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ABSTRACT

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging, the current benchmark for as-
sessment of myocardium viability, enables the identification and quantification of the compromised myocardial
tissue regions, as they appear hyper-enhanced compared to the surrounding, healthy myocardium. However, in
LGE CMR images, the reduced contrast between the left ventricle (LV) myocardium and LV blood-pool hampers
the accurate delineation of the LV myocardium. On the other hand, the balanced-Steady State Free Precession
(bSSFP) cine CMR imaging provides high resolution images ideal for accurate segmentation of the cardiac cham-
bers. In the interest of generating patient-specific hybrid 3D and 4D anatomical models of the heart, to identify
and quantify the compromised myocardial tissue regions for revascularization therapy planning, in our previous
work, we presented a spatial transformer network (STN) based convolutional neural network (CNN) architecture
for registration of LGE and bSSFP cine CMR image datasets made available through the 2019 Multi-Sequence
Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg). We performed a supervised registration
by leveraging the region of interest (Rol) information using the manual annotations of the LV blood-pool, LV
myocardium and right ventricle (RV) blood-pool provided for both the LGE and the bSSFP cine CMR images.
In order to reduce the reliance on the number of manual annotations for training such network, we propose a joint
deep learning framework consisting of three branches: a STN based Rol guided CNN for registration of LGE
and bSSFP cine CMR images, an U-Net model for segmentation of bSSFP cine CMR images, and an U-Net
model for segmentation of LGE CMR images. This results in learning of a joint multi-scale feature encoder
by optimizing all three branches of the network architecture simultaneously. Our experiments show that the
registration results obtained by training 25 of the available 45 image datasets in a joint deep learning framework
is comparable to the registration results obtained by stand-alone STN based CNN model by training 35 of the
available 45 image datasets and also shows significant improvement in registration performance when compared
to the results achieved by the stand-alone STN based CNN model by training 25 of the available 45 image
datasets.

Keywords: Image Registration, Late Gadolinium Enhanced MRI, Cine Cardiac MRI, Deep Learning, Multi-
task Learning

1. INTRODUCTION

Myocardial viability assessment is an essential step for diagnosis and optimal therapy planning for patients
diagnosed with cardiovascular diseases such as myocardial infarction, cardiomyopathy or myocarditis. Hence,
it is important to accurately detect, localize and quantify the diseased myocardium regions, also referred as
infarct /scar, in order to determine the part of the heart that may benefit from revascularization therapy.! In
LGE CMR imaging, the scars exhibit hyper-enhanced intensities, enabling the assessment of their transmural
extent.? This feature renders LGE CMR as the current gold standard for viability assessment of the myocardium.
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Nevertheless, in LGE CMR imaging, the gadolinium-based contrast agent that is responsible for the brighter
scar tissue reduces the contrast between the LV myocardium and the LV blood-pool, making it difficult to
accurately delineate the myocardium. On the contrary, the bSSFP cine CMR images provide high resolution,
dynamic 3D images of the cardiac chambers with very good contrast between myocardium and blood-pool;
however, they do not show the scarred myocardial regions (Fig 1). To this end, it is crucial to segment and
co-register the LGE and bSSFP cine CMR images to generate hybrid 3D and 4D anatomical models of the
heart in the effort to help localize, quantify and clearly visualize the compromised myocardial regions, for use
in patient-specific revascularization therapy planning and guidance. On account of this, a number of researchers
proposed extracting the myocardium and blood-pool contours from the cine CMR images and superimposing
them on the LGE CMR images, thus, formulating it as a multimodal image registration problem.

Prior to deep learning, a number of algorithms like rigid registration using normalized mutual information
as similarity measure,® affine registration using pattern intensity as similarity measure,' as well as multi-step
registration approaches (rigid followed by deformable registration®) have been proposed for registering the cine
images with contrast delay-enhanced images. These traditional approaches iteratively optimize the registration
cost function for a given pair of images.

In recent years, several researchers proposed utilizing deep learning for optimization of these registration
cost functions.® These unsupervised deep learning registration algorithms help speed up the registration process
compared to the traditional unsupervised algorithms, however, they do not significantly improve the registration
accuracy, as the similarity measures used are the same.

