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ABSTRACT
Surgical tool segmentation is becoming imperative to provide detailed information during intra-operative execution. These
tools can obscure surgeons’ dexterity control due to narrow working space and visual field-of-view, which increases the risk
of complications resulting from tissue injuries (e.g. tissue scars and tears). This paper demonstrates a novel application of
segmenting and removing surgical instruments from laparoscopic/endoscopic video using digital inpainting algorithms. To
segment the surgical instruments, we use a modified U-Net architecture (U-NetPlus) composed of a pre-trained VGG11 or
VGG16 encoder and redesigned decoder. The decoder is modified by replacing the transposed convolution operation with
an up-sampling operation based on nearest-neighbor (NN) interpolation. This modification removes the artifacts generated
by the transposed convolution, and, furthermore, these new interpolation weights require no learning for the upsampling
operation. The tool removal algorithms use the tool segmentation mask and either the instrument-free reference frames
or previous instrument-containing frames to fill-in (i.e., inpaint) the instrument segmentation mask with the background
tissue underneath. We have demonstrated the performance of the proposed surgical tool segmentation/removal algorithms
on a robotic instrument dataset from the MICCAI 2015 EndoVis Challenge. We also showed successful performance of
the tool removal algorithm from synthetically generated surgical instruments-containing videos obtained by embedding a
moving surgical tool into surgical tool-free videos. Our application successfully segments and removes the surgical tool to
unveil the background tissue view otherwise obstructed by the tool, producing visually comparable results to the ground
truth.

Keywords: Surgical tool segmentation, tool removal, video inpainting, non-parametric optical flow, affine parametric
motion, Poisson blending

1. DESCRIPTION OF PURPOSE
Minimally invasive medical procedures based upon optical imaging systems have become increasingly common in today’s
healthcare practice, due to the reduced patient recovery time and mortality rate. Optical imaging enabled robotic platforms
such as da Vinci surgical system (Intuitive Surgery) to be used to perform minimally invasive complex surgical procedures.
However, surgical instruments used in the endoscopic surgical suturing procedures, obscure surgeons’ dexterity control
due to narrow working space and visual field-of-view. These hindrances in the visual field increase the risk of tissue scars
and tears. Hence, removal or masking the surgical instruments transparent from the background and then inpainting the
foreground masked region with background content is paramount.

Research efforts focused on surgical instrument segmentation from endoscopic/laparoscopic videos have become more
widespread and have been the focus of many biomedical imaging challenges. In this paper, we present an innovative
application of our neural net-based surgical tool segmentor (U-NetPlus)1 to digitally remove surgical tools from video
frames enabling the visualization of anatomy obscured by the tool. The authors know of only one other work tackling
the segmentation and modification of surgical instruments in endoscopic/laparoscopic videos. Koreeda et al.2 presented
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Figure 1: An example of background renderings by our application: (a) tool containing frame; (b) Inpainted tool; (c)
Inpainted tool with yellow outline.

a hardware/software-based solution to visualize areas obscured by surgical instruments. Nevertheless, their method poses
some limitations related to the need for multiple endoscopes present, which may increase patient invasiveness. In this
paper, we have developed two image-driven approaches for surgical tool removal; both approaches rely on the use of
information from the images captured by the laparoscope / endoscope to “paint over” the surgical tool mask identified by
our automated surgical tool segmentor. We show two example renderings of the background otherwise hidden behind the
surgical tool “removed” using our proposed application in Figure 1.

2. METHODS
2.1 SURGICAL TOOL SEGEMENTATION METHOD
To segment the surgical instruments, we use a modified U-Net architecture (U-NetPlus)1 composed of a pre-trained encoder
(VGG-11/VGG-16) and a decoder redesigned by replacing the transposed convolution operation with an up-sampling
operation based on nearest-neighbor (NN) interpolation.3 The network was trained on a dataset obtained from the MICCAI
2015 EndoVis Challenge focused on surgical instrument segmentation and tracking. The dataset set is composed of video
sequences collected with the da Vinci surgical system during laparoscopic procedures. In each frame, the articulated parts
of the instrument consist of the shaft and claspers, and are accompanied by labeled ground truth masks automatically
generated by the da Vinci Research Kit using joint encoder information and forward kinematics.

