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ABSTRACT

Remanufacturing sites often receive products with
different brands, models, conditions, and quality levels.
Proper sorting and classification of the waste stream is a
primary step in efficiently recovering and handling used
products. The correct classification is particularly crucial in
future electronic waste (e-waste) management sites
equipped with Artificial Intelligence (Al) and robotic
technologies. Robots should be enabled with proper
algorithms to recognize and classify products with different
features and prepare them for assembly and disassembly
tasks. In this study, two categories of Machine Learning
(ML) and Deep Learning (DL) techniques are used to
classify consumer electronics. ML models include Naive
Bayes with Bernoulli, Gaussian, Multinomial distributions,
and Support Vector Machine (SVM) algorithms with four
kernels of Linear, Radial Basis Function (RBF),
Polynomial, and Sigmoid. While DL models include VGG-
16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50.
The above-mentioned models are used to classify three
laptop brands, including Apple, HP, and ThinkPad. First the
Edge Histogram Descriptor (EHD) and Scale Invariant
Feature Transform (SIFT) are used to extract features as
inputs to ML models for classification. DL models use
laptop images without pre-processing on feature extraction.
The trained models are slightly overfitting due to the limited
dataset and complexity of model parameters. Despite slight

1

Xinyao Zhang
Graduate Research Assistant
Environmental Engineering Sciences
University of Florida, Gainesville, FL, 32611
xinyaozhang@ufl.edu

Xiao Liang
Assistant Professor
Civil, Structural and Environmental Engineering
University at Buffalo, Buffalo, NY, 14260
liangx@buffalo.edu

Sara Behdad*

Associate Professor
Environmental Engineering Sciences
University of Florida, Gainesville, FL, 32611
sarabehdad@ufl.edu

overfitting, the models can identify each brand. The findings
prove that DL models outperform them of ML. Among DL
models, GoogLeNet has the highest performance in
identifying the laptop brands.

Keywords: Machine learning, Deep learning, Laptop brand,
Classification, Consumer electronic

NOMENCLATURE
P(Cx|X) Posterior in Bayes' theorem
P(X|C,) Likelihood in Bayes' theorem
P(Cy) Prior in Bayes' theorem
P(X) Evidence in Bayes' theorem

p,’:ll Probability when event k; occurs for
sample x;.

Uy The mean of class &

o2 The variance of class k&

Accuracy Accuracy of classifiers

1. INTRODUCTION

Waste Electrical and Electronic Equipment (WEEE) is
a complex mixture of materials and components, such as
computers, televisions, fridges, and mobile phones. It is
currently considered the fastest-growing waste stream
globally, with an estimated growth rate of 3% to 5% per year
[1]. In 2005, the U.S. discarded 1.36—1.72 million metric
tons of WEEE into landfills, and only 0.31-0.34 million
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metric tons were recycled [2]. Currently, it is estimated that
about 80% of WEEE globally is not documented or
recycled, meaning its value is lost, and its management is
likely to be rudimentary. Consequently, it is necessary to
contribute to the efficient use of resources, reduce the
amount of e-waste entering the landfill, and encourage the
reuse and recycling of consumer electronics.

The benefit of WEEE recovery is not limited to
environmental consequences. The efficient recovery of used
electronics avoids economic loss and makes the
remanufacturing industry economically viable. Currently,
the efficiency of remanufacturing operations is affected by
many factors ranging from the uncertainty in incoming
products to the lack of sufficient technology supporting the
yield of remanufacturing operations. Robotics and artificial
intelligence techniques are not sufficiently integrated into
remanufacturing operations. To address this gap, we aim to
show the application of Al techniques in helping
remanufacturers sort different brands of certain consumer
electronics. The Al algorithms are essential for equipping
robots with image recognition methods to properly sort used
electronics and ultimately manage the complexity and yield
of recovery operations. The focus of this study is on sorting
different brands of laptops.