(c) (d)

Figure 1: Example of (a) LGE CMR image and associated hyper-enhanced regions marked by red contour with
(b) overlaid manual annotations - LV blood-pool (LV), LV myocardium (MC) and RV blood-pool (RV), and (c)
bSSFP cine CMR image with its (d) manual annotations overlaid on it.
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In the recent 2019 MS-CMRSeg challenge,% 7 researchers proposed an alternative approach to learning features
from one image type and using them to segment the other image type - training adversarial networks to generate
synthetic LGE CMR images from bSSFP cine CMR images, followed by training U-Net architectures on these
synthetic LGE images to segment cardiac chambers from the LGE images.® ! Although these methods result in
good segmentation performance, they are time consuming, as they involve training adversarial networks followed
by U-Net models.

In our previous work, we showed that a STN based Rol-guided CNN can be used to accurately register bSSFP
cine CMR images with its corresponding LGE CMR images in a time-efficient manner.'? Here, we propose a
joint deep learning framework that consists of three branches - a STN-inspired CNN for supervised registration of
bSSFP cine CMR images and LGE CMR images, an U-Net model'? for segmentation of bSSFP cine CMR images
and an U-Net model for segmentation of LGE CMR images. Inspired by Qin et al.,'* we optimize a composite
loss function by training all three networks simultaneously. The aim of the proposed joint deep learning model is
to further improve registration accuracy by sharing the weights learned from the segmentation models. We train
the proposed joint network on the 2019 MS-CMRSeg challenge dataset using the provided manual annotations
of the LV blood-pool, LV myocardium, and RV blood-pool.

2. METHODOLOGY
2.1 Dataset

The dataset used in our experiments was made available through the 2019 MS-CMRSeg challenge.%” The
dataset consists of LGE and bSSFP cine CMR images acquired at end-diastole for 45 patients diagnosed with
cardiomyopathy.

The bSSFP cine CMR images consisted of 8-12 slices with an in-plane resolution of 1.25 mm x 1.25 mm and
a slice thickness of 8-13 mm, while the LGE CMR images consisted of 10-18 slices featuring an in-plane resolution
of 0.75 mm x 0.75 mm and a 5 mm slice thickness. To deal with the heterogeneity in slice thickness, image
sizes and in-plane image resolution between LGE and bSSFP cine CMR images, all the images are resampled to
a slice thickness of 5 mm, in-plane image resolution of 0.75 mm x 0.75 mm and resized to 224 x 224 pixels.

2.2 STN-based Registration

The conventional STN consists of three parts - a localisation network, a grid generator and a differentiable
image sampler. In our experiments, the input to the localisation network is a concatenated bSSFP cine CMR
image and a LGE CMR image. The localization network outputs a six-dimensional vector 6, that results in the
transformation matrix Ty,

01 012 013
Ty = 1
o {921 B2 923} ’ (1)

containing the parameters for affine registration. The grid generator uses these predicted transformation
parameters to generate a sampling grid i.e., a set of points where the input map should be sampled to produce
the transformed output. In the training phase, this sampling grid and the ground truth (GT) map of the LGE
CMR image are the inputs to the differentiable image sampler, resulting in a transformed GT map of the LGE
CMR image (Fig. 2). In the testing phase, the sampling grid generated by the grid generator is input to the
differentiable image sampler along with the LGE image slice to produce a transformed LGE image slice.

2.3 Joint Deep Learning Model for Registration and Segmentation

As shown in earlier works,'# 16 image registration and segmentation tasks are closely related and it has been

shown that learning features from one task can benefit the other task. In this work, we explore a joint deep
learning model for registration of bSSFP cine CMR and LGE CMR images, and segmentation of cardiac chambers
(LV blood-pool, LV myocardium and RV blood-pool) from the bSSFP cine CMR and LGE CMR images (Fig.
2). The coupling of these registration and segmentation tasks result in sharing of the weights learnt from the
segmentation task with the registration branch of the network, improving the registration accuracy.
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Figure 2: Schematic architecture of the proposed joint deep learning framework consisting of three branches - a
STN based CNN for registration of bSSFP cine CMR and LGE CMR images, an U-Net model for segmentation
of bSSFP cine CMR images and an U-Net model for segmentation of LGE CMR images.
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2.4 Experiments and Implementation Details

In this study, our experiments are focused on comparing the registration results of the proposed joint deep
learning model with the stand-alone STN based model.!? We also compare the results obtained by training our
networks by splitting the available 45 bSSFP cine and LGE MRI datasets to 35 for training, 5 for validation and
5 for testing, and the results obtained by training our networks by splitting to 25 for training, 15 for validation
and 5 for testing.

