 0.8379 09163 0.5806 0.8064

FPGA: FPGA is a widely adopted Al acceleration platform featuring a higher hardware flexibility
than ASIC and more decent hardware efficiency than commercial edge devices. To collect hardware-
cost data in this platform, we first develop a SOTA chunk based pipeline structure (Shen et al., 2017;
Zhang et al., 2020) implementation, compile all the architectures using the standard Vivado HLS
toolflow (Xilinx Inc., a), and then obtain the hardware-cost on a Xilinx ZC706 board with a Zynq
XC7045 SoC (Xilinx Inc., b).

More details about the pipeline for each of the aforementioned devices are provided in the Ap-
pendix D for better understanding.

In our HW-NAS-Bench, to estimate the hardware-cost of the networks in the FBNet search space
(Wu et al., 2019) when being executed on the commercial edge devices (i.e., Edge GPU, Raspi 4,
Edge TPU, and Pixel 3), we sum up the hardware-cost of all unique blocks (i.e., “block™ in the
FBNet space (Wu et al., 2019)) within the network architectures. To validate that such an approxi-
mation is close to the corresponding real-measured results, we conduct experiments, as summarized
in Table 2, to calculate two types of correlation coefficients between the measured and the approx-
imated hardware-cost based on 100 randomly sampled architectures from the FBNet search space.
We can see that our approximated hardware-cost is highly correlated with the real-measured one,
except for the case on the Edge TPU, which we conjecture is caused by the adopted in-house Edge
TPU compiler (Google LLC., ¢). More visualization results can be found in the Appendix A.

4 ANALYSIS ON HW-NAS-BENCH

In this section, we provide analysis and visualization of the hardware-cost and corresponding accu-
racy data (the latter only for architectures in NAS-Bench-201) for all the architectures in the two con-
sidered search spaces. Specifically, our analysis and visualization confirm that (1) commonly used
theoretical hardware-cost metrics such as FLOPs do not correlate well with the measured/estimated
hardware-cost; (2) hardware-cost of the same architectures can differ a lot when executed on differ-
ent devices; and (3) device-specific HW-NAS is necessary because optimal architectures resulting
from HW-NAS targeting on one device can perform poorly in terms of the hardware-cost when being
executed on another device.

4.1 CORRELATION BETWEEN COLLECTED HARDWARE-COST AND THEORETICAL ONES

To confirm whether commonly used theoretical hardware-cost metrics align with real-
measured/estimated ones, we summarize the calculated correlation between the collected hardware-
cost in our HW-NAS-Bench and the theoretical metrics (i.e., FLOPs and #Params), based on the
data for all the architectures in both search spaces on all the six considered hardware devices where
a total of four different datasets are involved.

Table 3: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost and
theoretical ones considering the NAS-Bench-201 search space, where coefficients <0.5 are bolded.

Dataset Metrics Edge GPU Raspi4 | Edge TPU | Pixel 3 ASIC-Eyeriss FPGA
Latency Energy | Latency | Latency | Latency | Latency Energy | Latency Energy
CIFAR-10 FLOPs 0.3571 0.4064 | 0.7394 0.1847 0.6823 | 0.4178 0.5359 | 0.8313 0.8313
] #Params | 0.3571 0.4064 | 0.7394 0.1847 0.6823 | 0.4178 0.5359 | 0.8313 0.8313
CIFAR-100 FLOPs 0.3589 0.4073 | 0.7384 0.1851 0.6844 | 0.4197 0.5360 | 0.8313 0.8313
#Params | 0.3589 0.4073 | 0.7384 0.1851 0.6844 | 0.4197 0.5360 | 0.8313 0.8313
ImageNet16-120 FLOPs 0.3544 0.3868 | 0.6303 0.2635 0.7017 | 0.4166 0.5363 | 0.9205 0.9205
& #Params | 0.3544 0.3868 | 0.6303 0.2635 0.7017 | 0.4166 0.5363 | 0.9205 0.9205

Published as a conference paper at ICLR 2021

Table 4: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost and
theoretical ones considering the FBNet search space, where coefficients <0.5 are bolded.

Edge GPU Raspi4 | Pixel 3 ASIC-Eyeriss FPGA
Latency Energy | Latency | Latency | Latency Energy | Latency Energy

Dataset ‘ Metrics

CIFAR-100 FLOPs 0.0149 0.1564 | 0.7713 | 0.8092 | 0.8490 0.7854 | 0.8710 0.8710
) #Params || -0.0733 0.0202 | 0.4910 | 0.3734 | 0.4297 0.6455 | 0.5151 0.5151
ImageNet FLOPs 0.4633 0.6094 | 0.7531 | 0.7678 | 0.8935 0.7970 | 0.8643 0.8643
& #Params || 0.0985 0.1840 | 0.2318 | 0.2357 | 0.3202 0.4140 | 0.4198 0.4198

As summarized in Tables 3 - 4, commonly used theoretical hardware-cost metrics (i.e., FLOPs and
#Params) do not always correlate well with measured/estimated hardware-cost for the architectures
in both the NAS-Bench-201 and FBNet spaces. For example, there exists at least one coefficient
<0.5 on all devices, especially for the cases with real-measured/estimated hardware-cost on com-
monly considered edge platforms including Edge GPU, Edge TPU, and ASIC-Eyeriss. As such,
HW-NAS based on the theoretical hardware-cost might lead to sub-optimal results, motivating HW-
NAS benchmarks like our HW-NAS-Bench. Note that we consider the Kendall Rank Correlation
Coefficients (Abdi, 2007), which is a commonly used correlation coefficient in both recent NAS
frameworks and benchmarks (You et al., 2020b; Siems et al., 2020; Yang et al., 2020).

