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Abstract. In the context of Minimally Invasive Surgery, estimating
depth from stereo endoscopy plays a crucial role in three-dimensional
(3D) reconstruction, surgical navigation, and augmentation reality (AR)
visualization. However, the challenges associated with this task are three-
fold: 1) feature-less surface representations, often polluted by artifacts,
pose difficulty in identifying correspondence; 2) ground truth depth is
difficult to estimate; and 3) an endoscopy image acquisition accompa-
nied by accurately calibrated camera parameters is rare, as the camera
is often adjusted during an intervention. To address these difficulties,
we propose an unsupervised depth estimation framework (END-flow)
based on an unsupervised optical flow network trained on un-rectified
binocular videos without calibrated camera parameters. The proposed
END-flow architecture is compared with traditional stereo matching, self-
supervised depth estimation, unsupervised optical flow, and supervised
methods implemented on the Stereo Correspondence and Reconstruction
of Endoscopic Data (SCARED) Challenge dataset. Experimental results
show that our method outperforms several state-of-the-art techniques
and achieves a close performance to that of supervised methods.

Keywords: Stereo endoscopy · Depth estimation · Self supervised
learning · Stereo matching · Optical flow

1 Introduction

In the context of Minimally Invasive Surgery (MIS), dense depth perception from
endoscopy is a prerequisite for surgical robotics Augmented Reality (AR) [12]
and computer vision-based navigation systems [23], as such applications require
registration of pre-operative data, such as CT/MRI to intra-operative video
data. Dense depth perception is also a fundamental component of simultaneous
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localization and mapping (SLAM) [31] and three-dimension (3D) reconstruction
[16]. However, estimating depth from endoscopic images is very challenging due
to wet and feature-less surfaces, the presence of imaging artifacts, the presence
of surgical instruments, and varying lighting conditions.

Depth can be estimated from different types of endoscopic images [7],
including structured light endoscopy [14], monocular endoscopy [24] and stereo
endoscopy [38]. By analyzing the deformation between the known projected light
pattern and received projected pattern, structure light endoscopy can sparsely
and accurately reconstruct tissue with no limitations due to texture information.
Thus, structured light endoscopy is often used to reconstruct the ground truth
depth [1,30]. However, this technique requires specialized processing hardware
and is sensitive to environment lighting, limiting its application in vivo.

Recovering depth from monocular endoscopic video can be achieved via
SLAM [3,20], Shape from Shading [28], and Structure from Motion (SfM) [18,37],
as well as machine learning [24] and its integration with SfM [16]. However,
monocular depth estimation is the most challenging and least accurate tech-
nique: not only does it require the estimation of the camera pose, which is diffi-
cult to obtain due to the lack of photometric constancy cross frames, but scale
ambiguity is a common, inherent problem in monocular dense depth estimation.
To mitigate these limitations, most efforts have been shifted to estimating depth
from stereo endoscopy [1,7].

Estimating depth in stereo endoscopy can be achieved via densely matching
pixels from a pair of binocular images. Following intrinsic and extrinsic camera
calibration, matched points can be triangulated to recover depth using both
classical and deep learning methods.

Classical methods include dense optical flow [5,26] and stereo matching meth-
ods [6,11], with the latter being the most common method in estimating depth
[29]. Several traditional stereo matching methods have been applied [2,31,40] in
MIS. However, despite achieving accurate results in the feature-rich region, stereo
matching methods often lead to holes and speckle in texture-less surfaces, occlu-
sions, repetition patterns, non-Lambertian surfaces, and specularities, which are
common in endoscopy images. As such, parameter tuning and post-processing
are necessary.