Laptops are selected as the case study for several
reasons. The high volume of laptops available for recovery
and the potential market for refurbished laptops make it a
good case study. In the US, around 14-20 million personal
laptops are discarded every year [3], 75% of which can be
recovered [4]. Furthermore, 55% of laptops can be reused or
harvested to retrieve specific components. Laptops often fail
due to the failure of some critical components such as hard
disk drive and battery, so they can be repaired and retested
after removing failed parts [5]. In addition, the toxic
materials in e-waste are dangerous for human health. A
multi-elemental analysis in a facility dismantling lead
batteries showed the presence of heavy metals in the air
samples [6]. Besides, the recovery of rare earth elements in
end-of-use laptops and hard disk drives is of utmost
importance for the consumer electronic industry [7]. In
addition to selecting laptops as a representative of electrical
and electronic equipment, brands of laptops are the specific
subject of this study. E-waste remanufacturers often collect
and recycle the same type of equipment together but ignore
recycling cost variations among brands [8] due to the
enormously broad scope of equipment brands. Different
brands may require different sets of remanufacturing
operations which makes brand recycling to be expensive.
Hence, developing accurate models for the separation of
used electronics based on different features such as shape,
color, brand, and geometry helps remanufacturers efficiently
manage e-waste received in their facility. In this paper, we
would like to highlight the importance of ML and DL
techniques in the efficiency of brands sorting processes.

ML and DL have been widely used in different
applications. In the current information age, digital images

carry important information for storing, describing, and
sharing. Storing information in images is a cost-effective
method with indispensable use in industry. Besides, image
processing is critical in retrieving information stored in
image databases. For large databases, it is essential to find
useful information in a timely manner [9]. Therefore, the
need for image recognition and classification methods has
been growing rapidly. ML and DL have developed many
image classification algorithms with excellent performance.
ML uses statistical methods to enable image classification.
Image recognition in ML is a supervised learning approach,
where the model learns from a provided dataset and uses the
obtained knowledge to perform classification on unseen
data [10]. Besides ML techniques, recent developments in
DL architectures for computer vision have drastically
improved the ability to detect and recognize objects on
images [11][12]. Nowakowski and Pamuta [I11] have
already applied DL for e-waste classification. They used a
region-based convolutional neural network (R-CNN) to
recognize the category and size of used equipment.
However, the current study's focus is not on product type but
on detecting product features such as brand.

This study applies several ML and DL techniques to
classify different brands of laptops. The primary purpose is
to use classification algorithms to enhance the sorting
process accuracy in remanufacturing sites.

2. DATASET AND EXPERIMENTAL DESIGN

Three popular brands of laptops, including Apple, HP,
and ThinkPad, are selected for classification. The high
popularity and sales volume of these brands highlights their
world-wide usage as well as their recycling needs. Laptops
of these three brands have multiple differences both
internally and externally, such as the location of the brand
logo, attractive colors, keyboard design, and so on. Different
brands require different disassembly and remanufacturing
operations. Accurate sorting methods can avoid the time and
labor cost of recycling.

The dataset used in this study contains a total of 210
images with the size of 200x200 pixels. Each brand has 70
images. The images are collected from Google Images, as
shown in Figure 1. Different angles, sizes, and views of
images are considered when training ML and DL models.
The proposed procedure is shown in Figure 2. For ML, we
applied cross-validation with k-fold of 10. And the dataset
is randomly split into the training and test sets for DL, where
the training-set contains 80% of the data and the test-set
contains 20%. In order to acquire more training data, the
data augmentation is applied by random resizing, translating
rotating, and flipping the original dataset. The best
hyperparameters are trained by computing accuracy. For the
ML part, the focus is on Naive Bayes and SVM models, and
for the DL part, five different architectures, including VGG-
16, GoogLeNet, Inception-v3, ResNet-50, and Inception-v4,
are used.
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FIGURE 1: DIFFERENT ANGLES, SIZES, AND VIEWS OF
PICTURES WILL BE USED IN MACHINE LEARNING
MODELS.
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FIGURE 2: THE PROPOSED STRUCTURE OF THIS STUDY.