2.2 SURGICAL TOOL REMOVAL METHOD A: OPTICAL FLOW-BASED VIDEO OBJECT
REMOVAL ALGORITHMS
The first approach is based on video object removal algorithms4, 5 that employ data from previous frames that contain
the surgical tool to replace the pixels of the segmented tools in the current frame. The method works by establishing
correspondences between pixels (regions) occluded by the surgical tool Ωt in the current frame It(x, y) to the pixels (i.e.
regions) observed in the background region of a previous frame I(t−1)(x, y)). The background region corresponds to pixels
(i.e. regions) not occluded by the foreground surgical tool. The correspondences between the frames can be identified by
using a parametric warp model,6 such as an affine warp described in Equation 1:

p* = min
p

∑
x,yεΩ,

(x,y)6=Ωt,
(x+u,y+v) 6=Ωt−1

[It(x, y)− It−1(x+ u(x, y; p), y + v(x, y; p))]2 (1)

where

[
u(x, y; p)
v(x, y; p)

]
=

[
p1 p3 p5

p2 p4 p6

]xy
1
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represents the displacement vector at pixel (x, y) from It to I(t−1)and Ω represent the region used to determine the affine
parameters p. The region Ω can represent the whole frame or the union of the dilated tool mask from the current and
previous frame. The displacement field in the missing tool region Ωt is determined by evaluating Equation 1 within the
region Ωt using the determined affine parameters p*.

Alternatively, the correspondences can be determined by a non-parametric optical flow-based model7 such as

u*, v* = min
u,v

∑
x,yεΩ

[It(x, y)− It−1(x+ u(x, y), y + v(x, y))]2 + α(|∇u(x, y)|2 + |∇v(x, y)|2) (2)

where α is the weight between the data (first) and smoothness (second) term. The data term represents the similarity
between the pixel values of adjacent frames, while the smoothness term enforces the smoothness of the flow fields. The
data term is undefined inside the tool regions Ωt and Ωt−1, so the smoothness term becomes the only constraint resulting
in the optical flow field being smoothly interpolated into the missing tool region.

The correspondences (u, v) are used to trace the backward displacement at each pixel of the tool region Ωt to find its
corresponding location in a previous frame where the background region is visible. The occluded pixel is then replaced by
the pixel value of the un-occluded pixel using bilinear interpolation. If an un-occluded pixel doesn’t exist in the previous
frame, then the pixel value of the tool region is left unchanged.

2.3 SURGICAL TOOL REMOVAL METHOD B: REFERENCE IMAGE FRAME INPAINTING
This approach relies on the collection of a number of reference image frames before the surgical instruments are intro-
duced into the surgical environment and appear in the field-of-view of the laparoscope / endoscope. These reference
images Ri(x, y) are then used by the inpainting algorithm to replace the segmented surgical tools. The method works by
establishing correspondences between regions occluded by the surgical tool Ωt in the current frame It(x, y) to the regions
observed in a reference frame. From the set of frame reference frames captured before the tools were introduced, we
determine the closest matching reference frame and then further spatially transform the reference image to match current
image and fill the tool mask region with the pixels from the warped reference images. For the current frame, we first find
the reference image having the smallest sum of the square differences (SSD) between the reference and the current image
within a region of interest surrounding the tool mask Ω in the current image.

∑
xεΩ

[Ri(x, y)− It(x, y)]2 (3)

where i is the index of the reference frame. This term enforces spatial continuity between the selected reference and
the region surrounding the tool mask. The chosen reference frame is then spatially transformed to improve its registration
to the current frame and to determine the displacement field in the missing tool region. Similar to the previous method A,
the spatial transforms can be defined by an affine parametric motion model defined via Equation 1 or by non-parametric
optical flow-based model Equation 2 .