With the rapid development of deep learning, methods based on the convo-
lutional neural network (CNN) have surpassed traditional methods in several
public benchmarks, such as SceneFlow [21] and KITTI platform [22]. However,
using CNNs in a supervised fashion in endoscopic videos is challenging, as ground
truth depth is difficult to obtain. Visentini-Scarzanella et al. [33] trained and
validated CNNs on phantom bronchus data from CT data. Similarly, Mahmood
et al.[19] trained CNNs on synthetic texture-free images generated from dig-
ital colon phantom and validated on real images using adversarial learning to
transfer real images to synthetic images. Lastly, Wang et al. [35] trained and val-
idated a stereo matching CNN on simulated binocular data. A disparity dataset
from CT [4] with a limited number of frames was created from ex vivo small
porcine full torso cadavers and was used to assess several publicly supervised
stereo matching methods.
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Recently, self-supervised methods [9,39,42] that utilize image reconstruction
as supervision signals have achieved remarkable results in self-driving cars. Their
common approach is to formulate a depth estimation problem as the minimiza-
tion of a photometric reprojection loss at the training stage. Self/unsupervised
methods include self-supervised stereo matching [34], self-supervised depth esti-
mation [9,39,42], and unsupervised optical flow [15]. However, they have been
rarely studied on stereo endoscopic images.

To our best knowledge, the only self-supervised stereo matching method
implemented on a pair of stereo endoscopic images was reported by Ye et al. in
[38]. Nevertheless, there have been several works reported that focus on estimat-
ing monocular endoscopic image depth. In [16], Liu et al. incorporated recom-
puted matched points and camera pose from the SfM to train a self-supervised
monocular depth estimation network on sinus video. Similarly, Ozyoruk et al.
[24] jointly estimate camera pose and depth on synthetically generated data.

In the training stage, a self-supervised depth estimation network requires
calibrated stereo camera parameters, while a self-supervised stereo matching
requires rectified images. Nevertheless, both limit their application in MIS. Dur-
ing an intervention, the surgeon adjusts focus to adapt to anatomical targets,
therefore invalidating pre-calibrated parameters [27], while binocular images can
be rectified through an uncalibrated stereo rectification approach, which uses
matched points to estimate the fundamental matrix. However, on a pair of fea-
tureless frames, accurately matched points are limited, and rectification error
is introduced in this process [17]. Unsupervised optical flow methods have the
advantage that, during training, they do not require calibrated camera parame-
ters or an un-calibrated stereo rectification process.

To estimate depth from stereo endoscopic videos, we present an unsuper-
vised optical flow network (END-flow). Compared with other methods, it does
not require any ground truth labels, calibrated camera parameters, or rectified
images for training. This work represents the first effort to use an unsupervised
optical flow network to estimate depth from a stereo endoscopic video to the
best of our knowledge. In addition, we also introduce an auto-masking and a
sparse flow loss function to improve further accuracy beyond that achieved via
the techniques disseminated to date.

2 Methods

The goal of this work is to first learn the optical flow mapping without the need
of ground truth depth or camera parameters and subsequently recover depth
from the optical flow with camera parameters in inference. Previous works [9,
15,39,41] have established solid baseline in unsupervised learning. In this section,
we first introduce the general image reconstruction objective loss functions for
unsupervised optical flow learning, then introduce our proposed enhancements
in training using END-flow.
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2.1 Baseline Unsupervised Optical Flow Loss Functions

In the absence of ground truth, one alternative is to use image reconstruction
as the supervisory signal. The common approach is to formulate a photometric
loss between the original image and the warped image. For two images, target
image It and source image Is, Is can be warped to It via predicted optical flow
mapping transformation Ft,s to create the synthesis view of I

′
t using

I
′
t(p) = Is(p + Ft,s), (1)

where p is the pixel coordinates on the target image. Following [9,39,41], the
photometric loss can be established using

Lp =
α

2
(1 − SSIM(It, I

′
t)) + (1 − α)‖It − I

′
t‖1, (2)

where α = 0.85, SSIM is the similarity structure index [36]. However, the photo-
metric loss may not be valid in texture-less regions; instead, at these locations,
an edge-aware smoothness [8] term is commonly coupled with Lp, taking the
form shown below:

Ls = |∂xFt,s| e−|∂xIt| + |∂yFt,s| e−|∂yIt|. (3)

Overall, the total loss function for training via unsupervised optical flow mapping
is of the form:

Lflow = Lp + βLs, (4)

where β is commonly set to 0.1.

