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ABSTRACT

In this paper, we provide an approach on using behavioral biometrics
to perform cross-system high-assurance authentication of users in
virtual reality (VR) environments. VR is currently being explored
as a critical tool to ensure seamless delivery of essential services,
such as education, healthcare, and personal finance, while enabling
users to work from home environments. Due to the sensitive nature
of personal data generated, VR applications for essential services
need to provide secure access. Traditional PIN or password-based
credentials can be breached by malicious impostors, or be handed
over by an intended user of a VR system to a confederate to assist
the intended user in completing a task, e.g., an exam or a physical
therapy routine. Existing approaches that use the behavior of the user
in VR as a biometric signature fail when users provide enrollment
and use-time data on different VR systems. We use Siamese neural
networks to learn a distance function that characterizes the system-
atic differences between data provided across pairs of dissimilar VR
systems. Our approach provides average equal error rates (EERs)
ranging from 1.38% to 3.86% for authentication using a benchmark
dataset that consists of 41 users performing a ball-throwing task
with 3 VR systems—an Oculus Quest, an HTC Vive, and an HTC
Vive Cosmos. To compare to prior approaches in VR biometrics, we
also obtain average accuracies for the task of identification, where
given an input user’s trajectory in a use-time VR system, we use
Siamese networks to return the user with the top matching trajectory
in an enrollment VR system as the label. We report identification
results ranging from 87.82% to 98.53% with average improvements
of 29.78%±8.58% and 30.78%±3.68% over existing approaches
that use generic distance matching and fully convolutional networks
on the enrollment dataset respectively.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Security
and privacy—Security services—Authentication—Biometrics

1 INTRODUCTION

The consumer space is currently experiencing a transition point
where traditionally in-person activities such as education, personal
finance, retail, work-from-home, and healthcare are being converted
to virtual or hybrid mode, a move that has been accelerated by
the COVID-19 pandemic. To enable seamless experience akin to
the real-world, virtual reality (VR) is being explored as a critical
tool for a diverse range of essential services such as virtual educa-
tion [11, 27, 32, 57, 70, 75], retail [56, 81], personal finance [8, 77],
virtual remote teleoperation and driving [33, 41, 50, 51, 67], and
healthcare [7, 13, 18, 39, 42, 52, 69]. Since a large quantity of sen-
sitive user data is likely to be generated, it is critical to ensure
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that VR applications for essential services are secured against ac-
cess by unauthorized individuals. A number of approaches have
investigated transferring traditional PIN, password, and two-factor
authentication systems to VR [5,6,19,21–24,54,83]. However, such
approaches face vulnerabilities from two perspectives. First, they
can be breached by malicious external agents that gain access to
credentials of a genuine user. Second, they enable deliberate circum-
vention by an authorized user providing credentials to a confederate
to, for instance, cheat an examination or a therapy session. Delib-
erate circumvention renders the interventions provided by the VR
application ineffective, thereby hindering the efforts of organizations
administering the interventions. Recognizing the drawbacks of tra-
ditional credentials, a large body of work has emerged on using user
behavior in VR—particularly motion trajectories of VR headsets and
hand controllers—as a biometric signature [2, 31, 43–47, 49, 53, 55].
Recent approaches have demonstrated high accuracies of upwards
of 95% [43, 47, 53]. However, a fundamental limitation of prior
work [2, 31, 43–46, 49, 53, 55] is that enrollment data is provided on
the same VR system as use-time data.

In this work, we provide an approach to perform cross-VR-system
authentication, where enrollment data is provided on one VR sys-
tem, e.g., an Oculus Quest, and the user interacts with a separate VR
system at use-time, e.g., an HTC Vive. Users are likely to interact
with one VR system at an organization, e.g., their workplace, their
school, and/or their clinic, and have access to an alternate personal
VR system in home environments. A user may be asked to provide
enrollment data using the organization’s VR system while being
supervised during enrollment, and may need to access the organiza-
tion’s VR application using their personal VR system. One option
may be to recommend re-enrollment with the personal VR system,
either by returning to the organization for supervised re-enrollment,
or by using remote guidance for re-enrollment without supervision.
The former is cumbersome in the long run, and does not maintain
seamlessness of authentication with rapid upgrades of VR systems.
The latter increases the likelihood of incorrect enrollment, and more
critically, lowers security if the user asks a confederate to enroll,
thereby enabling permanent circumvention of the system by the
confederate. Given these usability and security concerns, it is crucial
to provide generalizable cross-system authentication that does not
require re-enrollment using a personal VR system.

To date, the work of Miller et al. [47] is the only study that
investigates cross-system VR biometrics with data provided on three
systems—an HTC Vive, an Oculus Quest, and an HTC Vive Cosmos.
They use a generic distance metric to identify users by matching use-
time trajectories to enrollment trajectories, yielding cross-system
accuracies that are too low for deployment in real-world consumer
spaces, with highest average accuracy of 85.12%. Prior same-system
learning-based approaches [43,45,55] that train solely on enrollment
data cannot be directly extended to cross-system authentication,
since tracking methods and physical characteristics of the headset
and hand controllers, such as mass distribution, size, and aspect
ratio, generate system-dependent biases in the data. The biases yield
inter-system differences to which same-system methods are agnostic.
As we demonstrate with Mathis et al. [43], same-system learning-
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Study Classifier Users Activities Features Acc.

Kupin et al. [31] Nearest Neighbor 14 Ball-throw Position of right controller 92.86%

Pfeuffer et al. [55] Random Forests 22 Point, grab,
walk, type

Position, orientation, linear velocity, angular velocity
for both controllers and headset

44.44%

Ajit et al. [2] Perceptron 33 Ball-throw Position & orientation for both controllers and headset 93.03%

Olade et al. [53] Nearest Neighbor 25 Grab, rotate,
drop

Position & orientation for both controllers and headset
+ eye position

98.6%

Mathis et al. [43] FCNs 23 Point at 3D cube Position & orientation for both controllers 98.91%
Table 1: Summary of related work in same system VR biometrics (FCNs = fully convolutional networks). For all approaches, enrollment and
use-time data is provided on the HTC Vive. Acc: accuracy at identifying users from VR behavior.

based methods generate low accuracies for user identification on the
use-time system when trained with data from the enrollment system.