3. METHOD

The Edge Histogram Descriptor (EHD) and Scale
Invariant Feature Transform (SIFT) are applied to extract
image features before training each ML model. The DL
architectures are trained by the input images directly. Each
method is briefly discussed in the following subsections.

3.1 Machine learning
3.1.1 Edge Histogram Descriptor

The EHD is useful tool to extract features for image
processing. EHD has scale-invariant benefits by
normalizing the extracted features [13] and is a useful tool
for retrieving images [14], [15]. EHD has been widely used
in the literature. Agarwal et al. (2013) used EHD to retrieve
image features to study Content-Based Image Retrieval
[16]. Ali et al. (2020) also applied EHD to study Content-
Based Image Retrieval for four types of images of car
accidents, fire, abnormal objects, and digs [17]. When using
EHD, feature types such as vertical, horizontal, degrees, and

non-orientation are considered. The output will be a 1x5
sized filter with five matrixes corresponding to each type of
feature as shown in Table 1. After extracting features from
each image, ML models will be trained using these features.
But with the same orientation and size of different laptops,
the output of EHD will be identical, which can be addressed
by increasing the size of the dataset.

3.1.2 Scale Invariant Feature Transform

SIFT is an image descriptor and feature detection
algorithm in computer vision that is invariance to image
scale and rotation [18][19]. Five steps are involved in SIFT
including scale-space peak selection for locating features,
keypoint localization, orientation assignment, keypoint
descriptor to describe key points as a high dimensional
vector, and keypoint matching. Locality, distinctiveness,
quantity, efficiency, and extensibility are advantages of
SIFT [20] which makes it a suitable descriptor for object
categorization [21], texture classification [22], and image
alignment tasks [23].

TABLE 1: THE REPRESENTATION OF EACH EDGE
TYPE OF MASK [34].

Edge Type Representation Operator Mask
[1 -1
Vertical Edge 1 -1
. 1 1
Horizontal Edge [_1 _1]
Diagonal 45 degrees ]
0 V2
Diagonal 135 degrees [ 0 \E]
2 0
. . 2 -
Non-Orientation Type Edge [_ 2 22]

3.1.3 Naive Bayes

For the ML algorithms, the Naive Bayes (NB) is used
for classification. The NB method considers the probability
distribution of the training dataset based on Bayes
assumption. The conditional probability can be expressed
as:
P(X|C,)P(Cy)

P(CylX) = 209) )

where C; denotes class &, X is the input dataset, the
P(Cy|X) is the posterior, P(X|C,) is the likelihood
multiplied by P(Cy) as the prior, which equals the number
of class k divided by the total number of samples, and P (X)
is the evidence. After considering different probability
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distributions for P(X|Cy) such as Bernoulli, Gaussian, and
Multinomial, the NB classifiers can be used [24], [25].

3.1.4 Support-Vector Machine

SVM [26] is a supervised learning model with
considerable accuracy. This algorithm can be used for
classification [27], regression [28], and outlier detection
[29] tasks. SVM algorithm performs a non-probabilistic
binary linear classifier or adopts kernel trick [30][31] to
efficiently perform non-linear classification. In this paper,
we adopted SVM with Linear, Radial Basis Function (RBF),
Polynomial, and Sigmoid kernels and renamed them as
SVM-Linear, SVM-RBF, SVM-Poly, and SVM-Sigmoid
respectively.