4.2 CORRELATION AMONG COLLECTED HARDWARE-COST ON DIFFERENT DEVICES

To check how much the hardware-cost of the same architectures on different devices correlate, we
visualize the correlation between the hardware-cost collected from every two paired devices based
on the data for all the architectures in both the NAS-Bench-201 and FBNet search spaces with each
of the architectures associated with 9 different hardware-cost metrics.

Edge GPU ! Raspi4 [Edge TPU} Pixel3 i ASIC-Eyeriss ! FPGA
y Energy |, Latency | Latency |, Latency | Latency Energy ; Latency Energy,
L. . | 0 -

Asic- [Latency 0.4
Eyeriss

Energy

0.4 1.00 0.89 0.4
| 0.89 1.00
0.2 1.00 1.00 0.2

CIFAR-10 CIFAR-100 ImageNet16-120

Figure 3: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost in
different devices considering the NAS-Bench-201 search space.
Edge GPU i Raspi4 ! Pixel3 | ASIC-Eyeriss ! FPGA

.

"""""""" - —— T - e 1.0
1.00 0.85 {1
Edge GPU
Energy | 0.85 1.00) | g 08

Raspi 4
Pixel 3 Latency o8
ASIC- Latency 0.4

Eyeriss
0.2

FPGA
................ 0.0

CIFAR-100 ’ ImageNet

Figure 4: Kendall Rank Correlation Coefficient between real-measured/estimated hardware-cost in
different devices considering the FBNet search space.

Published as a conference paper at ICLR 2021

40

Test Accuracy (%)
Test Accuracy (%)
Test Accuracy (%)

12 00 25 50 75 100 125 150 175

Raspi 4 Latency (ms)

. i

i I:f ! l i)

i

40. g *]] 1

”:!I. t i M l i
[- H1IL ' 1 =
g S I 1 I
> 301 el: oli: . . | >
) N B[!': | FO A

[" ! I .
5 5 <oy i HE 5
8 3 I [| [N | R 3
Q Q 2. M l . i H ' Q
o < T | i <
@ - [ELN] | | ! 1 -
@ i LAER | P @
= - : l -
10 : i
) [S— o] cor o o o] e 6
[2 a 6 8 10 12 05 10 15 20 25 05 10 15 20 25 30 35
Pixel 3 Latency (ms) ASIC-Eyeriss Latency (ms) FPGA Latency (ms)

Figure 5: Accuracy vs. hardware-cost on different devices considering NAS-Bench-201, where
points in red denote the architectures with the optimal trade-offs between “accuracy on ImageNet16-
120 vs. latency measured on Edge GPU”, of which the architectures represent the ground truth of
HW-NAS targeting Edge GPUs.

The visualization in Figures 3 - 4 indicates that hardware-cost of the same network architectures can
differ a lot when being executed on different devices. More specifically, the correlation coefficients
can be as small as -0.00 (e.g., Edge GPU latency vs. ASIC-Eyeriss energy for the architectures
in the FBNet search space), which is resulting from the large difference in their underlying (1)
hardware micro-architectures and (2) available hardware resources. Thus, the resulting architecture
of HW-NAS targeting one device might perform poorly when being executed on other devices,
motivating device-specific HW-NAS; Furthermore, it is crucial to develop comprehensive hardware-
cost datasets like our HW-NAS-Bench to enable fast development and ensure optimal results of
HW-NAS for different applications.

4.3 OPTIMAL ARCHITECTURES ON DIFFERENT HARDWARE DEVICES

To confirm the necessity of performing device-specific HW-NAS from another perspective, we sum-
marize the test accuracy vs. hardware-cost of all the architectures in NAS-Bench-201 considering
the ImageNet16-120 dataset, and analyze the architectures with the optimal accuracy-cost trade-offs
for different devices.

As shown in Figure 5, such optimal architectures for different devices are not the same. For example,
the optimal architectures on Edge GPU (marked as red points) can perform poorly in terms of the
hardware-cost in other devices, especially in ASIC-Eyeriss and Edge TPU whose hardware-cost
exactly has the smallest correlation coefficient with the hardware-cost measured in Edge GPU, which
is shown in Figure 3. Again, this set of analysis and visualization confirms that HW-NAS targeting
on one device can perform poorly in terms of the hardware-cost when being executed on another
device, thus motivating the necessity of device-specific HW-NAS.

5 USER CASES: BENCHMARK SOTA HW-NAS ALGORITHMS

In this section, we will demonstrate the user cases of our HW-NAS-Bench to show (1) how non-
hardware experts can use it to develop HW-NAS solutions by simply querying the hardware-cost

Published as a conference paper at ICLR 2021

Table 5: Inference accuracy and latency comparison of the optimal architectures resulting from
HW-NAS-Bench when targeting different hardware devices.