Our approach overcomes challenges with prior learning-based
methods by using metric learning to characterize systematic variabili-
ties induced by system-specific biases. Since systematic variabilities
may be non-linear in nature, we use Siamese neural networks to
learn a system-to-system distance metric between headset and hand
controller trajectories of an enrollment VR system and a separate
use-time VR system. Our work enables authentication by comparing
distances against a threshold and identification by returning the user
with the minimum distance value. Our approach requires that a train-
ing set of users has provided data and ground truth labels on both
systems. Test users need only provide ground truth on the enrollment
system. Our approach offers two advantages over prior work. First,
it is targeted to provide high performance for cross-system authenti-
cation, unlike prior learning-based methods [43, 55] where training
on one system yields poor accuracy on another system, and unlike
methods that use generic distance metrics [2, 31, 47, 53] that fail to
capture inter-system variabilities. Second, by virtue of learning a dis-
tance metric rather than providing user IDs, our approach is readily
generalizable to novel users, unlike the work of Pfeuffer et al. [55]
and Mathis et al. [43] where re-training of the neural networks is
required every time new users are added to the environment.

We demonstrate results of authentication, i.e., verifying that a
user’s ID is as claimed, and identification, i.e., recognizing an un-
known user’s ID, using the dataset of Miller et al. for data provided
on the HTC Vive, Oculus Quest, and HTC Vive Cosmos. We demon-
strate lowest average equal error rates (EERs) for authentication
ranging from 1.38% when the Vive is used at use-time and the Quest
at enrollment, to 3.86% when the Cosmos is used at use-time and
the Vive at enrollment. We show highest average identification accu-
racies ranging from 87.82% when the Cosmos is used at use-time
and the Vive at enrollment, to 98.53% when the Vive is used at
use-time and the Quest at enrollment. We demonstrate an aver-
age of 29.78%±8.58% boost in accuracy over the work of Miller
et al. We perform comparisons to the best performing learning-
based approach, particularly the work of Mathis et al. [43] who
demonstrate highest accuracies on same-system authentication us-
ing fully convolutional networks (FCNs). We demonstrate that the
FCNs from Mathis et al. provide average accuracies ranging from
50.42% when the Cosmos is used at use-time and the Quest at enroll-
ment, to 72.62% when the Vive is used at use-time and the Quest at
enrollment. By learning the distance metric that characterizes inter-
system differences between two VR systems, our approach provides
a 30.78%±3.68% boost in accuracy over the work of Mathis et al.
We also perform evaluation of the robustness and generalizability of
our work, and of the factors influencing authentication accuracy.

2 RELATED WORK

Authentication in VR. Early work in VR authentication has
either directly incorporated traditional PIN or password-based tech-

niques into VR environments [19, 22, 23, 54, 83], or extended tradi-
tional credentials to include arrangements of VR objects [5,6,21,24].
While PIN/password methods can be used in cross-system authen-
tication, they are rendered unsafe once the unintended user gains
access to the PIN/password. Initial work in behavior-based VR au-
thentication [35,49,61,65,68,82] has been limited to head motions in
Google Glass and Google Cardboard, platforms with limited range
of motion due to the absence of hand controllers that are integral to
immersive VR. More recently, a growing movement has emerged
on performing behavior-based authentication using hand-controller
based VR systems, spurred by the proliferation of high-end VR
systems and the recognition of the need for VR systems in essential
services. Table 1 provides a summary of the prior work in behavior-
based VR biometrics when enrollment and use-time data is provided
on the same system, particularly the HTC Vive [2, 31, 43, 53, 55].
The approaches have been complemented with real-time implemen-
tations of behavior-based authentication [44, 46].

Using existing behavior-based work in VR biometrics without
modification is likely to yield low performance, as algorithms based
on classifiers [43, 44, 55] are not structured to learn the relationships
between the enrollment and use-time VR systems. Methods that use
distances between raw trajectories or higher-level features [2, 31, 47,
53] are unlikely to provide high within-user cross-system matches in
VR when differences in geometry and weight distribution of devices
cause user behavior to be modified across systems. The work of
Miller et al. [47] is the first and to date only work to investigate
VR biometrics in multiple VR systems. They capture data for 46
users performing the ball-throw from Kupin et al. [31], of which
41 users are right-handed and 5 are left-handed. They perform user
identification with the 41 right-handed users using the perceptron
proposed in Ajit et al. [2]. Their work uses position, orientation,
linear velocity, and angular velocity from the controllers and the
headset, and the trigger state of the right controller as features. While
within-system accuracies are upwards of 90% and reach 97% for
the HTC Vive, cross-system accuracies are significantly lower, with
maximum accuracies ranging from around 58.54% to 85.12%.

Table 1 also demonstrates that in general, the number of users
spanning VR datasets is low. Collecting data for biometrics in
VR environments is challenging since widespread adoption and
use of VR devices for mass consumer applications is yet in an
embryonic state. Groups performing VR biometric studies conduct
lab-based collections of VR interactions, unlike traditional desktop
and smartphone applications where data can be collected on personal
devices. We use the dataset from the work of Miller et al. [47] as
with 46 users each using 3 VR systems, the dataset is the largest
of its kind, and has the highest diversity of VR systems, containing
systems that use lighthouses and cameras to track device motion.

Gait-based authentication. In using motion trajectories from
hand-held and head-mounted devices, our work is related to re-
search in authentication using gait, i.e., the cyclic walking motions
of a subject as extracted from accelerometers on smart and wear-
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able devices. Gait-based authentication is a well-studied area of
research, with a large range of surveys conducted over the past
two decades [12, 15, 20, 60, 74]. To the best of our knowledge,
the approach of Hoang et al. [26] is the only work that performs
cross-sensor gait authentication using accelerometer data. Their
work shows an accuracy of 91.33% on identification of 14 subjects
by comparing gait features from a Nexus One with features from
an LG Optimus G. Data was collected by physically binding the
two devices together. The physical binding enables signals for the
same walk instance from the two devices to be highly correlated.
The work lacks analysis of authentication performance when one
device is used in a separate walk instance from the other device,
where natural intra-user variability across walk instances is likely
to be a confounding factor. The work of Hoang et al. cannot be
directly extended to cross-system authentication in VR, as space and
usability restrictions prevent headsets or hand controllers belonging
to different VR systems from being physically co-mounted on the
user. Additionally, trajectories for the large range of tasks that users
are likely to perform in VR, e.g., throwing, pointing, swiping, and
object-moving may not have characteristic patterns such as repeti-
tions, crests, and troughs generated by walking motions that are used
as information sources in Hoang et al.

