AutoPCD: Learning-Augmented Indoor Point Cloud Completion

Pingping Cai; Edward M Sitar; Sanjib Sur
Department of Computer Science and Engineering; University of South Carolina, Columbia, USA
{pcai, esitar}@email.sc.edu; sur@cse.sc.edu

4096

Matrix Multiply

(a) Large Hallway

64
Y
—

o
=

uonoeNx3y
yideq

o

(b) One Part Incomplete

Encoder Module

B

=}

5 Encoder — [, ’
= s

Missing point clouds

(f) Ground-truth  Incomplete  Reconstructed

Reconstructed

Figure 1: (a) Point Cloud (PCD) of a large indoor hallway; (b) The overall network structure of AutoPCD; (c-e) Folding, Encoder,
and Plane Predictor modules; (f) An example result of PCD reconstruction.

ABSTRACT

3D Point Cloud (PCD) is an efficient machine representation for
surrounding environments and has been used in many applications.
But a fast reconstruction of complete PCD for large environments
remains a challenge. We propose AutoPCD, a machine-learning
model that reconstructs complete PCDs, under sensor occlusion
and poor lighting conditions. AutoPCD splits the PCD into multiple
parts, approximates them by several 3D planes, and independently
learns the plane features for reconstruction. We have experimen-
tally evaluated AutoPCD in a large indoor hallway environment.

CCS CONCEPTS

+ Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; - Computing methodologies — Ma-
chine learning approaches.

KEYWORDS
Point Cloud Data; Graph Convolution; Multi-Layer Perceptrons

ACM Reference Format:

Pingping Cai; Edward M Sitar; Sanjib Sur, Department of Computer Science
and Engineering; University of South Carolina, Columbia, USA, {pcai, esi-
tar}@email.sc.edu; sur@cse.sc.edu. 2021. AutoPCD: Learning-Augmented
Indoor Point Cloud Completion. In Adjunct Proceedings of the 2021 ACM
International Joint Conference on Pervasive and Ubiquitous Computing and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UbiComp-ISWC °21 Adjunct, September 21-26, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8461-2/21/09.

https://doi.org/10.1145/3460418.3479309

Proceedings of the 2021 ACM International Symposium on Wearable Comput-
ers (UbiComp-ISWC °21 Adjunct), September 21-26, 2021, Virtual, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3460418.3479309

1 INTRODUCTION

Understanding and interpreting the surrounding 3D environment
is an important machine perception problem, and such perception
enables many ubiquitous sensing applications in surface and un-
derwater robotics, drones, autonomous driving, and augmented or
extended reality (AR/XR). 3D Point Cloud (PCD) is one of the effi-
cient machine representations of the environments. A PCD usually
consists of depth and/or RGB information, represented by voxel
intensity (see Figures 1[a-b]), and are used in many research and
commercial applications: Mobile robot simultaneous localization
and mapping, 3D object tracking for AR applications, Real-time
mapping of floors and surfaces during construction, etc.

However, complete PCD reconstruction of an indoor environ-
ment faces three major challenges: (1) It requires a lot of time and
effort from human/machine to scan a large area; (2) It requires
precise planning of the scan trajectories; and (3) It requires power-
ful, long-range camera and/or LiDAR-based depth sensors. Even
solving these major challenges may not ensure a complete recon-
struction due to the sensor occlusion and poor lighting conditions.
The collected PCDs could be sparse and incomplete, missing impor-
tant geometric information of the environment. Thus, estimating
the complete PCD from an incomplete one is of vital importance.

Researchers have proposed to estimate complete PCDs based on
Convolutional Neural Networks (CNN) [3] or Multi-Layer Percep-
trons (MLP) [6] or both [7]. Although these methods are effective,
they are designed for the reconstruction of small 3D objects, such
as tables, cars, bikes, etc., where PCDs comprise thousands of voxels
only. Besides, they focus on the object’s finer-grained, local features
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reconstruction. But PCD reconstruction of a large indoor environ-
ment requires an emphasis on both the local and global structures.
What’s more, indoor PCDs consist of millions of voxels; so, existing
models prohibit reconstruction due to memory limits [2], and local
geometric information could get buried under global features. Thus,
training existing networks with millions of voxels as input not only
would be cumbersome but also may often fail to converge.

In this paper, we propose AutoPCD, a learning-augmented PCD
completion model that overcomes the challenges. AutoPCD uses two
key intuitions: (1) Instead of considering the PCD as a collection of
a random, unordered set of points, AutoPCD uses the observations
that indoor buildings consist of simple geometric structures, such
as straight walls, smooth floors, etc.; so, many points could be
combined and approximated as 3D planes. (2) A large environment
could be split into multiple parts, and each part could be predicted
independently and later merged to reconstruct the full environment;
this ensures that the reconstructed PCDs can preserve accurate local
structures, and our model can converge during the training.

To this end, AutoPCD takes the following steps. First, AutoPCD
trains a combination of graph convolution and MLP framework
by showing several examples of partial and incomplete PCDs and
their corresponding complete PCDs: We use high-end depth sen-
sors to manually scan indoor environments for several minutes
and randomly introduce incompleteness by post-processing them.
Next, the disjoint set of 3D voxels are approximated as 3D planes
and represented by their coeflicients; the framework learns such
coefficients to fill the gaps in the incomplete PCDs. Finally, during
the run-time, when the model has been trained appropriately, Au-
toPCD can estimate complete PCDs from incomplete ones. We have
experimentally evaluated the efficacy of AutoPCD in reconstructing
partial, incomplete PCDs of a large indoor hallway environment.