Targeted Device : Latency on Latency on ~ Latency on

in HW-NAS | 1oP-1 AcC%) | B0 GPU (ms) Raspi 4 (ms) FPGA (ms)
Edge GPU 74.11 9.96 31.01 20.19
Raspi 4 73.46 13.88 22.91 15.39
FPGA 73.51 20.65 25.43 13.96

data and (2) dedicated device-specific HW-NAS can indeed often lead to optimal accuracy-cost
trade-offs, again showing the important need for HW-NAS benchmarks like our HW-NAS-Bench to
enable more optimal HW-NAS solutions via device-specific HW-NAS.

Benchmark Setting. We adopt a SOTA HW-NAS algorithm, ProxylessNAS (Cai et al., 2018)
for this experiment. As an example to use our HW-NAS-Bench, we use ProxylessNAS to search
over the FBNet (Wu et al., 2019) search space on CIFAR-100 (Krizhevsky et al., 2009), when
targeting different devices in our HW-NAS-Bench by simply querying the corresponding device’s
measured/estimated hardware-cost, which has negligible overhead as compared to the HW-NAS
algorithm itself, without the need for hardware expertise or knowledge during the whole HW-NAS.

5.1 OPTIMAL ARCHITECTURES RESULTING FROM DEVICE-SPECIFIC HW-NAS

Table 5 illustrates that the searched architectures achieve the lowest latency among all architectures
when the target devices of HW-NAS are the same as the one used to measure the architecture’s
on-device inference latency. Specifically, when being executed on an Edge GPU, the searched ar-
chitecture targeting Raspi 4 during HW-NAS leads to about a 50% higher latency, while the searched
architecture targeting FPGA during HW-NAS introduces over a 100% higher latency, than the ar-
chitecture specifically target on the Edge GPU during HW-NAS, under the same inference accuracy.
This set of experiments shows that non-hardware experts can easily use our HW-NAS-Bench to
develop optimal HW-NAS solutions, and demonstrates that device-specific HW-NAS is critical to
guarantee the searched architectures’ on-device performance.

6 CONCLUSION

We have developed HW-NAS-Bench, the first public dataset for HW-NAS research aiming to (1)
democratize HW-NAS research to non-hardware experts and (2) facilitate a unified benchmark for
HW-NAS to make HW-NAS research more reproducible and accessible. Our HW-NAS-Bench cov-
ers two representative NAS search spaces, and provides all network architectures’ hardware-cost
data on six commonly used hardware devices that fall into three categories (i.e., commercial edge
devices, FPGA, and ASIC). Furthermore, we conduct comprehensive analysis of the collected data
in HW-NAS-Bench, aiming to provide insights to not only HW-NAS researchers but also DNN ac-
celerator designers. Finally, we demonstrate exemplary user cases of HW-NAS-Bench to show: (1)
how HW-NAS-Bench can be easily used by non-hardware experts via simply querying the collected
data to develop HW-NAS solutions and (2) dedicated device-specific HW-NAS can indeed lead to
optimal accuracy-cost trade-offs, demonstrating the great necessity of HW-NAS benchmarks like
our proposed HW-NAS-Bench. It is expected that our HW-NAS-Benchcan significantly expedite
and facilitate HW-NAS research innovations.

ACKNOWLEDGEMENT

The work is supported by the National Science Foundation (NSF) through the CNS Division of
Computer and Network Systems (Award number: 2016727).

Published as a conference paper at ICLR 2021

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16), pp. 265-283, 2016.

Hervé Abdi. The kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics.
Sage, Thousand Oaks, CA, pp. 508-510, 2007.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onngx, 2020.

Samik Basu, Mahasweta Ghosh, and Soma Barman. Raspberry pi 3b+ based smart remote health
monitoring system using iot platform. In Proceedings of the 2nd International Conference on
Communication, Devices and Computing, pp. 473-484. Springer, 2020.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In
Noise reduction in speech processing, pp. 1-4. Springer, 2009.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Thomas Chau, Lukasz Dudziak, Mohamed S Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas D
Lane. Brp-nas: Prediction-based nas using gens. Advances in Neural Information Processing
Systems, 2020.

Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. JSSC 2017, 52(1):127-138, 2017.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. ACM SIGARCH Computer Architecture News, 44
(3):367-379, 2016.

Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. In
IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest of Technical Papers,
pp. 262-263, 2016.

Francois Chollet et al. Keras. https://keras.io, 2015.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Grace Chu, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton, Pieter-Jan Kindermans,
Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew Howard. Discovering multi-hardware
mobile models via architecture search. arXiv preprint arXiv:2008.08178, 2020.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020. URL https:
//openreview.net/forum?id=HJIxyZkBKDr.

Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking nas
algorithms for architecture topology and size. arXiv preprint arXiv:2009.00437, 2020.

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
Autogan-distiller: Searching to compress generative adversarial networks. arXiv preprint
arXiv:2006.08198, 2020a.