The three branches of our joint deep learning model are trained using the following dual-loss function:

Laual—1oss = a~£cross—entropy + (1 - a)-L:Dice—loss (2)

where Leross—entropy ad Lgice—10ss are cross-entropy loss and Dice loss, respectively. The loss function is
calculated using the predicted segmentation maps and their corresponding GT maps for the bSSFP cine and LGE
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CMR segmentation networks (Leine—seg and Lige—seq, respectively). For the supervised Rol-guided registration
network, the dual-loss function is computed using the transformed GT map of the LGE images and the GT of
cine bSSFP images (L,¢q). Therefore, the resulting composite loss function is given by

L= )\1~£reg + )\2~£cinc—seg + )\3-£lge—scg (3)

where A1, Ay and A3 are the trade-off parameters for the three branches of the joint deep learning model.

We train our networks by randomly augmenting both the bSSFP cine CMR and the LGE CMR images
on-the-fly using a series of translation, rotation and gamma correction operations. In all our experiments, the
networks are trained using the Adam optimizer with a learning rate of 10~* and a gamma decay of 0.99 every
alternate epoch for fine-tuning for 100 epochs on a machine equipped with NVIDIA RTX 2080 Ti GPU with
11GB of memory.

2.5 Evaluation metrics

To quantify our registration accuracy, we calculate the Euclidean distance between the LV and RV blood-pool
centers i.e. center distance (CD) of the LGE CMR image and bSSFP cine CMR image, and compare it with the
CD of the transformed LGE CMR image and the bSSFP cine CMR image. These blood-pool centers are identified
as the centroid of the LV and RV blood-pool segmentation masks. We also evaluate our registration using the
average surface distance (ASD) between the LV blood-pool, LV myocardium and RV blood-pool segmentation
masks of the LGE and bSSFP cine CMR images, before and after registration.

3. RESULTS AND DISCUSSION

In Table 1, we summarize the registration performance of the stand-alone STN-based Rol-guided CNN and the
proposed joint deep learning model. We compare the mean CD and mean ASD achieved by both the stand-alone
STN based CNN and the joint deep learning model by training 25 of the 45 available image datasets and by
training 35 of the 45 available image datasets. We can observe that the registration performance of the joint
deep learning model achieved by training only 25 image datasets is comparable to that of the stand-alone STN
based registration when trained using 35 image datasets and significantly better than the stand-alone STN based
registration when trained using 25 image datasets (p-value < 0.1 for RV blood-pool CD, and LV blood-pool CD
and ASD). We can also observe that when the joint deep learning model is trained using 35 image datasets,
the LV blood-pool CD and LV myocardium ASD is significantly lower than the rest of the models (Fig. 3). In

Table 1: Summary of registration evaluation. Mean (std-dev) center-to-center distance (CD) and average surface
distance (ASD) for LV blood-pool (LV), LV myocardium (MC) and RV blood-pool (RV). The best evaluation
metrics achieved are labeled in bold. Statistically significant differences between the registration metrics before
and after registration were evaluated using the Student t-test and are reported using * for p < 0.05 and ** for