2.2 Proposed Method

Previous works in optical flow networks take sequential images as input; here, we
extend the method to find stereo correspondences on a pair of binocular images.
The pipeline associated with the training stage is shown in Fig. 1. We adopt
PWC-net [32] as our backbone network to predict forward flow, left to right,
and backward flow, right to the left. The basic unsupervised loss function for a
pair of binocular images is therefore given by:

Lflow =
∑

It∈(Il,Ir))

(Lp + βLs). (5)

Auto-masking. To handle occlusions and feature-less regions where photomet-
ric consistency is not valid, we utilize the auto-masking method proposed in [9]
to select a valid region for photometric loss calculation:

Mp =
[ ‖It − I

′
t‖1 < ‖It − It′‖1

]
. (6)

Here [ ] is the Iverson bracket, taking the value 1 if the statement inside the
bracket is true and otherwise taking the value 0. It′ is the other image in the
pair of images, and I

′
t is the synthesis image.
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Fig. 1. Overview of proposed method. We adopt PWC-net [32] as our Flow-net. Proxy
labels are generated from SIFT as a supervision signal. A sparse flow loss is calculated
between proxy labels and predicted forward flow. Smoothness loss is calculated on
forward flow and backward flow. The difference between the warped and input images
forms the photometric loss.

Sparse Flow Loss. In addition to the basic unsupervised loss function, a sparse
flow loss is included. We used an illumination-invariant feature descriptor, the
Scale Invariant Feature Transform (SIFT), to find matched key-points within a
pair of stereo images. Key-points are used to estimate the fundamental matrix,
which is then used along with the RANSAC method to eliminate outliers. These
matched points are further processed to generate a sparse flow map from the left
image to the right image, to serve as a proxy label for supervision. The sparse
flow FSIFT loss is defined by:

Lsf =
1

|MSIFT |
∑

p

MSIFT (p)‖FSIFT (p) − Fl,r(pa)‖1, (7)

where Fl,r is sparse flow map generated from SIFT, MSIFT is the mask where
sparse keypoints exist, and |MSIFT | stands for the number of matched points.

The overall loss function L is formulated as

L =
∑

It∈(Il,Ir))

(MpLp + βLs) + γLsf , (8)

where γ is the weight for sparse flow loss and is empirically set to 0.15.
To recover depth from optical flow in inference, following [10,41], we adopt

the mid-point triangulation method using the stereo calibration parameters,
which has a linear solution.
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Fig. 2. An example of an endoscopic image, as well as its ground truth reconstructed
depth from the SCARED dataset.

3 Dataset and Implementation

We conducted all experiments on the SCARED dataset1 (the Stereo Correspon-
dence and Reconstruction of Endoscopic Data). The dataset contains binocular
images of abdominal anatomy from fresh porcine cadavers collected by a Da Vinci
Xi endoscope, along with the associated camera parameters, camera poses, and
ground truth depth maps generated using structure light. One sample is shown
in Fig. 2. The data employed in this work consists of seven training datasets and
two testing datasets.

All experiments are conducted on a GTX 2070 GPU, and all methods are
implemented on Pytorch. We train the models [25] using the Adam optimizer [13]
with a learning rate 10−4 and a batch size of 8. Images are enhanced with CLAHE
(contrast limited adaptive histogram equalization) and resized to 256×320. Data
augmentation only includes random flip, which also mimics the real scenario,
especially in the event that the left - and right- images are flipped.

4 Results

4.1 Evaluation Metrics

We use the following metrics for evaluation: 1) the mean absolute distance (MAD
(mm)), 2) the absolute relative error (AbsRel), and 3) the root mean squared
error (RMSE (mm)), defined by the following equations:

MAD =
1
n

n∑

i=1

|d̂i − di|, (9)

AbsRel =
1
n

n∑

i=1

|d̂i − di|
di

, (10)

1 https://endovissub2019-scared.grand-challenge.org/.

https://endovissub2019-scared.grand-challenge.org/
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RMSE =

√√√√ 1
n

n∑

i=1

|d̂i − di|2, (11)

where n denotes the number of pixels, d̂i and di represent ground truth depth
and predicted depth of the pixel i, respectively.