Yonggan Fu, Zhongzhi Yu, Yongan Zhang, and Yingyan Lin. Auto-agent-distiller: Towards efficient
deep reinforcement learning agents via neural architecture search, 2020b.

Lukas Geiger and Plumerai Team. Larq: An open-source library for training binarized neural net-
works. Journal of Open Source Software, 5(45):1746, January 2020. doi: 10.21105/joss.01746.
URL https://doi.org/10.21105/joss.01746.

10

Published as a conference paper at ICLR 2021

Google LLC. Edge TPU Compiler, a. https://coral.ai/docs/dev-board/
get—-started/, accessed 2020-09-01.

Google LLC. Edge TPU Code Examples, b. https://coral.ai/examples/
f#code-examples, accessed 2019-11-21.

Google LLC. Edge TPU Compiler, c. https://coral.ai/docs/edgetpu/compiler/
#system—-requirements, accessed 2020-09-01.

Google LLC. Edge TPU FAQ, d. https://coral.ai/docs/edgetpu/faqg/, accessed
2019-11-21.

Google LLC. Pixel 3, e. https://g.co/kgs/pVRclY, accessed 2020-09-01.

Google LLC. TensorFlow Lite: Deploy machine learning models on mobile and IoT devices, f.
https://www.tensorflow.org/lite, accessed 2019-11-21.

Google LLC. Tflite python quickstart. https://www.tensorflow.org/lite/guide/
python, 2020.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Wei-
jun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov, and
Evgeny Burnaev. Nas-bench-nlp: Neural architecture search benchmark for natural language
processing, 2020.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Jaeseong Lee, Duseok Kang, and Soonhoi Ha. S3nas: Fast npu-aware neural architecture search
methodology. arXiv preprint arXiv:2009.02009, 2020.

Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo: Hardware-
aware learning to optimize. In Proceedings of the European Conference on Computer Vision
(ECCV), September 2020.

Y. Lin, S. Zhang, and N. R. Shanbhag. Variation-tolerant architectures for convolutional neural
networks in the near threshold voltage regime. In 2016 IEEE International Workshop on Signal
Processing Systems (SiPS), pp. 17-22, 2016. doi: 10.1109/SiPS.2016.11.

Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag. Predictivenet: An energy-efficient convolutional neural
network via zero prediction. In 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1-4, 2017. doi: 10.1109/ISCAS.2017.8050797.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018a.

Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. On-demand deep
model compression for mobile devices: A usage-driven model selection framework. MobiSys
"18, pp. 389—400. Association for Computing Machinery, 2018b. ISBN 9781450357203.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 116-131, 2018.

Alberto Marchisio, Andrea Massa, Vojtech Mrazek, Beatrice Bussolino, Maurizio Martina, and
Muhammad Shafique. Nascaps: A framework for neural architecture search to optimize

the accuracy and hardware efficiency of convolutional capsule networks. arXiv preprint
arXiv:2008.08476, 2020.

11

Published as a conference paper at ICLR 2021

NVIDIA Inc. NVIDIA Jetson TX2, a. https://www.nvidia.com/en—-us/
autonomous—-machines/embedded-systems/jetson-tx2/, accessed 2020-09-01.

NVIDIA Inc. Tensorrt, b.
NVIDIA Inc. Benchmark tx2 performance in googlenet with tensorrt, c.

Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying, Anurag
Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer.
Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE international
symposium on performance analysis of systems and software (ISPASS), pp. 304-315. IEEE,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026-8037, 2019.

Patrick Mochel and Mike Murphy. sysfs - The filesystem for exporting kernel ob-
jects. https://www.kernel.org/doc/Documentation/filesystems/sysfs.
txt, accessed 2019-11-21.

Raspberry Pi Limited. Raspberry 4. https://www.raspberrypi.org/products/
raspberry-pi-4-model-b/, accessed 2020-09-01.

Benjamin Ross. Al at the Edge Enabling a New Generation of Apps, Smart De-
vices, March 2020. URL https://www.aitrends.com/edge-computing/
ai-at-the-edge-enabling-a—-new—generation-of-apps—-smart-devices/.

Jianghao Shen, Yue Wang, Pengfei Xu, Yonggan Fu, Zhangyang Wang, and Yingyan Lin. Fractional
skipping: Towards finer-grained dynamic cnn inference. 2020.

Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn accelerator efficiency
through resource partitioning. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA *17, pp. 535-547, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450348928. doi: 10.1145/3079856.3080221. URL
https://doi.org/10.1145/3079856.3080221.

Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, Martin Jagersand,
and Hong Zhang. A comparative study of real-time semantic segmentation for autonomous
driving. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pp. 587-597, 2018.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv preprint
arXiv:2008.09777, 2020.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie
Liu, and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less
than 4 hours. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 481-497. Springer, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.

Texas Instruments Inc. INA3221 Triple-Channel, High-Side Measurement, Shunt and Bus Voltage
Monitor. http://www.ti.com/product/INA3221, accessed 2019-11-21.

12

Published as a conference paper at ICLR 2021

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12965-12974, 2020.

Chien-Yao Wang, Hong-Yuan Mark Liao, Ping-Yang Chen, and Jun-Wei Hsieh. Enriching variety
of layer-wise learning information by gradient combination. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, Oct 2019a.