Cross-Domain Biometrics. A large body of work exists in
cross-domain biometrics particularly in the domain of matching fin-
gerprints from different contact-based sensors [4, 62, 63], matching
contact-based to contactless fingerprints [10, 36–38], iris/periocular
biometrics within the same spectrum [29, 58, 64, 79], and cross-
spectrum periocular biometrics [3, 28, 59, 66]. Most approaches
for fingerprint matching [4, 10, 36, 38, 62, 63] rely on the presence
of distinctive features such as minutiae or interest points [40] in a
person’s fingerprint. These methods cannot be directly transferred
to VR behavior, as distinctive reliable regions of a user’s trajectory
are not readily identifiable a priori. Most work in iris/periocular
biometrics has similarly used classifiers with hand-crafted features
that are specific to 2D images, e.g., histograms of gradients [64, 66],
local binary patterns [3, 28, 59, 64], interest points [3, 64], Gabor
features [3], Fourier transforms on Laplacian pyramids [58], and
ordinal measures [79], fused with features using linear dictionary
learning techniques [28]. These features are not immediately adapt-
able to behavior trajectories with non-linear information such as
orientation. The approach of Kandaswamy et al. [29] proposes a
multi-source deep transfer learning approach, where the accuracy
of a neural network architecture at performing user identification
from iris images for a target (use-time) sensor is improved through
an iterative approach by transferring weights learnt from multiple
sources and fine-tuning through re-training. Their approach requires
a prior dataset for a user to re-train the target network, and thereby
cannot work when no prior data exists, as in our case where users
provide use-time data on a new device for the first time after pro-
viding enrollment data on an alternative device. Additionally, since
they provide user identities rather than match scores, their approach
is not generalizable to new users without network re-training, and
their approach cannot be re-targeted to authentication. Lin and Ku-
mar [37] use Siamese networks on hand-crafted features, particularly
ridge and minutiae maps, for matching contactless to contact-based
fingerprints, and provides best EER of 7.11%. In our work, we
avoid using hand-crafted features to prevent biasing, and enable the
network to automatically learn relevant features from the input data.

Siamese Neural Networks in Behavior Authentication.
Siamese networks have been used for authentication of users inter-
acting with smart devices [9,14,16,80], and in handwriting/signature
verification [1, 71, 73, 78]. Prior work in authentication [9, 14, 80]
uses Siamese networks to generate distances for a user using the
same device at enrollment and use-time, as opposed to different
systems as in our work. Work by Fan et al. [16] uses a Myo armband
to use EMG data for authentication. While the authors demonstrate
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Figure 1: Siamese neural network architecture with FCN limbs. The
output of Layer k is generated by performing 1D convolution with the
input to the layer using Fk filters, followed by batch normalization and
application of the ReLU activation function. The outputs from Layer 3
are pooled into a 128-dimensional feature vector using global average
pooling (GAP). The output of the Siamese network is the Euclidean
distance between the output vectors of the two limbs.

the ability to work across multiple devices, the approach requires all
users to wear a Myo armband when interacting with each device.

3 APPROACH FOR CROSS-SYSTEM VR BIOMETRICS

Our approach uses Siamese networks to represent a distance function
between trajectories from an enrollment and a use-time VR system.
As shown in Figure 1, the network consists of limbs that each gener-
ate low-dimensional embeddings using headset and hand controller
trajectory features from two input instances. The network is trained
such that the Euclidean distance between the low-dimensional em-
beddings from input instances of the same user is low.

Dataset. We use the dataset of Miller et al. [47], the largest VR
biometrics dataset in terms of number of users, and the only one
with multiple VR systems. The dataset consists of device trajectories
recorded for 46 users interacting with three off-the-shelf VR systems,
particularly the HTC Vive, Oculus Quest, and HTC Vive Cosmos
in that order over a period of several days. Each user uses each
system on two separate days, and provides 10 ball-throws on each
day. Each throw is recorded for 3 seconds at the frame rate of the
corresponding system. Of the 46 users, 41 are right-handed. The
Vive uses a lighthouse-based tracking, while the Quest and Cosmos
perform tracking using multiple cameras on the headset. We only
use the 41 right-handed users to provide comparisons to Miller et al.

Input data preparation. Since the frame rate of the Quest at
75 FPS differs from that of the Vive and Cosmos at 45 FPS, we
re-sample the data from the Quest to have the same frame rate as
the HTC systems. Given trajectories from the Quest controllers
and headset, we re-sample the position and orientation using linear
interpolation and spherical linear interpolation respectively. Upon
re-sampling, the trajectories from all three VR systems contain 135
trajectory point samples, with right controller position, right con-
troller orientation, left controller position, left controller orientation,
headset position, and headset orientation as features. While the
dataset of Miller et al. also contains the trigger state of the right
controller as a feature, we do not use the trigger state in this work.
Prior to use, we normalize the positions of each device’s trajectory
to have zero mean and unit variance, and we center the positions by
subtracting the bounding box center of the trajectory.

Network Architecture. Figure 1 demonstrates the architecture
of the Siamese network used in this work. We choose to use FCNs,
as they provide the highest accuracy for within-system user identi-
fication in Mathis et al. [43], and the second highest accuracy for
classification on a variety of time-series tasks [17]. We use a 3-layer
FCN for each limb, based on the results from Wang et al. [76]. The
input to the first layer consists of a T ×P time series matrix, where
T represents the number of time samples within the input trajectory,
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E/U Q1/V1 Q1/V2 Q2/V1 Q2/V2 Q/V Q1/C1 Q1/C2 Q2/C1 Q2/C2 Q/C V1/C1 V1/C2 V2/C1 V2/C2 V/C