4.2 Comparison with State-of-the-Art Depth Reconstruction
Methods

Table 1. Comparison between several state-of-the-art depth stereo reconstruction
methods and our proposed method (END-flow) in terms of Mean Absolute Distance
(MAD), Absolute Relative Error (AbsRel) and Root-Mean-Squared Error (RMSE) in
mean ± std. The statistical significance of the END-flow results against other methods
is identified by ∗(p < 0.005).

Method MAD (mm) AbsRel (%) RMSE (mm)
∗ SGM [11] 9.37 ± 2.95 7.44 ± 3.47 8.37
∗ PASM [34] 16.87 ± 4.83 22.12 ± 4.78 20.72
∗ Monodepth2 [9] 7.03 ± 3.83 9.373 ± 4.514 9.02
∗ AR-flow [15] 6.65 ± 3.50 8.509 ± 3.965 9.40

END-flow 5.40 ± 3.92 7.17 ± 5.20 7.55

We first compare the results achieved using our proposed method to those
obtained using several state-of-art methods, including the traditional stereo
matching method SGM [11], unsupervised stereo matching method PASM [34],
self-supervised depth estimation method Monodepth2 [9], unsupervised optical
flow method AR-flow. Both SGM and PASM require rectified images as input,
while Monodepth2 requires camera parameters. Our method, END-flow, does not
require stereo rectification or camera parameters for training, which is advanta-
geous in the endoscopy application. These results are summarized in Table 1.

It has been noted that the SCARED dataset was reported to have a calibra-
tion error [1]. After close examination, datasets 1–3 featuring minor calibration
errors are used for comparison. We use the shortest video in each dataset for
testing, the remaining for training and validation. In total, there are 7092 image
pairs used for training, 787 image pairs used for validation, and 613 image pairs
used for testing. The results in Table 1 suggest that our method achieves the
best performances. The differences between the MAD errors from END-flow and
other methods are statistical significance, characterized by p < 0.005.

Qualitative results are presented in Fig. 3. In comparison with other meth-
ods, SGM [11] fails to find correspondences in the ambiguous region, presenting
black holes, while PASM [34] designed for rectified natural images with high
dependence on epipolar constraints shows bad performance. Despite the fact that
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Fig. 3. Qualitative results achieved on three types of images (shown in 3 columns) as
part of SCARED dataset using several techniques (illustrated in each row). Predicted
depth maps are normalized by the maximum values of the ground truth depth map for
enhanced visualization.
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Monodepth2 predicts depth maps with sharp boundaries, our evaluation revealed
that it tends to lose real scale. This may result from the fact that Monodepth2
takes one image to predict the depth, which is different from other methods that
require two images. Moreover, over-enhanced edges on some images may result
from texture changes, not necessarily depth changes. As such, the Monodepth2
technique may lead to over-enhanced edges when estimating depth from one
image. Our method, END-flow, predicts depth with finer detail than AR-flow,
while not lose real scale as Monodepth2.

With calibrated camera parameters, images can be rectified. When training
or make predictions based on rectified images, optical flow can be constrained to
the horizontal direction, the disparity, and this approach may help improve depth
estimation. However, endoscopy image acquisition accompanied by accurately
calibrated camera parameters is rare, as the camera is often adjusted during an
intervention. To mitigate this inconvenience, our proposed method, END-flow,
has the advantage of not requiring accurately calibrated camera parameters for
training.

4.3 Ablation Study

To identify the contribution brought forth by each of the individual components
integrated into our proposed pipeline, specifically auto-masking Mp and sparse
flow loss Lsf , we conduct an ablation study to evaluate the performance of
each pipeline component. This study is summarized in Table 2. Both Mp and
Lsf alone, as well as their combination Mp + Lsf yield statistically significant
improvement in MAD compared to the baseline (p < 0.005).

Table 2. Ablation study showing the improvement in MAD (mm) (mean±std) in
response to augmenting the baseline technique with the auto-masking Mp, sparse flow
loss Lsf and their combination Mp + Lsf .