p < 0.005.
LV CD LV ASD | MCASD | RVCD | RV ASD
(nm) | (um) | (mm) | (um) | (um)
Before Registration 3.28 2.53 1.78 4.36 2.42
(1.83) (1.23) (0.78) (3.79) (1.20)
Stand-alone STN Model 2.46 2.20 1.52 2.92 1.95
Training: 25 patients | (L.31)** | (1.23)% | (0.84)* | (2.18)** | (1.02)*
Stand-alone STN Model 2.27 2.09 1.40 2.52 1.73
Training: 35 patients (1.38)** | (1.14)** (L.12)* | (2.66)** | (1.02)**
Joint Model 2.26 1.96 1.41 2.60 1.77
Training: 25 patients (1.34)** | (0.93)** (0.71)* (2.02)** | (0.84)**
Joint Model 2.18 1.94 1.33 2.53 1.72
Training: 35 patients | (1.46)** | (0.93)** | (0.73)** | (2.14)** | (0.97)**
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Figure 3: Comparison of (a) mean CD and (b) mean ASD values before registration, stand-alone STN based
supervised registration (training data: 25 patients), stand-alone STN based supervised registration (training
data: 35 patients), joint deep learning model (training data: 25 patients) and joint deep learning model (training

data: 35 patients)

Figure 4: Panel 1-1: LGE CMR image and associated hyper-enhanced regions marked by pink contour and LV
and RV blood-pool centers marked by red dots; Panel 2-1: before registration (CD: 3.46 mm, ASD: 1.87 mm);
overlaid unregistered LGE CMR image and features (from Panel 1-1) onto the bSFFP image showing the RV
blood-pool (yellow) and LV blood-pool (green) and their centers (marked by blue dots) and the LV myocardium
(blue) marked on the bSSFP image; Panel 1-2: overlaid LGE CMR image onto the bSSFP image following
stand-alone STN model registration using 25 patients for training (CD: 2.77 mm, ASD: 1.62 mm); Panel 2-2:
stand-alone STN model registration using 35 patients for training (CD: 2.72 mm, ASD: 1.45 mm); Panel 1-3:
joint deep learning model registration using 25 patients for training (CD: 2.77 mm, ASD: 1.51 mm); and Panel
2-3: joint deep learning model registration using 35 patients for training (CD: 2.65 mm, ASD: 1.47 mm).

Fig. 4, we show an example of the manual annotations of the cardiac chambers of a bSSFP cine CMR image
overlaid on its corresponding LGE CMR image before registration and after registration using both stand-alone
STN-based Rol-guided CNN model and the joint deep learning model.

In our previous work,'? we showed that a STN inspired Rol-guided CNN architecture can be reliably used
to register the bSSFP cine CMR and LGE CMR images. The major drawback of the method is the need for
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annotations of cardiac structures for large number of training data. In this paper, we investigate whether the joint
deep learning framework is a viable option for registration of LGE and bSSFP cine CMR images. Our results
reveal that the proposed joint deep learning model leverages the weights learnt from the segmentation task to
improve the registration accuracy and produces reliable registration results using lesser number of training data
and manual annotations.

The mean Dice scores achieved by the segmentation branches of the bSSFP cine CMR images and LGE
CMR images are 84.73% and 71.49%, respectively. The poor results of the segmentation branches are due to the
limited number of the training data, however, the weights learnt from these segmentation branches improve the
registration accuracy in the joint deep learning model. The computational time required for each epoch for a
stand-alone STN model is around 63 seconds and 67 seconds to train 25 and 35 of the 45 available image datasets,
respectively, whereas the joint deep learning model requires around 110 seconds and 155 seconds to train 25 and
35 of the 45 available image datasets, respectively. It is worth to be noted that although the stand-alone STN
model takes less training time for the registration, it nevertheless requires manual annotations, while the joint
model requires relatively more time for training, the number of manual annotations needed are fewer.

4. CONCLUSION AND FUTURE WORK

In this paper, we present a joint deep learning model for registration of LGE and bSSFP cine CMR images, and
the segmentation of cardiac chambers from the LGE CMR and the bSSFP CMR images. The coupling of the
segmentation and the registration tasks enables a multi-task training and results in obtaining reliable registration
results using a lower number of training datasets, reducing the need for a large number of manual annotations.

As part of our future work, we will be investigating other variants of U-Net architecture to improve the
segmentation performance of the joint deep learning model and these obtained segmentation masks can be used to
further fine-tune the registration in case of sparsely annotated datasets, resulting in a weakly-supervised method
for registration. Ultimately, we intend to build 3D models that help quantify and visualize the compromised
myocardial regions.
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