R,L / P,O 2.93 3.11 1.71 2.37 2.53 3.24 3.24 3.90 5.16 3.89 5.51 4.95 4.36 5.55 5.09

R,H / P,O 2.48 1.43 1.71 1.80 1.86 3.52 4.53 3.34 1.77 3.29 3.63 3.17 3.17 5.46 3.86

R,L,H / P,O 2.22 1.38 0.68 1.28 1.39 3.55 3.91 2.44 2.61 3.13 4.88 3.49 4.52 5.89 4.70

R,L / P 4.88 3.02 3.17 4.15 3.80 6.21 7.36 7.56 9.02 7.54 5.01 6.56 4.26 6.10 5.48

R,H / P 3.39 5.16 2.68 2.44 3.42 6.77 5.73 4.63 5.85 5.75 4.06 4.45 4.63 4.63 4.44

R,L,H / P 2.71 3.75 3.05 2.52 3.01 5.37 6.73 6.45 5.86 6.10 5.95 5.66 5.41 5.25 5.57
Table 2: Average authentication EERs as percentages using 100% of the trajectory points. E = Enrollment, U = Use-time, Q = Oculus Quest, V =
HTC Vive, C = HTC Vive Cosmos, 1 and 2 refer to the day on which the data was captured, R = Right controller, L = Left controller, H = Headset,
P = Position, O = Orientation. Q/V, Q/C, and V/C represent averages of values in the preceding four columns. EERs in bold are the lowest in their
column. Combined bold/italicized EERs are the lowest amongst 100% and 80% of the trajectory points (80% points found in supplementary).

and P represents the number of features at each time sample. The
first layer consists of F1 = 128 filters applied using 1-dimensional
(1D) convolution with a kernel size of K1 = 8 followed by batch
normalization and application of the rectified linear unit (ReLU)
activation function to generate an output of size T ×F1. The second
layer consists of F2 = 256 1D convolutional filters with a kernel size
of K2 = 5, and generates an output of size T ×F2 after batch normal-
ization and ReLU activation. For the third layer, we use F3 = 128
1D convolutional filters with a kernel size of K3 = 3 to generate an
output of size T ×F3 after batch normalization and ReLU. The out-
put of the third layer is averaged using global average pooling (GAP)
to obtain the low-dimensional embedding vector with Fout = 128 el-
ements for the corresponding limb. The network output corresponds
to the Euclidean distance between the embeddings.

Training. We train the Siamese network using the enrollment
and use-time data from a training set of M users. Each user has
n trajectories for a total of Mn training trajectories. To train the
network, we form M2n2 trajectory pairs, where Mn2 of the pairs
come from the same user, while the remaining M(M−1)n2 come
from different users. Training involves optimization of the con-
trastive loss [25]. For the ith pair of time series inputs Xi

1 and
Xi

2 and the ground truth output Y i, the contrastive loss is given as(
1−Y i)(HW

(
Xi

1,X
i
2
))2

+ Y i max
(
0,m−HW

(
Xi

1,X
i
2
))2

, where
HW

(
Xi

1,X
i
2
)
=

∥∥GW
(
Xi

1
)
−GW

(
Xi

2
)∥∥ is the Euclidean distance

between the low-dimensional embeddings GW
(
Xi

1
)

and GW
(
Xi

2
)
,

W represents the weights shared across both limbs, and m represents
a margin. Inputs Xi

1 and Xi
2 are fed to the first and second limbs

respectively. The contrastive loss [25] has been demonstrated to
improve discrimination between dissimilar pairs by forcing them to
play a role in optimization of the loss only if their radius is within
m. We set m to 1.0. We train using the Adam optimizer [30], with
a learning rate α = 0.001 and moment parameters β1 = 0.9 and
β2 = 0.999. We use a batch size of 64 during training, and we
train for 100 epochs. We use a leave-one-out approach in this work
to maximize the quantity of training data available, which yields
41 training folds that we split over 23 machines described in the
supplementary material. Each fold takes 50 to 90 minutes to train.

Testing. We perform tests to evaluate the tasks of authentication,
i.e., verifying that the user’s identity matches their claimed identity
with the assumption that the user has provided some known creden-
tial, and identification, i.e., returning the identity of an unknown
user. For both tasks, we use the trained Siamese network to compute
the distance between the use-time trajectory of a test user, and the
enrollment trajectories of all users in our dataset. By including all
users (i.e., training and test) in the enrollment list, we evaluate the
performance of our approach when the input user is compared to
a large set of enrollment users. We ensure that neither enrollment
nor use-time trajectories for the test user are used during training.

To authenticate a test user, we return for each enrollment user the
distance to the closest trajectory. We then obtain for a particular
choice of threshold, the true accept rate (TAR), i.e., the rate at which
the user’s claimed identity is correctly accepted, and the false accept
rate (FAR), i.e., the rate at which an impostor is incorrectly allowed
through. We vary the threshold from 0 to the maximum distance to
obtain receiver operating characteristic (ROC) curves, and obtain the
EER as being the value of the FAR at which FAR=1-TAR. The EER
provides a measure of the strength of a system at correctly rejecting
impostors, while keeping false positives low for usability. To assess
identification capability, we obtain the user corresponding to the
nearest enrollment trajectory as the label for the use-time trajectory,
and evaluate accuracies at correctly identifying the user.

4 RESULTS

We demonstrate results for evaluation of our proposed approach
using the 41 right-handed users in the Miller et al. [47] dataset by
performing leave-one-user-out cross-validation. For the ith cross-
validation fold, we leave out all n = 10 enrollment and use-time
trajectories for the ith user, and train a Siamese network with the
enrollment and use-time trajectories of the remaining M = 40 users
using the training procedure discussed in Section 3. During testing,
we obtain the distance for each of the n use-time trajectories of the
ith user and the (M+1)n = 410 enrollment trajectories for all users,
and use the test procedure discussed in Section 3. For authentication,
we show best average EERs over all epochs for the neural networks
from our work, summarized in Table 2. The table provides EERs
by using position (P) and orientation (O) as well as using position
only (P) from various combinations of the right controller (R), left
controller (L), and headset (H). Column headers provide VR systems
compared for enrollment (E) versus use-time (U). The numerals 1
and 2 represent trajectories captured on the first and second day that
the system was used. We compare first and second day trajectories
for the Vive (V) against the Quest (Q), the Cosmos (C) against the
Quest, and the Cosmos against the Vive. Other system pairings are
not examined in order to respect temporal order, i.e., to ensure en-
rollment is done using systems used prior to use-time. In Table 3, we
demonstrate comparisons of our accuracy results to the approaches
of Miller et al. and Mathis et al. [43] for each evaluation condition.
Both methods perform user identification. To replicate the approach
of Mathis et al., we train their best performing architecture, i.e., the
FCN, to output the user label using the enrollment data of all 41
users. We set up the Mathis et al. FCN to have the same structure
as one limb of the Siamese network, with the exception that the
Mathis et al. FCN ends with a dense layer consisting of 41 soft-
max activation outputs ranging from 0 to 1. We retain the output
with the maximum value as the recognized user ID. We train the
Mathis et al. FCN for 2000 epochs, while keeping the remaining
hyperparameters the same as in Section 3. We report averages over
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E/U Q1/V1 Q1/V2 Q2/V1 Q2/V2 Q/V Q1/C1 Q1/C2 Q2/C1 Q2/C2 Q/C V1/C1 V1/C2 V2/C1 V2/C2 V/C