2.4 ILLUMINATION/APPEARANCE ADJUSTMENT
Nonuniform illumination of the operating environment results in variations in the appearance of tissue in different frames.
As a result, copying pixels from the reference images or previous frames into the tool mask region can result in noticeable
boundaries (seams) between the inpainted and existing regions. To mitigate these seaming artifacts, we use modified
Poisson blending8 to blend the current frame background IB with the inpainted tool region, whereby instead of combining
pixels from the two regions, their gradient fields are combined, using the model described in Eqution 3:

I∗ = min
I

∑
x,yεΩt

|∇I(x, y)− v(x, y)|2 (4)

IB |∂Ω = I∗|∂Ω (5)
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Figure 2: Qualitative evaluation of segmentation results: (a)&(c) ground truth generated by forward kinematics of the da
Vinci Research Kit; (b)&(d) segmentation results from our U-NetPlus segementor.

where I∗ is the Poisson blended inpainted tool image, v is the gradient of inpainted tool image determined by the tool
removal algorithms, ∂Ω is the boundary between the inpainted region and the background, and Ωt is the tool mask region.
The current image provides Dirichlet boundary conditions for the equation around the inpainted region. If the inpainted
region does not span the entire tool mask region, pixels bordering the remaining unfilled region take on Neumann boundary
conditions.

3. RESULTS
Overall, our tool segmentation architecture shows sufficient accuracy for reliable binary segmentation of the surgical tools.
For the training set the DICE score was 90.84± 0.046% and for the test set the DICE score was 89.56± 0.103%.

It should be noted that the da Vinci labeled ground truth data does not always represent an accurate segmentation of the
surgical tool (see Figure 2 (b) & (d)). There are significant limitations that essentially discredit the reliability of the ground
truth data due to the misalignments associated with the tool outline reconstructed from the forward kinematics of the da
Vinci Research Kit and the actual tool appearance in the image frame. Nevertheless, our segmentation technique learns
how to compensate for these limitations and yields more accurate tool outlines than those generated from the ground truth
forward kinematics (see Figure 2 (a) & (c)).

The first surgical video demonstrates that our tool segmentor can successfully segment and generate a mask that can
be used to remove the tool from the video images. In this video, the camera is stationary, while viewing in vivo anatomy
with minimal surface deformation. In Figure 3, we show the results of the tool segmentor (top row (a), red outline) and
tool removal method that uses an affine parametric motion model to inpaint the segmentation mask region (bottom row
(b)). The majority of frames show tool segmentation results that are comparable to the results shown in columns 1 and
3. Occasionally the tool segmentor misses parts of the tool calipers as shown in column 2. To compensate for under
segmentation and to ensure complete inpainting of the tool, the segmentation mask was dilated by 20 pixels.

Figure 3: (a) Tool containing frames with U-NetPlus segmentation results (yellow outline). (b) Inpainted results using
Method A; yellow arrow in mid-column shows residual tool caliper.
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Figure 4: Two examples showing tool removal method A with an affine parametric motion model: (a) Tool containing
frames; (b) Poisson blended inpainted results using Method A; (c) ground truth frames.

Figure 5: Example showing the effect of Poisson blending: (a) tool containing frame; (b) inpainted results; (c) Poisson
blended inpainted results; (d) ground truth.

To test our tool removal algorithms on more difficult cases where the camera and/or anatomy are in motion, we gener-
ated videos containing surgical tools from surgical tool-free videos by embedding a moving surgical tool into the surgical
tool-free video. The surgical tool-free videos were obtained from the Hamlyn Centre Laparoscopic / Endoscopic Video
Datasets and the surgical tool was the ground truth mask obtained from the MICCAI 2015 dataset. In these cases, the tool
segmentation mask was obtained from the ground truth mask and was dilated by 1 pixel.

In Figure 4, we show representative examples of using tool removal method A with an affine parametric motion model
to remove the tool from a video where the camera is in motion while viewing a porcine abdomen with minimal deformation
of the abdomen. Column (a) shows the tool containing frame, column (b) shows the Poisson blended inpainting results and
column (c) shows the ground truth.

In Figure 5, we show the efficacy of using Poisson blending to mitigate illumination seams. Column (a) shows the tool
containing frame, column (b) shows the inpainting results, column (c) shows the Poisson blended inpainting results, and
column (d) shows the ground truth.