Y. Wang, J. Shen, T. K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, and Y. Lin. Dual dynamic
inference: Enabling more efficient, adaptive, and controllable deep inference. IEEE Journal of
Selected Topics in Signal Processing, 14(4):623—-633, 2020a. doi: 10.1109/JSTSP.2020.2979669.

Y. Wang, J. Shen, T. K. Hu, P. Xu, T. Nguyen, R. Baraniuk, Z. Wang, and Y. Lin. Dual dynamic
inference: Enabling more efficient, adaptive, and controllable deep inference. IEEE Journal of
Selected Topics in Signal Processing, 14(4):623—633, 2020b. doi: 10.1109/JSTSP.2020.2979669.

Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan Lin, and Zhangyang Wang.
E2-Train: Training state-of-the-art cnns with over 80% energy savings. In Advances in Neural
Information Processing Systems, pp. 5139-5151, 2019b.

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth: Fast
monocular depth estimation on embedded systems. In 2019 International Conference on Robotics
and Automation (ICRA), pp. 6101-6108. IEEE, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734-10742, 2019.

Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan, and Yingyan Lin. Deep
k-means: Re-training and parameter sharing with harder cluster assignments for compressing
deep convolutions. arXiv preprint arXiv:1806.09228, 2018.

Yannan N. Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An Architecture-
Level Energy Estimation Methodology for Accelerator Designs. In
IEEE/ACM International Conference On Computer Aided Design ICCAD), 2019.

Qingcheng Xiao, Yun Liang, Ligiang Lu, Shengen Yan, and Yu-Wing Tai. Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on fpgas. In Proceedings of the
54th Annual Design Automation Conference 2017, DAC *17, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. ISBN 9781450349277. doi: 10.1145/3061639.3062244. URL
https://doi.org/10.1145/3061639.3062244.

Xilinx Inc. Vivado High-Level Synthesis, a. https://https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html, accessed

2019-09-16.

Xilinx Inc. Xilinx zynq-7000 soc zc706 evaluation kit. https://www.xilinx.com/
products/boards—and-kits/ek-z7-zc706—g.html, b. (Accessed on 09/30/2020).

Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel Bender, Pieter-Jan Kindermans,
Mingxing Tan, Vikas Singh, and Bo Chen. Mobiledets: Searching for object detection architec-
tures for mobile accelerators. arXiv preprint arXiv:2004.14525, 2020.

Antoine Yang, Pedro M. Esperanca, and Fabio M. Carlucci. Nas evaluation is frustratingly hard. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HygrdpVKvr.

Xuan Yang, Jing Pu, Blaine Burton Rister, Nikhil Bhagdikar, Stephen Richardson, Shahar Kvatin-
sky, Jonathan Ragan-Kelley, Ardavan Pedram, and Mark Horowitz. A systematic approach to
blocking convolutional neural networks, 2016.

13

Published as a conference paper at ICLR 2021

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105-7114, 2019.

Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang
Wang, and Yingyan Lin. Shiftaddnet: =~ A hardware-inspired deep network. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 2771-2783. Curran Asso-
ciates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
1cf44d7975e6c86cffa70cae95b5fbb2-Paper.pdf.

Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas:
Towards fast one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1999-2008, 2020b.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of
the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
15, pp. 161-170, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450333153. doi: 10.1145/2684746.2689060. URL https://doi.org/10.1145/
2684746.2689060.

Jianhao Zhang, Yingwei Pan, Ting Yao, He Zhao, and Tao Mei. dabnn: A super fast inference frame-
work for binary neural networks on arm devices. In Proceedings of the 27th ACM International
Conference on Multimedia, pp. 2272-2275, 2019.

Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and
Deming Chen. Dnnbuilder: An automated tool for building high-performance dnn hardware
accelerators for fpgas. In Proceedings of the International Conference on Computer-Aided
Design, ICCAD 18, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450359504. doi: 10.1145/3240765.3240801. URL https://doi.org/10.1145/
3240765.3240801.

Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng Li, Vikas Chandra,
and Yingyan Lin. Dna: Differentiable network-accelerator co-search, 2020.

Cheah Wai Zhao, Jayanand Jegatheesan, and Son Chee Loon. Exploring iot application using rasp-
berry pi. International Journal of Computer Networks and Applications, 2(1):27-34, 2015.

Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and Y. Lin. Smartexchange:
Trading higher-cost memory storage/access for lower-cost computation. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA), pp. 954-967, 2020a. doi:
10.1109/ISCA45697.2020.00082.

Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin. Dnn-chip predictor: An analytical performance
predictor for dnn accelerators with various dataflows and hardware architectures. In ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
1593-1597, 2020b.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

14

Published as a conference paper at ICLR 2021

A MORE VISUALIZATION ON THE MEASURED HARDWARE-COST FOR THE
FBNET SEARCH SPACE

CIFAR-100
B 3 50 2 >
-3 5) £ 60 g2
#n e’ Sas g g
5 i £ w "2
I -1 50 a
S1ol > 3
[0 =] © 20
o s a
@ o o ‘5 (= |l
@ 2 o o X8
=] = © D30} a
3 8 T'so) & S 2
] i ="] T
s 7 ° @ 520 5
o @ = ° 71
£ = S5 £
3° 2 g R 3
1 S 5 2 ="
g o = o |-
I N T I I R ES) 7 30 T 12 1 16 18 20 22 28
Approximated Edge GPU Latency Approximated Edge GPU Energy Approximated Raspi 4 Latency Approximated Edge TPU Latency Approximated Pixel 3 Latency
ImageNet
> > 280 z .
o
H 2 g 2 3
3] S0 < 8200 €100
© I 2160 ® 2
= 5100 s 2 - 8 o)
2 a R* =0.98 =
% O w0 e . a0 © ol
2) 7 g £
2) i @ 120] -E’ 100 %
i
- < 7 g 3 E 60
o 4] S100 £
5 560 a 5% g%
2 @ « @ 3
@ s g o s S 40
3 L = g -
= 16 5 20 72 130 130 160 0 100 130 140 160 18 B imed Elge TEU Lol 0 60 50 160
Approximated Edge GPU Latency Approximated Edge GPU Energy Approximated Raspi 4 Latency Approximated Edge TPU Latency Approximated Pixel 3 Latency

Figure 6: Comparison between the approximated and measured hardware-cost on CIFAR-100
(Top) and ImageNet (Bottom), where the red line indicates the fitting line for all the measured data,
and R? represents the square of the Pearson Correlation Coefficient (Benesty et al., 2009).

Fig. 6 shows a comparison between the approximated and measured hardware-cost of randomly
sampled 100 architectures when being executed on commercial edge devices using the ImageNet
and CIFAR-100 datasets, which verifies that our approximation of summing up the performance of
the unique blocks is a simple yet quite accurate for providing the hardware-cost for networks in the
FBNet space and is consistent with our observation in Table 2.

B COMPARING THE ESTIMATED COST EXECUTED ON EYERISS USING
ACCELERGY+TIMELOOP AND DNN-CHIP REDICTOR

Both Accelergy (Wu et al., 2019)+Timeloop (Parashar et al., 2019) and DNN-Chip Predictor (Zhao
et al., 2020b) are able to simulate the latency and energy cost of Eyeriss (Chen et al., 2016), a SOTA
ASIC DNN accelerator, when giving the network architectures. From Table 6, they nearly give
the same estimation for the latency and energy cost: specifically, the mean of their differences is
6.096%, the standard deviation of the differences is 0.779%, the Pearson correlation coefficient is
0.9998, and the Kendall Rank correlation coefficient is 0.9633, in term of the average performance,
when being benchmarked with NAS-Bench-201 on 3 datasets. Therefore, we use the average value
of their predictions as the estimated latency and energy on Eyeriss in our proposed HW-NAS-Bench.

Table 6: The differences of the hardware-cost estimation given by Accelergy (Wu et al.,
2019)+Timeloop (Parashar et al., 2019) and DNN-Chip Predictor (Zhao et al., 2020b), consider-
ing NAS-Bench-201 on 3 datasets.

Datasets Hardware-cost Mean of Standard Deviation of ~ Pearson Correlation Kendall Rank
W Differences Differences Coefficient Correlation Coefficient
Latency 1.648% 0.642% 0.9999 0.9888
CIFAR-10 ‘ Energy H 10.96% 1.035% 0.9997 0.9374
Latency 1.572% 0.611% 1.0000 0.9888
CIFAR-100 ‘ Eneray H 10.93% 1.029% 0.9997 0.9374
Latency 1.338% 0.520% 0.9999 0.9888
ImageNetl6-120 | = pery H 10.13% 0.840% 0.9998 0.9388
Average Performance || 6.096% 0.779% 0.9998 0.9633

15

Published as a conference paper at ICLR 2021

Table 7: Left: the marco-architectures of the search space proposed in the FBNet (Wu et al., 2019)
for the ImageNet classification; Right: our modified search space to fit the input image size of the
CIFAR-100 dataset. In the tables, “TBS” means the layer type needs to be searched and “Stride”
denotes the stride of the first block in the stage. Here the modified parameters are emphasized as
bold characters.

Input Shape | Block | Filter# | Block# | Stride Input Shape | Block | Filter# | Block# | Stride
2242 x 3 3 x 3 conv 16 1 2 322 x 3 3 x 3 conv 16 1 1
1122 x 16 TBS 16 1 1 322 x 16 TBS 16 1 1
1122 x 16 TBS 24 4 2 322 x 16 TBS 24 4 1
562 x 24 TBS 32 4 2 322 x 24 TBS 32 4 2
282 x 32 TBS 64 4 2 162 x 32 TBS 64 4 2
142 x 64 TBS 112 4 1 82 x 64 TBS 112 4 1
142 x 112 TBS 184 4 2 82 x 112 TBS 184 4 2
72 x 184 TBS 352 1 1 4% x 184 TBS 352 1 1
7% x 352 1 x 1 conv 1984 1 1 42 x 352 1 x 1 conv 1504 1 1
72 x 1984 | 7 x T avgpool - 1 1 42 x 1504 | 4 x 4 avgpool - 1 1

1504 fc 1000 1 - 1504 fc 100 1 -

C MINOR MODIFICATIONS ON THE FBNET SEARCH SPACE WHEN
BENCHMARKING ON CIFAR-100

Here we describe our modification on the FBNet search space when benchmarking on CIFAR-100
(i.e., the setting in Section 5) by comparing the marco-architectures before and after such modifica-
tion in Table 7.