R,L /
P,O

Ours 94.87 93.65 96.09 97.31 95.48 90.73 93.41 86.58 84.87 88.90 83.17 87.07 87.56 85.12 85.73

[43] 73.65 60.73 85.12 70.97 72.62 45.12 46.82 50.48 46.34 47.19 51.95 48.53 53.17 48.53 50.55

[47] 48.78 45.85 60.24 52.20 60.73 28.05 27.56 25.61 23.71 33.23 57.07 53.66 45.12 44.15 57.62

R,H /
P,O

Ours 94.63 98.04 94.39 97.31 96.09 84.39 81.70 91.70 93.90 87.92 85.85 86.58 92.19 86.82 87.82

[43] 57.07 50.24 60.73 56.58 56.16 44.87 34.87 50.00 45.85 43.90 48.53 43.17 57.31 49.26 49.57

[47] 54.15 48.05 63.66 56.10 47.13 24.39 25.12 30.98 29.27 27.44 64.88 60.73 53.90 49.27 38.23

R,
L,H /
P,O

Ours 96.58 99.26 100.00 98.29 98.53 85.36 84.63 93.17 92.19 88.84 85.85 87.31 87.07 85.60 86.46

[43] 64.14 57.31 70.24 63.65 63.84 48.29 45.12 53.65 54.63 50.42 55.60 47.56 61.70 51.70 54.14

[47] 55.61 49.02 74.39 63.90 55.49 25.85 29.76 42.93 34.39 33.23 64.63 60.24 55.12 50.49 57.20

R,L /
P

Ours 86.34 90.24 92.68 86.58 88.96 77.31 73.41 69.75 68.29 72.19 80.73 76.34 79.51 78.04 78.66

[43] 62.19 50.73 79.26 67.56 64.94 38.29 43.90 46.34 45.36 43.47 46.82 47.56 49.26 48.04 47.92

[47] 63.41 47.32 50.24 41.71 50.67 35.61 32.93 30.98 27.07 31.65 45.37 46.34 41.46 35.37 42.14

R,H /
P

Ours 94.87 88.04 91.95 93.65 92.74 79.26 79.02 83.65 78.53 80.12 89.26 83.65 87.56 82.19 85.67

[43] 69.26 54.87 78.29 62.92 66.34 39.51 41.95 51.70 46.34 44.88 57.31 53.41 64.39 52.92 57.01

[47] 63.17 49.02 42.44 33.90 47.13 30.98 30.49 22.93 22.20 26.65 48.29 47.80 28.54 28.29 38.23

R,
L,H /
P

Ours 93.90 87.56 92.43 92.68 91.64 81.21 79.26 73.65 80.24 78.59 81.21 78.29 80.00 81.70 80.30

[43] 69.02 58.78 80.97 67.80 69.14 47.07 48.53 53.17 50.97 49.94 55.12 51.46 61.70 53.41 55.42

[47] 60.98 52.20 53.17 43.41 52.44 36.59 34.88 31.95 29.27 33.17 50.24 48.54 36.83 38.29 43.48

Best [47] 68.05 59.51 82.68 71.46 70.43 41.95 41.95 50.73 44.63 44.82 66.10 62.44 63.41 58.54 62.62
Table 3: Average identification accuracies as percentages using 100% of the trajectory points. Same conventions used in Table 2 apply here,
except that highest accuracies are bolded/italicized.

all n = 10 trajectories for all 41 users using our approach and the
methods of Miller et al. and Mathis et al. We show the best average
accuracy over all epochs for our work and Mathis et al. The last row
of Table 3 provides maximum accuracies obtained by Miller et al.
upon examining 213 feature combinations.

Evaluation of results. For user authentication, our approach
provides lowest EERs when Quest trajectories are used at enroll-
ment and Vive trajectories at use-time, with an average across all day
combinations of 1.39% when all features and trajectory points are
used, as shown in Table 2. EERs for comparing Cosmos use-time
trajectories against Quest enrollment and Vive enrollment trajecto-
ries are higher, with lowest across-day averages obtained at 3.13%
and 3.86% respectively. We discuss potential reasons for differences
in performance between system pairings in Section 5. Similar trends
are observed for user identification, as shown in Table 3, where the
highest average accuracy across all days is 98.53% for comparing
Quest enrollment to Vive use-time when all features are used, and
average accuracies across all captures for Cosmos use-time trajec-
tories are lower at 88.84% and 87.86% when compared to Quest
and Vive respectively as enrollment. ROC curves for authentication
and confusion matrices for identification are shown in the supple-
mentary material. Prior approaches that perform matching using
nearest-neighbor distances with the ball-throwing motion [2, 31, 47]
demonstrate higher accuracies when the later portions of the tra-
jectory corresponding to the non-directed hand return are removed,
since non-directed motions may demonstrate high variability and
may have limited use as a behavior signature. In the supplementary,
we provide EERs and accuracies for evaluating Siamese networks
when 80% of the trajectory points are retained. Using 80% of the
points with all devices and features yields average authentication
EERs of 1.38%, 3.33%, and 4.73%, and identification accuracies
of 84.93%, 86.95%, and 97.68% for Vive-enrollment-Cosmos-use,

Quest-enrollment-Cosmos-use, and Quest-enrollment-Vive-use re-
spectively. The comparable performance using 80% and 100% of
the points indicate that the Siamese network is successful at auto-
matically eliminating unnecessary portions of the trajectory. The
worst performance—with highest average EERs of 3.80%, 7.54%,
and 5.57%, and lowest average accuracies of 88.96%, 72.19%, and
78.65%— is obtained when solely position features are used, and
when the head is eliminated for all except EER of Vive-enrollment-
Cosmos-use, indicating that extremity orientations and head motions
during an intentional action contribute as a signature. As a baseline,
we apply our approach to within-system authentication with posi-
tion and orientation. We obtain lowest EERs for Quest, Vive, and
Cosmos of 0.73%, 0.99% and 1.57% respectively, and highest accu-
racies of 99.75%, 99.51%, and 98.04% respectively. Best results are
obtained when all devices are used for Quest, right controller and
headset for Vive, and right and left controller for Cosmos.