3.2 Deep learning

For the DL part, our focus is on Convolutional Neural
Network (CNN). CNN is a class of deep neural networks
with efficient learning algorithms which have shown
exemplary performance in image segmentation,
classification, detection, recognition, retrieval, and analysis
[35]-[38]. CNN has received attention not only from
academia but from the industry as well, where high tech
companies such as Google, Microsoft, AT&T, NEC, and
Facebook have developed active research groups for
exploring CNN's new architectures [35]. There are different
well-developed architectures in CNNs like AlexNet, VGG,
Inception, ResNet, and Xception. In this paper, we adopted
five different architectures to classify different brands of
laptops. We used MATLAB software to train GooglLeNet.
The MATLAB provides a deep learning toolbox to create
new architectures or apply transfer learning, which adopts
existing pre-trained models that have been used for other
tasks to accelerate the development process for a new task
[39]. Also, we applied TensorFlow and Keras on other
network architectures such as VGG-16, ResNet-50, etc.

3.2.1 VGG-16

Increasing the size of CNNs may enhance its
performance [40]. the Visual Geometry Group (VGG) team
invented VGG-16 in 2014, consisting of 138 million
parameters [41]. With 13 convolutional layers and 3 fully-
connected layers, VGG-16 is deeper than AlexNet, but has
a smaller filter size of 2x2 and 3%3 and the same ReLU

224%224x3

activation function [42]. The weight configuration of the
VGG-16 is publicly available. The model adopted in this
paper is the pretrained model used by the VGG team in the
ILSVRC-2014 competition with a further update, such as
reducing the number of parameters by applying all
convolutional layers with small 3x3 filters. It is trained with
scale jittering [41]. Figure 3 shows VGG-16tarchitecture.

3.2.2 GooglLeNet

GoogleNet is another architecture used in this paper as
shown in Figure 4. It was first proposed by Szegedy et al. in
2014 [40]. It is the first version of Inception, namely
Inception-v1. Many researchers used GoogLeNet to classify
images in different applications. Singla et al. (2016) applied
GooglLeNet to identify food images using transfer learning
[43]. Lee et al. (2018) used it to improve the performance of
recognition on Korean characters [44]. Jahandad et al.
(2019) created an offline signature verification system by
using GoogLeNet [45]. The GoogLeNet was trained by over
a million images with 1000 different objects and has 22
layers (27 layers considering pooling layers. GoogleNet
uses the global average pooling at the last inception module.

3.2.3. Inception-v3

Inception-v2 [46] and Inception-v3 [47] were put
forward as successors to Inception-vl in 2015. For
Inception-v2, the authors recorded some successful tweaks,
such as changes to the optimizer, loss function, and adding
batch normalization to the auxiliary layers in the auxiliary
network [48][46] through extensive experiments. Inception-
v2 is not commonly used since it is a prototype of Inception-
v3 [48]. We adopted Inception-v3 in this paper. Inception-
v3 is the runner-up for image classification in ILSVRC 2015
with 24 million parameters and 48 layers deep [47]. The cost
of computation is only 2.5 higher than that of GoogLeNet,
and it is more efficient than VGGnet with similar
complexity [40], [41], [47], [49]. We utilized the pre-trained
model with transfer learning to retrain and test the laptop
dataset. Transfer learning is a way to improve learning
architectures to transfer the knowledge which has already
been learned from a related task [39].

4096 4096 1000

FIGURE 3: ARCHITECTURE OF VGG-16 OBTAINED FROM REF [48] BASED ON REF [41].
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FIGURE 4: ARCHITECTURE OF GOOGLENET (INCEPTION-V1) OBTAINED FROM REF [48] BASED ON REF [40].

3.2.4. ResNet-50

Stacking layers and making deeper networks will cause
the accuracy to get saturated and degrade rapidly [50]. To
address this issue, Microsoft Research launched Residual
Neural Network (ResNet) in 2015, as a novel architecture
with “shortcut connections” (or skip connections, residuals)
[50] that skips one or more layers and has the heavy batch
normalization function [46] in building models
deeper.ResNet is a deeper trained Neural Network while
maintaining lower complexity compared to VGGnet [51].
The original models (ResNet-50, ResNet-101, and ResNet-
152) were used in ILSVRC and COCO 2015 competitions,
which won the Ist places in: ImageNet classification,
ImageNet detection, ImageNet localization, COCO
detection, and COCO segmentation [50]. We retrained
ResNet-50, which has 50 layers and 26 million parameters.