D DETAILS OF THE PIPELINE USED TO COLLECT HARDWARE-COST DATA

D.1 COLLECT PERFORMANCE ON THE EDGE GPU

NVIDIA Edge GPU Jetson TX2 (Edge GPU) (NVIDIA Inc., a) is a commonly used commercial
edge device, consisting of a quad-core Arm Cortex-A57, a dual-core NVIDIA Denver2, a 256-core
Pascal GPU, and a 8GB 128-bit LPDDRA4, for various deep learning applications including classifi-
cation (Li et al., 2020), segmentation (Siam et al., 2018), and depth estimation (Wofk et al., 2019),
targeting IoT, and self-driving environments. Although widely-used TensorFlow (Abadi et al., 2016)
and PyTorch (Paszke et al., 2019) can be directly used in Edge GPUs, to achieve faster inference,
TensorRT (NVIDIA Inc., b), a C++ library for high-performance inference on NVIDIA GPUs, is
more commonly used as the runtime environment in Edge GPUs when only benchmarking inference
performance (Wang et al., 2019a; NVIDIA Inc., c).

We pre-set the Edge GPU to the max-N mode to make full use of the resource on it following (Wofk
et al., 2019). When plugging Edge GPUs into the hardware-cost collection pipeline, we first com-
pile the PyTorch implementations of the network architectures in both NAS-Bench-201 and FBNet
search spaces to TensorRT format models. In this way, the resulting hardware-cost can benefit
from the optimized inference implementation within the TensorRF runtime environment. And then
we benchmark the architectures in Edge GPUs to further measure the energy and latency using
the sysfs (Patrick Mochel and Mike Murphy.) of the embedded INA3221 (Texas Instruments Inc.)
power rails monitor.

D.2 COLLECT PERFORMANCE ON RASPI 4

Raspberry Pi 4 (Raspi 4) (Raspberry Pi Limited.) is the latest Raspberry Pi device, which is a popular
hardware platform for general purpose IoT applications (Zhao et al., 2015; Basu et al., 2020) and is
able to support deep learning applications with specifical framework designs (Google LLC., f; Zhang
etal., 2019; Geiger & Team, 2020). We choose the type of Raspi 4 with a Broadcom BCM2711 SoC
and a 4GB LPDDR4 (Raspberry Pi Limited.). Similar to Edge GPUs, Raspi 4 can run architectures
in the TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), or TensorFlow Lite (Google
LLC., f) runtime environments. We utilize TensorFlow Lite (Google LLC., f) as it can further boost
the inference efficiency.

16

Published as a conference paper at ICLR 2021

To collect hardware-cost operating on Respi 4, an official TensorFlow Lite interpreter is pre-
configured in the Raspi 4, following the settings in (Google LLC., 2020). We benchmark the possi-
ble architectures in HW-NAS-Bench on Raspi 4 after compiling them to the TensorFlow Lite (Abadi
et al., 2016) format to measure the resulting latency.

D.3 COLLECT PERFORMANCE ON THE EDGE TPU

Edge TPU (Google LLC., a) is a series of dedicated ASIC accelerators developed by Google, target-
ing Al inference at the edge, which can be used for classification, pose estimation, and segmenta-
tion (Xiong et al., 2020; Google LLC., b) with extremely high efficiency (e.g., 2.32x more efficient
than a single SOTA desktop GPU, GTX 2080 Ti, in terms of the number of fixed-point operations
per watt (Google LLC., d)). In our proposed collection pipeline, we choose the Dev Board (Google
LLC., a) which provides the most functions among all products.

To collect hardware-cost in Edge TPUs, all the architectures to be benchmarked will first be con-
verted to the TensorFlow Lite (Google LLC., f) format from their Keras (Chollet et al., 2015) imple-
mentation. After that, an in-house compiler (Google LLC., c¢) will be used to convert the TensorFlow
Lite models into a more compressed format. This pipeline uses the least converting tools to make
sure that the most operations are supported, as compared to other options (e.g., converting from the
PyTorch-ONNX (Bai et al., 2020) implementation). Only the latency is collected on the Edge TPU
since it lacks accurate embedded power rails monitor. We do not consider the FBNet’s search space
for the Edge TPU, and more details are in the Appendix A.

D.4 COLLECT PERFORMANCE ON PIXEL 3

Pixel 3 (Google LLC., e) is one of the latest Pixel mobile phones that are widely used as the target
platform by recent NAS works (Xiong et al., 2020; Howard et al., 2019; Tan et al., 2019) and
machine learning framework benchmark (Google LLC., f). In our implementation, the Pixel 3 is
pre-configured to use its big cores following the setting in (Xiong et al., 2020; Tan et al., 2019).
Similar to the case of Raspi 4, we first convert the possible architectures in the search spaces of
our proposed HW-NAS-Bench into the TensorFlow Lite format and then use the official benchmark
binary files to measure the latency for each architecture.