Comparison to Mathis et al. [43]. Our identification results
demonstrate an overall improvement of 30.78%±3.68% over the
approach of Mathis et al., with the average taken over accuracies
for all system pairings, feature sets, and trajectory points. Their
approach shows highest average accuracies of 73.96%, 54.57%, and
57.80% for Quest-enrollment-Vive-use, Quest-enrollment-Cosmos-
use, and Vive-enrollment-Cosmos-use when 80% of the trajectory
points are used. Quest-Cosmos and Vive-Cosmos accuracies are
highest when using all devices and features, while Quest-Vive accu-
racies are highest when the headset is left out. The low performance
of Mathis et al. is explained by their approach being agnostic to
systematic differences between two systems. Since the training data
does not contain information from the use-time system, the networks
are trained to be biased toward the enrollment system. On average,
Mathis et al. show lower accuracies for the same feature set when
all points are used in comparison to when 80% of the points are
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Figure 2: Comparison of results from our work against Mathis et al. [43]. Each block shows average activation maps for the closest trajectory for
the user returned by Mathis et al. in the first column and the best enrollment trajectory returned using our approach in the second column, together
with 3D plots in the third column demonstrating use-time trajectories in red, and matched enrollment trajectories returned using our approach in
purple and Mathis et al. in blue. The green circles demonstrate that the network trained using the Mathis et al. approach yields activations that are
farther for the correct user, and the Siamese network yields activations that are farther for the incorrect user and closer for the correct user.

used, indicating that the Mathis et al. FCN is likely unsuccessful at
recognizing that non-directed hand motions during the return phase
may differ for hand controllers of different systems. The Siamese
networks used in our work place less emphasis on the latter portions
of the trajectories, where the physical characteristics of the device
may induce irregularities in non-directed return motions.

Figure 2 provides a visualization of the results obtained using
the FCN from Mathis et al. against our approach for 3 users, with
one user shown per block. For all figures, we show visual results
for the position of the right controller due to the ease of viewing
the large-scale motion of the right controller, however, the analysis
applies to position and orientation features from both controllers and
the headset. In each user’s block, the top two activation plots repre-
sent average activations generated using the first layer of the FCN
limb of our Siamese network, while the bottom two plots represent
average activations generated from the first layer of the Mathis et al.
FCN. We generate the average activation by averaging the outputs
of the ReLU function over all filters given the trajectory features
as input. The first layer activations, though not representative of
the comprehensive influence of the network, provide a reasonable
visualization of the capability of the earlier part of the network in
generating system-independent representations. The approach of
Mathis et al. returns the user ID rather than a trajectory match.
To facilitate visualization, given a use-time trajectory’s activation
in red, we show the closest matching activation for an enrollment
trajectory from the user identified by Mathis et al. in blue in the
first column of each block. The closest match is generated by taking
the sum-squared distance between the use-time activation and all
n = 10 enrollment activations for the detected user, and returning
the enrollment activation with the lowest distance. In the second
column of each block, we show the activation for the trajectory of
the best matching user as returned by our approach in purple com-
pared to the use-time activation in red. The third column of each
block shows 3D plots for the use-time trajectory in red, and the
enrollment trajectories for Mathis et al. for the closest activation in
blue and the closest user using our Siamese network in purple. The
figure demonstrates that Siamese activations for the correct user are
closer than the incorrect user, while Mathis et al. activations for the
correct user are farther. The green circles represent regions where
the activation maps deviate from each other, resulting in an incorrect
match using the approach of Mathis et al., due to its being agnostic
to systematic deviations between two VR systems. We leverage the
Siamese architecture to learn systematic deviations, thereby ensuring
that activations from the same user demonstrate similarity.

Comparison to Miller et al. [47]. Our identification results
demonstrate an overall improvement of 29.79%±8.58% averaged
over system pairings when accuracies using our best performing
features are compared against accuracies from best performing fea-
tures from Miller et al. shown in the last row of Tables 3. The

Similar Activations for Trajectory by Siamese Network Similar Activations for Returned by Miller et al.
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(a) (b) (c) (d)

User 18 Vive 1 Trajectory 4 User 18 Quest 2 Trajectory 9User 28 Quest 2 Trajectory 4

User 21 Vive 1 Trajectory 7 User 21 Quest 2 Trajectory 1User 2 Quest 2 Trajectory 8

User 15 Vive 1 Trajectory 4 User 15 Quest 2 Trajectory 9User 1 Quest 2 Trajectory 8

Figure 3: Comparison of results from our work against Miller et al. [47]
shown using right hand trajectories. (a) Miller et al. yield an incorrect
user match in blue to the use-time trajectory in red. (b) Our Siamese
network returns the correct match in purple (c) by weighting portions
of the trajectory with similar activations in pink. Similar activations for
the incorrect match in cyan are fewer. (d) Average activations plotted
against time, demonstrating similarity of shape between use-time and
enrollment trajectories for the same user.

approach of Miller et al. demonstrates higher performance when the
nearest neighbor distance calculation used in their work uses 80% of
the trajectory points and disregards the latter 20% of the trajectory
involving non-directed motions. Their approach provides best av-
erage accuracies of between 51.28% and 72.74% using 80% of the
points, and between 44.82% and 70.43% using 100% of the points.
Figure 3 provides a visual demonstration of the trajectory matches
returned by the approach of Miller et al. [47] compared against our
matches for three randomly selected users. For a use-time trajectory
shown in red, Figure 3(a) demonstrates that the closest matching
enrollment trajectory by the approach of Miller et al. shown in blue
yields an incorrect user match. Figure 3(b) shows that the Siamese
network in our approach returns the closest trajectory belonging
to the correct user, shown in purple. As shown in Figure 3(c), the
Siamese network weights portions of the trajectory of higher rele-
vance, as shown by the points in pink that represent similar average
activation outputs generated from the first neural network layer. We
detect similar activations as those that are greater than a threshold of
0.5, and that have an absolute difference within a tolerance of 0.03.
The plots demonstrate that similar high activations occur earlier
in the trajectory, during the directed motions performed in the lift,
poise, and thrust phase of the ball-throwing action, whereas the hand-
return portions of the trajectory are weighted lower by the Siamese
network. Points in cyan on the incorrectly matched trajectory from
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E/U Q1/V1 Q1/V2 Q2/V1 Q2/V2 Q1/C1 Q1/C2 Q2/C1 Q2/C2 V1/C1 V1/C2 V2/C1 V2/C2