2 AUTOPCD DESIGN

Figure 1(b) shows the network structure of AutoPCD. It consists of
3 modules: Encoder for feature extraction, Plane Predictor for plane
coefficients prediction, and Folding for the final reconstruction.

Global Feature Extraction: Since a point in PCD may exist in
any 3D location sparsely, traditional convolution may fail to identify
the global features associated with this point. AutoPCD, thus, em-
ploys the Encoder module for feature extraction, leveraging a graph
convolution network, built atop the existing PointNet++ [1]. But the
global features are highly sensitive to the small rotation of the input
PCDs. To make the feature extraction robust, AutoPCD transforms
the original points from Cartesian coordinates into learned planes’
coordinates: The Encoder module leverages the plane coefficients,
predicted by the Plane Predictor, and multiply them with Cartesian
point coordinates to achieve the transformation.

Plane Coeflicients Prediction: AutoPCD then approximates
the PCD into several 3D planes and learn the plane coefficients.
The idea shares a similar spirit to a recently proposed work on
sparse depth reconstruction [4]. However, different from the exist-
ing approach using compressed sensing and geometrical modeling,
AutoPCD leverages machine-learning to learn the coefficients. In
Cartesian coordinate space (x, y, z), a plane can be expressed as:
axx+b sy+c’xz=1;

axx+bxy+cxz=d; w-p=1 (1)
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where - is the element-wise multiplication, w = [a’,b’,c] is the
plane coefficients, a’ = a/d;b’ = b/d;c’ = ¢/d, and p = [x,y,z].
Similar to the Encoder module, AutoPCD uses one PointNet++ block
as the backbone to extract features and learn the coefficients.
Folding: Finally, to reconstruct the complete PCD from the ab-
stract global features and plane coefficients, AutoPCD uses a similar
technique described in FoldingNet [8]. It shows that we can recon-
struct 3D shapes from 2D grids by two steps of folding: The first
folding step transforms the 2D grids into points in 3D space, and the
second folding step transforms 3D points into target point clouds.
Different from the existing method, we can jump to the second step
directly and start folding from points in 3D space; this is because,
given the set of predicted plane coefficients, we can generate points
on 3D space directly. These points are then merged with the global
features and fed into an MLP network to reconstruct the final PCD.
Loss Function: The network blocks rely on a loss function to
appropriately tune the weights and train themselves. We use Cham-
fer Distance (ChD) [5] between the ground-truth and predicted
PCDs as the loss function, which is defined as:
Lenp(S1,82) = ) min [[x —yll3 + > min [lx-yll} (2)
xes, yES, e, X€ES
where S1 and Sy are the point sets. AutoPCD also uses a loss function
for training the Plane Predictor to learn the plane coefficients w.
Given M planes, AutoPCD uses the mean square error as the plane
loss: Lp(w,v) = ﬁ Dillwi — vi||§, where v is the ground-truth co-
efficients and is calculated from the point normal. We also manually
set M = 64. To train all network components simultaneously, we
set the overall loss function for AutoPCD as: L = Ay *Lcpp+A2*Lp,
where A1 and A; are the hyper-parameters that balances the ChD
and plane loss. We explore the effect of different hyper-parameters
combination and found that the network performed much better
when the ratio between 4; and A5 is close to 2, e.g., (11, A2)=(1, 0.5).

3 PRELIMINARY RESULTS

To evaluate AutoPCD, we test our network in an indoor hallway
(Figure 1[a]). We first split the full PCD into smaller pieces, rotate
in azimuth and elevation, and generate the training and testing
set. Specifically, we use 375 training samples and 75 testing sam-
ples. Furthermore, to generate the incomplete PCDs, we randomly
remove about 15-30% points in chunks from the pieces. Figure
1(f) shows an example PCD depth reconstruction result: Clearly,
AutoPCD is able to fully reconstruct the missing parts of the in-
put. For statistical evaluation, we calculate the average Chamfer
Distance and Structural Similarity (SSIM) of the reconstructed and
incomplete PCDs w.r.t. the ground-truth across 75 test cases. Figure
2(a) shows the CDF of SSIM results for both the incomplete and
reconstructed PCD, and AutoPCD improves the median SSIM from
0.36 to 0.98. Furthermore, Figure 2(b) shows that the average ChD is
0.003, which is approximately 4X better than the incomplete ones.

4 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose and evaluate AutoPCD that combines
machine-learning and geometrical modeling for the fast reconstruc-
tion of large indoor PCDs. AutoPCD uses graph convolution and
MLP based networks to extract the plane information and signif-
icantly improves the quality of the reconstructed PCDs. In the



AutoPCD: Learning-Augmented Indoor Point Cloud Completion

Chamfer Distance smaller is better
Reconstructed 0.0030
Incomplete 0.0121
SSIM larger is better
Reconstructed 0.9823
Incomplete 0.3617

OU 01 02 03 04 05 06 07 08 09 1 b
) SSIM (

(a

Figure 2: (a) CDF of SSIM for incomplete and reconstructed
PCDs; (b) Average values of Chamfer Distance and SSIM.

future, we propose to explore two avenues. (1) We currently split
the environment into smaller pieces manually and process them in-
dividually. We propose to design a framework to automatically split,
reconstruct, and merge them to ensure our model converges and
preserves the local structures. (2) Our model currently reconstructs
only the depth and geometric information in the PCD. However,
color or RGB information is another important feature for 3D ap-
plications. So, we will improve our network to reconstruct not only
the geometric structures but also the color characteristics of PCDs.
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