3.2.5. Inception-v4

Inception-v4 is an improvement from Inception-v3 with
43 million parameters. The inception-v4 architecture is
similar to Inception-v3 with a different stem module
modified by the Google team. For each grid size, the Google
team made uniform choices for Inception blocks [52].
Moreover, a Reduction Blocks was applied to change the
dimension of the gird, which has not been used in the earlier
versions [40], [47], [52]. There are many applications of

Inception-v4. Too et al. (2018) used it to detect plant
diseases [53]. Cogan et al. (2019) also applied it on
automatic detection of anatomical landmarks and diseases
[54]. We applied transfer learning to this model to conduct
the classification task.

3.2.6. Comparison of each architecture

VGG-16 with 16 layers and 138 million parameters was
invented in 2014 [41]. GooLeNet (Inception-v1) is 22-layer
deep with 5 million parameters [40]. As a successor of
GooLeNet, Inception-v3 is deeper with 48 layers and 24
million parameters [47]. ResNet-50 has 50 layers and 26
million parameters [50]. Finally, Inception-v4 is a modified
version of Inception-v3 with 164-layers and 43 million
parameters [52]. Table 2 shows the comparison of them.

TABLE 2: COMPARISON OF DEEP LEARNING MODELS.

Deep Number

: Number of
Learning Year  Developer of Parameters
Models Layers
VGG-16 2014 VGG 16 138 million
GooLeNet 2014  Google 22 5 million
Inception-v3 2015  Google 48 24 million
ResNet-50 2015  Microsoft 50 26 million
Inception-v4 2016  Google 75 43 million
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4. IDENTIFY LAPTOP BRANDS BY MACHINE
LEARNING AND DEEP LEARNING
4.1 Performance of deep learning architectures
We trained the five architectures, including VGG-16,
GoogLeNet, Inception-v3, Inception-v4, and ResNet-50,
and analyzed their performance. As shown in Table 3,
GoogLeNet is outperforming other models. Figures 5 and 6
show the normalized confusion matrix of VGG-16 and the
GoogLeNet. Both VGG-16 and GooglLeNet have acceptable
performance. The VGG-16 can identify Apple, HP, and
ThinkPad with 77% accuracy. For example, 100 unlabeled
Apple images are fed to VGG-16 model, 77 images were
classified correctly. GoogLeNet can identify ThinkPad with
100% correctly if the unlabeled data are full photos. Because
we train the models with full images, if the unlabeled data
are a partial part of images like the corner part of the
keyboard, the performance will be decreased. Both VGG-16
and GooglLeNet have acceptable performance. Inception-v3
is an advanced version of GooglLeNet, but Inception-v3
does not perform better than GoogleNet in this example.
The reason is that Inception-v3 is more complicated than
GoogLeNet, and moreover, the training dataset (210
images) is limited. Inception-v3 has more parameters, so it
overfits easily. However, its performance is better than
VGG-16. Also, as models become more complex such as
Inception-v3 with 48 layers, Inception-v4 with 75 layers,
and ResNet-50 with 50 layers, the test accuracy is decreased
due to overfitting.

Applen 0.11
- n o

ThinkPad  0.15 0.85
Apple HP ThinkPad

FIGURE 5: THE TESTING RESULTS WITH
NORMALIZED CONFUSION MATRIX OF VGG-16.

Applc "
1.00

ThinkPad-
Apple  HP  ThinkPad

THE TESTING RESULTS WITH
CONFUSION MATRIX OF

FIGURE 6:
NORMALIZED
GOOGLENET.

FIGURE 7: THE GOOGLENET IDENTIFICATION
RESULTS OF SIX ADDITIONAL PARTIAL IMAGES
BEYOND 210 FULLY IMAGES DATASET.