R,L / P,O 92.68 89.15 86.78 90.68 88.10 89.76 82.20 78.27 80.12 81.05 81.20 80.37

R,H / P,O 89.93 89.66 88.44 88.68 79.10 73.78 84.93 87.93 83.22 84.15 83.76 79.93

R,L,H / P,O 92.80 93.34 94.71 94.54 84.46 82.73 89.22 88.68 84.49 85.63 83.63 80.73

R,L / P 76.61 77.66 79.41 69.49 69.71 67.56 61.02 57.90 65.98 62.85 62.59 63.88

R,H / P 84.76 75.83 85.20 75.29 68.56 72.22 77.15 73.68 77.20 74.51 73.90 76.37

R,L,H / P 86.61 77.73 84.56 81.07 75.61 71.20 66.59 72.05 74.66 69.63 69.56 72.63
Table 4: Rate of occurrence of correct user in top 10 enrollment trajectories as a percentage for 100% the trajectory points. The same conventions
used in Table 3 apply here, except that highest occurrence rates are bolded/italicized.

User 26User 4 User 11 User 21

Q
2/

V
1

R
,L

,H
 / 

P,
O

User 6 User 20 User 32

User 2 User 27 User 34

Q
2/

C
2

R
,H

 / 
P,

O
V

2/
C

1
R

,H
 / 

P,
O

User 40

User 39

Figure 4: Box plots of outputs from the Siamese network. The vertical
axis represents the output value. The horizontal axis represents the
use-time trajectory for each user. Blue plots correspond to enrollment
trajectories for the same user, while red plots correspond to those
of different users. The plots show randomly chosen users under the
highest-performing system pairings and feature sets.

Miller et al. show fewer similar activations to the use-time trajectory
under the Siamese network. Figure 3(d) shows average activations
plotted against time. The use-time trajectory activations match those
from their own enrollment trajectory more closely than those from
the incorrect user returned by Miller et al.

Evaluation of robustness. In Table 4, we evaluate the robust-
ness of our approach by obtaining how often the correct user was
identified within the top 10 enrollment trajectories when 100% of
the trajectory points are used; results for using 80% trajectory points
are shown in the supplementary. As shown by Table 4, on average
more than 80% (i.e., 8 or higher) of the top 10 trajectories belong to
the correct user using our approach. Quest/Vive occurrence rates ex-
ceed 90%. Figure 4 shows box-plots of distances for each use-time
trajectory to enrollment trajectories belonging to the same user and
different users in blue and red respectively. The plots are shown for
randomly chosen test users for the best performing system pairing
and feature set. The plots demonstrate a clear separation of distances
for each test user. Separation is observed even when distances are
large, e.g., in the case of Users 11, 32, and 27. The separations
support the high rate of occurrence of the correct user in the Top 10
enrollment trajectories in Table 4. The results demonstrate that the
Siamese network is trained to learn a repeatable pattern of similarity.

Evaluation of generalizability using leave-one-out. One con-
cern that may arise is whether the leave-one-out approach leveraged
in this work to overcome data deficiency can be used to evaluate gen-
eralizability of the method in generating high accuracy when more
users may be added to the test set. To assess this concern, we visual-
ize the average activation at the first layer against time in Figure 5(a)
for use-time trajectories of several users for various system pairings
and feature sets. The plot in red represents the average activation
when the use-time trajectory is part of the test set for the network
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Figure 5: (a) Plots of activation outputs from first layer of Siamese
network for use-time trajectories along the vertical axis against time
along the horizontal axis. Red and black plots represent maps when
the trajectory is used in the test and training set respectively. Plots
are generated for randomly chosen users for various system pairings
and feature sets. The plots demonstrate that individual networks
learn and generate similar information for the same user. (b) Plot of
accuracies for various device/feature combinations against increasing
time differences within system pairings.

trained when the corresponding user is the left-out user. The plots
in black represent average activations when the use-time trajectory
is used to train the remaining 40 out of 41 networks when the user
forms a part of the training set for those networks. The black plots
demonstrate that different networks learn similar information using
input from the same user. The red plots demonstrate that a network
trained by leaving out the user generates information similar to the
output if the user were used during training, indicating that with 40
training users, the network is generalizable to novel users.

5 DISCUSSION

Our approach shows lower average EERs and higher average accura-
cies for comparing Vive trajectories against the Quest, while EERs
are higher and correspondingly accuracies are lower when Cosmos
trajectories are compared against the Vive and the Quest. A number
of factors play a role in the variability in accuracy across system pair-
ings, such as the time duration between data collection which can
influence evolution of long-term user behavior, clothing and acces-
sories of the person, the type of tracking method used—lighthouse
versus camera— and the influence of mass distribution of the sys-
tem components on the motion of the user. The time span in days
between successive captures is 1.15±0.76 between the two Quest
captures, 2.13±2.26 between the second Quest and first Vive cap-
tures, 3.09±2.03 between the two Vive captures, 7.91±8.80 between
the second Vive and first Cosmos captures, and 1.93±1.54 between
the two Cosmos captures. The time spans induce Quest and Vive
trajectories be closest in time, followed by Vive and Cosmos tra-
jectories. Quest and Cosmos trajectories are the furthest apart. To
evaluate the influence of time, in Figure 5(b) we show plots of the
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accuracies for the Siamese network from for 100% trajectory points
against the average day difference over users for that system pair-
ing. When position only is used as a feature, the accuracy drops as
the time between the system pairings grows, indicating that users
may change their positional placement over time. When orientation
is included as a feature, the performance drops when the Cosmos
is used at use-time, however, the enrollment system plays a lesser
role. Variability in tracking appears to have a limited influence on
accuracy, since using the lighthouse-based Vive at use-time and the
camera-based Quest at enrollment provides high accuracy, whereas
the accuracy of the camera-based Cosmos does not consistently drop
over time whether the Vive or the Quest is used during enrollment.
The accuracy drop may be explained by differences in influence of
the physical characteristics of the VR system devices on the user’s
motion. During user grasp of the smaller 3-inch handle of the Cos-
mos controller, the shift in center of mass toward the heavier infrared
(IR) emitter ring may influence limb motion. For both the Quest
and the Vive controllers, the center of mass is more likely to be
closer to the user’s hand. While the Vive’s handle at 5.75 inches
is longer than the Quest’s handle at 3.5 inches, the Quest’s IR ring
is thinner than the Cosmos and the Vive. For users with use-time
Cosmos trajectories showing low accuracy, the Cosmos’s emitter
ring may weight down the user’s hand further back during the poise,
and may restrict thrust during forward motion. The drop for Cosmos,
shown in the lower same-system performance, may also be explained
by inaccuracy of inside-out tracking in localizing rapid motions or
tracking extremities that leave the cameras’ fields of view.