D.5 COLLECT PERFORMANCE ON ASIC-EYERISS

For hardware-cost data collection in ASIC, we consider Eyeriss (ASIC-Eyeriss) which is a SOTA
ASIC accelerator (Chen et al., 2016). The Eyeriss chip features 168 processing elements (PEs)
which are connected through a configurable dedicated on-chip network into a 2D array. A 128KB
SRAM is shared by all PEs and further divided into multiple banks, each of which can be assigned
to fit the input feature maps or partial sums. Thanks to these configurable hardware settings, we can
adopt the optimal algorithm-to-hardware mappings for different network architectures when being
executed on Eyeriss to minimize the energy or latency by maximizing data reuse opportunities for
different layers.

In order to find the optimal mappings and evaluate the performance metrics on Eyeriss,
we adopt SOTA performance simulators for DNN accelerators (1) Accelergy (Wu et al,
2019)+Timeloop (Parashar et al., 2019) and (2) DNN-Chip Predictor (Zhao et al., 2020b). Both
of the simulators can characterize the Eyeriss’s micro-architecture, perform mapping exploration,
and predict the energy cost and latency metrics. Given the Eyeriss accelerator and layer information
(e.g, layer type, feature map size, and kernel size) in both NAS-Bench-201 and FBNet, Accel-
ergy+Timeloop reports the energy cost and latency characterization through an integrated mapper
that finds the optimal mapping for such layer when being executed in Eyeriss. The inputs to DNN-
Chip Predictor are the same as those to Accelergy+Timeloop, except that we can set the optimization
metric as energy/latency/energy-delay product. DNN-Chip Predictor identifies the optimal mapping
for the optimization metric and generates the estimated hardware-cost. We report the average pre-
diction from the two simulators as the estimated hardware-cost of Eyeriss, and more details can be
found in Appendix B.

17

Published as a conference paper at ICLR 2021

Table 8: Our implemented FPGA accelerators for HW-NAS-Bench vs. SOTA FPGA accelerators,
considering VGG16 on the ImageNet dataset and using Zynq XC70Z45 as the FPGA device.

| (Zhangetal.,2018) (Xiao etal.,,2017) Our Implementation
Resource Utilization H 680/900 DSP 824/900 DSP 723/900 DSP
Performance (GOP/s) || 262 230 291

D.6 COLLECT PERFORMANCE ON FPGA

FPGA is a widely adopted Al acceleration platform which can offer a higher flexibility in terms of
the hardware resources for accelerating Al algorithms. For collecting hardware-cost data in FPGA,
we construct a SOTA chunk based pipeline structure (Zhang et al., 2018; Shen et al., 2017) as our
FPGA implementation. By configuring multiple sub-accelerators (chunks) and assigning different
layers to different sub-accelerators(chunks), we can balance the throughput and hardware resource
consumption. To further free up our implantation’s potential to reach the performance frontier across
different architectures, we additionally configure hardware settings such as the number of PEs, in-
terconnection method of PEs, and tiling/scheduling of the operations, which are commonly adopted
by FPGA accelerators (Chen et al., 2017; Zhang et al., 2015; Yang et al., 2016). We then compile all
the architectures using the standard Vivado HLS toolflow (Xilinx Inc., a) and obtain the bottleneck
latency, the maximum latency across all sub-accelerators (chunks) of the architectures on a Xilinx
ZC706 development board with Zynq XC7045 SoC (Xilinx Inc., b).

To verify our implementation, we compare our implementation’s performance with SOTA FPGA
accelerators (Zhang et al., 2018; Xiao et al., 2017) given the same architecture and dataset as shown
in Table 8. We can see that our implementation achieves SOTA performance and thus provides
insightful and trusted hardware-cost estimation for the HW-NAS-Bench.

18

	Introduction
	Related works
	HardWare-aware Neural Architecture Search
	Neural Architecture Search Benchmarks

	The Proposed HW-NAS-Bench Framework
	HW-NAS-Bench's Considered Search Spaces
	Hardware-cost Collection Pipeline and The Considered Devices

	Analysis on HW-NAS-Bench
	Correlation Between Collected Hardware-cost and Theoretical Ones
	Correlation Among Collected Hardware-Cost on Different Devices
	Optimal Architectures on Different Hardware Devices

	User Cases: Benchmark SOTA HW-NAS Algorithms
	Optimal Architectures Resulting from Device-specific HW-NAS

	Conclusion
	More Visualization on the Measured Hardware-cost for the FBNet Search Space
	Comparing the Estimated Cost Executed on Eyeriss Using Accelergy+Timeloop and DNN-Chip redictor
	Minor Modifications on the FBNet Search Space When Benchmarking on CIFAR-100
	Details of the Pipeline Used to Collect Hardware-cost Data
	Collect Performance on the Edge GPU
	Collect Performance on Raspi 4
	Collect Performance on the Edge TPU
	Collect Performance on Pixel 3
	Collect Performance on ASIC-Eyeriss
	Collect Performance on FPGA