Method MAD (mm) AbsRel (%) RMSE (mm)

Baseline 8.40 ± 4.08 11.02 ± 4.60 11.38

Baseline + Mp 7.46 ± 4.25 9.87 ± 4.95 10.20

Baseline + Lsf 5.59 ± 3.92 7.37 ± 5.17 7.76

Baseline + Mp + Lsf 5.40 ± 3.92 7.17 ± 5.20 7.55

4.4 Comparison with Top Methods in the SCARED Challenge

We further compare our method with winners’ methods reported in the SCARED
challenge [1], shown in Table 3. Winners were Trevor Zeffiro and Jean-Claude
Rosenthal. We train our method on seven training sub-datasets and test on
two testing sub-datasets. Note that these winners’ methods utilized ground
truth depth for training their networks, while our proposed architecture method
achieves competitive results without using the ground truth depth labels.
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Table 3. Comparison (in terms of mean MAD (mm)) between END-flow and best
performing methods reported in the SCARED challenge.

Trevor Zeffiro [1] J.C. Rosenthal [1] END-flow

testDataset1 3.60 3.44 4.77

testDatseta2 3.47 4.05 4.76

5 Conclusion

We have presented a dense depth estimation method based on an unsupervised
optical flow network named END-flow. This method poses several advantages
over previous techniques: 1) it can be trained on original videos without access
to camera calibration parameters and stereo rectification or ground-truth labels;
and 2) it integrates key-points matching to facilitates training. We deployed
this method on several datasets available as part of the SCARED challenge;
the results achieved using END-flow are comparable to those achieved using
state-of-art methods, as well as the best-performing methods reported in the
challenge. Specifically, we demonstrate that END-flow outperforms the state-of-
the-art traditional and self/unsupervised methods and achieves comparatively
performance against the best-performing supervised methods reported in the
challenge. Future work will focus on estimating the confidence of unsupervised
optical flow methods, which will benefit the down-stream analysis and integra-
tion of traditional depth estimation methods. Following additional work on the
topic and further software improvement, we plan to release a link to a repository
consisting of open-source code to the community.
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5. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

6. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kim-
mel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6 3

http://arxiv.org/abs/2101.01133
https://doi.org/10.1007/978-3-642-36620-8_25
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/978-3-642-19315-6_3


Unsupervised Optical Flow for Depth Estimation 347

7. Geng, J., Xie, J.: Review of 3-d endoscopic surface imaging techniques. IEEE Sens.
J. 14(4), 945–960 (2013)

8. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 270–279 (2017)

9. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 3828–3838 (2019)

10. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vision Image Underst. 68(2),
146–157 (1997)

11. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching
and mutual information. In: 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 807–814. IEEE (2005)

12. Kalia, M., Navab, N., Salcudean, T.: A real-time interactive augmented reality
depth estimation technique for surgical robotics. In: 2019 International Conference
on Robotics and Automation (ICRA), pp. 8291–8297. IEEE (2019)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Lin, J., et al.: Endoscopic depth measurement and super-spectral-resolution imag-
ing. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duch-
esne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 39–47. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66185-8 5

15. Liu, L., et al.: Learning by analogy: Reliable supervision from transformations for
unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6489–6498 (2020)

16. Liu, X., et al.: Reconstructing sinus anatomy from endoscopic video – towards a
radiation-free approach for quantitative longitudinal assessment. In: Martel, A.L.,
Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 3–13. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59716-0 1

17. Luo, X., Jayarathne, U.L., McLeod, A.J., Pautler, S.E., Schlacta, C.M., Peters,
T.M.: Uncalibrated stereo rectification and disparity range stabilization: a com-
parison of different feature detectors. In: Medical Imaging 2016: Image-Guided
Procedures, Robotic Interventions, and Modeling, vol. 9786, p. 97861C. Interna-
tional Society for Optics and Photonics (2016)

18. Lurie, K.L., Angst, R., Zlatev, D.V., Liao, J.C., Bowden, A.K.E.: 3d reconstruction
of cystoscopy videos for comprehensive bladder records. Biomed. Opt. Exp. 8(4),
2106–2123 (2017)

19. Mahmood, F., Durr, N.J.: Deep learning and conditional random fields-based depth
estimation and topographical reconstruction from conventional endoscopy. Med.
Image Anal. 48, 230–243 (2018)