The use of behavior to distinguish genuine users from impos-
tors comes with ethical concerns as the underlying behavior of
users can be maliciously used for marketing or user monitoring in
decentralized environments when user behavior data is processed
remotely. Similar ethical concerns have been raised in smartphone-
based authentication and work by Murmuria et al. [48] localizes
the processing on the device to ensure no personally identifiable
information is available to external applications. In our work, once
the Siamese networks have been trained they can be deployed on a
user’s device to ensure security is maintained in a local environment.
The use of deep learning as performed in our work enables rapid
deployment on user devices for local processing, given that despite
resource-intensive training phases, trained networks can be deployed
on resource-constrained devices to run in real-time, as has been
demonstrated for small form-factor computing such as the Raspberry
Pi [34, 72]. For instance, work by Miller et al. [46] demonstrates a
real-time VR system for authenticating users that can operate fully
offline by passing user trajectories to a pre-built classifier. During
testing, our approach provides interactive performance at 80 mil-
liseconds to authenticate an input use-time trajectory by running
the FCN on trajectory using a GTX 1080Ti GPU, and computing
distances to the enrollment trajectory FCN outputs using a single
core of an AMD Ryzen 2700X 3.7GHz CPU. While the distance
computations scale with the number of enrolled users, computation
of the Fout-dimensional enrollment limb (i.e., Limb 1) outputs of
the Siamese network can be done offline, necessitating a single run
of the use-time limb (i.e., Limb 2) and computation of independent
Euclidean distances that can be run in parallel on modern multi-core
hardware. For severely resource-constrained devices, future work
can investigate the possibility of matching an input user to enrolled
users within a group, where group-level similarities are identified by
clustering trajectories and/or intermediate limb outputs. Once the
Siamese networks have been trained using enrollment/use-time pairs
from a sufficient set of training users to achieve high authentication
performance, for new test users the Siamese networks need only be
used to perform computation of distance value against their enroll-
ment data, with minimal need for re-training. In future work, we will
evaluate performance trends with varying user numbers, to identify
asymptotic behavior of authentication and influence of intermittent

re-training on resource use during training and deployment.
While Mathis et al. [45] argue that the knowledge-based ap-

proach remains the minimally invasive method for authentication,
knowledge-based methods fail to address the challenge of a user
deliberately handing over their credentials to an ally, e.g., in the case
of a student attempting to circumvent a VR examination. In such a
scenario, a single-point-of-entry check of the user’s identity using
the de-facto password/PIN is insufficient. Thus, as we consider
future applications of VR, the user session must be continuously
monitored to ensure the legitimate user remains in control. Miller et
al. [46] use VR behavioral biometrics to continuously maintain the
security of a user’s session by verifying whether a user’s behavior
matches past behavior. In their demonstration, a confederate takes
over a user session, but is immediately identified as an impostor
through their behavior. Once trained, our Siamese network can be
deployed for continuous session monitoring whereby each user tra-
jectory is passed to the network for testing, and the user session is
locked if the claimed user identity does not match the active user.

There is a substantial scope for future research emanating from
our findings. Work is needed on disambiguating factors influencing
the trajectories of the various devices comprising the VR system by,
for instance, performing studies on the same day, or keeping the time
difference between system pairs constant, i.e., no more than a day
apart, with randomization so that systems are not presented to users
in the same order. Detailed investigation of the influence of tracking
mechanisms is essential, by comparing camera-based systems such
as the Oculus Quest, the Oculus Quest 2, and the HTC Vive Cosmos
against each other, comparing lighthouse-based systems such as the
HTC Vive and the Valve Index against each other, and evaluating
cross-tracking performance by using camera-based systems as en-
rollment and lighthouse-based systems as test, and vice versa. This
work should investigate range of motion covered by the fields of
view of the tracking devices, and augmenting built-in tracking with
360◦ head-mounted cameras and multi-view external sensors. Work
is needed in fine-grained analysis on variation in weighting of the
motion trajectories due to differences in the physical characteristics
of the hand controllers and headset, as well as variation in clothing
and accessories donned by the person. Studies are also essential in
evaluating tradeoffs between usability and security under the influ-
ence of system-induced and external alterations of user behavior. In
this work, we investigate the task of ball-throwing due to its vulnera-
bility to ready mimicry given its simplicity and real-world familiarity.
Complex multi-stage actions related to higher-level tasks such as
for instance filling out a form are likely to be non-repeatable by
impostors, but also simultaneously show high within-user variability.
Our work demonstrates that features such as wrist orientation and
head motion are essential aspects of the behavioral biometric signa-
ture. Even within tasks with limited translational motion, orientation
and subtle motions are likely to continue contributing to a person’s
signature, and form important components of future studies.

6 CONCLUSION

In this work, we present an approach that learns systematic differ-
ences between multiple VR systems in order to enable cross-system
behavior-based VR biometrics. We demonstrate average authentica-
tion EERs ranging from 1.38% to 3.86%, and identification accura-
cies ranging from 87.82% to 98.53% for a dataset of 41 right-handed
users interacting with a ball-throwing application in VR. By using
a metric learning approach, our approach addresses fundamental
deficiencies of existing work which use generic matching or learning-
based techniques that are agnostic to inter-system differences. By
outputting a match score, our approach enables generalization of
authentication and identification to novel users.
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