In Figure 6, we show the results of using tool removal method B using a nonparametric optical flow-based model
to remove the tool from a video where the camera is stationary while viewing a cardiac surface deforming due to both
respiration and cardiac motion. The reference frames are captured before introducing the surgical tools and consist of 150
consecutive frames that encompass multiple cycles of the deforming cardiac surface. Column (a) shows the tool containing
frame, column (b) shows the inpainted results and column (c) shows the ground truth.

In Table I, we report the quantitative evaluation of the inpainted videos using mean squared error (MSE), peak signal to

Proc. of SPIE Vol. 11598  115980A-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 16 May 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 6: Tool removal using a nonparametric optical flow-based model: (a) tool containing frames; (b) inpainted results
using Method B; (c) ground truth frames.

noise ratio (PSNR), and structural similarity index (SSIM)9 image quality metrics. It can be noted that MSE and PSNR are
not always well-correlated with perceived/subjective visual quality, whereas SSIM can show better correlations.

Table 1: Quantitative evaluation of the tool removal methods for synthetic tools in terms of mean squared error (MSE),
peak signal to noise ratio (PSNR), and structural similarity index (SSIM).

Metric

Method MSE (avg / min / max)
(smaller better)

PSNR (avg / min / max)
(larger better)

SSIM (avg / min / max)
(larger better)

Method A: Affine Transformation (640 x 480 x 135) 690.9 / 58.0 / 2111.6 22.5 / 14.9 / 30.5 0.932 / 0.797 / 0.993
Method A: Affine Transformation with Poisson Blending 41.5 / 6.5 / 163.9 33.3 / 26.0 / 40.0 0.993 / 0.958 / 0.999
Method B: Copy and Paste (720 x 576 x 500) 223.7 / 40.8 / 1183.5 25.4 / 17.4 / 32.0 0.971 / 0.937 / 0.994
Method B: Optical Flow Warping 125.0 / 16.7 / 641.7 28.1 / 20.1 / 35.9 0.980 / 0.948 / 0.994

For the method A example, we show the comparison between the inpainted and Poisson blended inpainted results. For
this example, the algorithm performs well in finding the appropriate pixels from previous frames to fill in the occluded
region. But these image pixels originate from frames where the illumination of the occlude anatomy was not the same as
the current frame (see Fig. 5b). Therefore, the errors for this example are mostly nonstructural errors and can be reduced
by using the Poisson blending algorithm to help to minimize illumination mismatches.

For the method B example, we show a comparison between copying and pasting the pixels of the closest reference frame
before and after applying the optical flow transformation. For this case, since the camera is stationary, the illumination
is fairly constant albeit there are variations in the specular highlights due the variations in the surface in the beating
heart. The errors in this example are mostly structural errors due to the potential lack of an appropriate match between
the reference frames and current frame. The lack of a matching frame is most likely due to an insufficient frame rate
of the video capture. Although it is also known that the beating heart has an underlying stochastic component partly
due to the stochastic properties of the ion channels.10 The spatial transformation helps to minimize these errors, but
can never fully alleviate the structural errors. The complete videos for our inpainting results can be seen at https:
//smkamrulhasan.github.io/.
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4. CONCLUSION AND FUTURE WORK
This paper demonstrates a novel application of segmenting and digitally removing the surgical instruments from laparo-
scopic / endoscopic video using digital inpainting to allow the visualization of the anatomy being obscured by the tool. To
segment the surgical instruments, we use a modified U-Net architecture (U-NetPlus) composed of a pre-trained encoder
and re-designed decoder. The tool removal algorithms use tool segmentation mask and either instrument-free reference
frames or previous instrument containing frames to fill in (inpaint) the instrument segmentation mask. We have demon-
strated the performance of the proposed surgical tool segmentation/removal algorithms on a robotic instruments dataset
from the MICCAI 2015 EndoVis Challenge. We also showed successful performance of the tool removal algorithm from
synthetically generated surgical instruments containing videos obtained by embedding a moving surgical tool into surgi-
cal tool-free videos. Our application successfully segments and removes the surgical tool producing visually comparable
results to the ground truth.
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