Although all models are trained by full images (80% of
the dataset), GoogLeNet can identify partial images, as
shown in Figure 7. Six additional images are collected, and
GoogLeNet recognizes each keyboard brand. Even with
other information in the images, such as human hands and
messy backgrounds, GoogleNet can identify them
correctly.

4.2 Comparison of machine learning and deep
learning

Table 3 shows the training and testing results for each
algorithm. Among ML models, the best performing model
is SVM-Poly (SIFT) with 0.900 training and 0.696 testing
accuracy. Among DL models, GoogLeNet is outperforming.
The testing accuracy can reach up to 0.929, more efficient
than ML. The ML models require extracted features for
training, but the DL models can learn directly from training
data. Also, during training, DL models will extract features
repeatedly by adjusting different convolution layers.

It seems that ML only considers one type of feature by
one-time feature extraction, but DL computes various
features by using different types of convolution layers and
pooling layers.

However, the trained models are slightly overfitting due
to the limited dataset (210 images of three laptop brands)
and the large numbers of parameters in each model.
Although we tried to adjust different parameters to avoid
overfitting, the intrinsic parameters of each model still learn
to overfit. However, we still achieve acceptable accuracy in
identifying each laptop brand.

Although the accuracy of ML is not approximate as DL
models, ML models can still identify characteristics of each
brand. ML models are fast and easy to train using large
datasets in a timely manner compared to DL. Therefore, ML
models are still necessary under time-limited conditions.
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TABLE 3: THE TRAINING AND TESTING RESULTS
OF EACH MODEL.

Training  Testing
Model Accuracy  Accuracy
Machine learning
NB-Bernoulli (EHD) 0.457 0.441
NB-Gaussian (EHD) 0.607 0.595
NB-Multinomial (EHD)  0.491 0.477
SVM-Linear (EHD) 0.306 0.345
SVM-RBF (EHD) 0.599 0.572
SVM-Poly (EHD) 0.585 0.583
SVM-Sigmoid (EHD) 0.505 0.488
NB-Bernoulli (SIFT) 0.542 0.453
NB-Gaussian (SIFT) 0.594 0.530
NB-Multinomial (SIFT)  0.590 0.554
SVM-Linear (SIFT) 1 0.638
SVM-RBF (SIFT) 0.886 0.673
SVM-Poly (SIFT) 0.900 0.696
SVM-Sigmoid (SIFT) 0.586 0.572
Deep learning
VGG-16 0.793 0.776
GooglLeNet 0.983 0.929
Inception-v3 0.868 0.845
ResNet-50 0.620 0.602
Inception-v4 0.589 0.574

5. CONCLUSION

In this study, several ML and DL techniques are applied
to classify images of different laptop brands. ML algorithms
include EHD and SIFT for feature extraction and NB and
SVM for classification. DL models include VGG-16,
GoogLeNet, Inception-v3 and Inception-v4, and ResNet-50.
Among ML models, SVM-Poly (SIFT) has the best
performance. Among DL algorithms, GoogLeNet performs
better than others. Overall, the results proved that DL
models outperform ML algorithms. Meanwhile, overfitting
occurred slightly in the training process for both SVM-Poly
(SIFT) and GoogLeNetdue to the limited dataset and
complexity of model parameters. Although the dataset is
limited, the DL models can identify each brand with
satisfying accuracy. Also, ML models can still be used in
the case of large datasets and the need for a fast response.

This study can be extended in several ways. First, the
results can be validated by collecting real-world image data
from remanufacturing sites rather than using online images.
Second, this research's outcomes can be employed in actual
robotic applications in assembly and disassembly tasks.
Third, other DL architectures can be developed to recognize
and sort different types of products such as computers,
refrigerators, and printers. Moreover, algorithms can be
extended to other feature and component recognition tasks
to harvest parts and critical components in used devices.
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