20. Mahmoud, N., Collins, T., Hostettler, A., Soler, L., Doignon, C., Montiel, J.M.M.:
Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE
Trans. Medical Imag. 38(1), 79–89 (2018)

21. Mayer, N., et al.: A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

22. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3061–
3070 (2015)

23. Mirota, D.J., Ishii, M., Hager, G.D.: Vision-based navigation in image-guided inter-
ventions. Ann. Rev. Biomed. Eng. 13 (2011)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-66185-8_5
https://doi.org/10.1007/978-3-030-59716-0_1


348 Z. Yang et al.

24. Ozyoruk, K.B., et al.: Endoslam dataset and an unsupervised monocular visual
odometry and depth estimation approach for endoscopic videos. Med. Image Anal.,
102058 (2021)

25. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
26. Phan, T.B., Trinh, D.H., Lamarque, D., Wolf, D., Daul, C.: Dense optical flow

for the reconstruction of weakly textured and structured surfaces: Application to
endoscopy. In: 2019 IEEE International Conference on Image Processing (ICIP),
pp. 310–314. IEEE (2019)

27. Pratt, P., Bergeles, C., Darzi, A., Yang, G.Z.: Practical intraoperative stereo cam-
era calibration. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 667–675. Springer (2014)

28. Ren, Z., He, T., Peng, L., Liu, S., Zhu, S., Zeng, B.: Shape recovery of endoscopic
videos by shape from shading using mesh regularization. In: Zhao, Y., Kong, X.,
Taubman, D. (eds.) ICIG 2017. LNCS, vol. 10668, pp. 204–213. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71598-8 19

29. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision 47(1), 7–42 (2002)

30. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light.
In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003, Proceedings, vol. 1, pp. I-I. IEEE (2003)

31. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: Mis-slam: real-time large-
scale dense deformable slam system in minimal invasive surgery based on hetero-
geneous computing. IEEE Rob. Autom. Lett. 3(4), 4068–4075 (2018)

32. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: CNNs for optical flow using
pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

33. Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D
reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist.
Radiol. Surg. 12(7), 1089–1099 (2017)

34. Wang, L., et a.: Parallax attention for unsupervised stereo correspondence learning.
IEEE Trans. Pattern Anal. Mach. Intell. (2020)

35. Wang, X.Z., Nie, Y., Lu, S.P., Zhang, J.: Deep convolutional network for stereo
depth mapping in binocular endoscopy. IEEE Access 8, 73241–73249 (2020)

36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process 13(4),
600–612 (2004)

37. Widya, A.R., Monno, Y., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: Whole
stomach 3D reconstruction and frame localization from monocular endoscope
video. IEEE J. Transl. Eng. Health Med. 7, 1–10 (2019)

38. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.Z.: Self-supervised
siamese learning on stereo image pairs for depth estimation in robotic surgery. In:
Hamlyn Symposium on Medical Robotics (2017)

39. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and
camera pose. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1983–1992 (2018)

40. Zampokas, G., Tsiolis, K., Peleka, G., Mariolis, I., Malasiotis, S., Tzovaras, D.:
Real-time 3D reconstruction in minimally invasive surgery with quasi-dense match-
ing. In: 2018 IEEE International Conference on Imaging Systems and Techniques
(IST), pp. 1–6. IEEE (2018)

https://doi.org/10.1007/978-3-319-71598-8_19


Unsupervised Optical Flow for Depth Estimation 349

41. Zhao, W., Liu, S., Shu, Y., Liu, Y.J.: Towards better generalization: joint depth-
pose learning without posenet. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9151–9161 (2020)

42. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth
and ego-motion from video. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1851–1858 (2017)


	Dense Depth Estimation from Stereo Endoscopy Videos Using Unsupervised Optical Flow Methods
	1 Introduction
	2 Methods
	2.1 Baseline Unsupervised Optical Flow Loss Functions
	2.2 Proposed Method

	3 Dataset and Implementation
	4 Results
	4.1 Evaluation Metrics
	4.2 Comparison with State-of-the-Art Depth Reconstruction Methods
	4.3 Ablation Study
	4.4 Comparison with Top Methods in the SCARED Challenge

	5 Conclusion
	References




