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ABSTRACT 
Remanufacturing sites often receive products with 

different brands, models, conditions, and quality levels. 
Proper sorting and classification of the waste stream is a 
primary step in efficiently recovering and handling used 
products. The correct classification is particularly crucial in 
future electronic waste (e-waste) management sites 
equipped with Artificial Intelligence (AI) and robotic 
technologies. Robots should be enabled with proper 
algorithms to recognize and classify products with different 
features and prepare them for assembly and disassembly 
tasks. In this study, two categories of Machine Learning 
(ML) and Deep Learning (DL) techniques are used to 
classify consumer electronics. ML models include Naïve 
Bayes with Bernoulli, Gaussian, Multinomial distributions, 
and Support Vector Machine (SVM) algorithms with four 
kernels of Linear, Radial Basis Function (RBF), 
Polynomial, and Sigmoid. While DL models include VGG-
16, GoogLeNet, Inception-v3, Inception-v4, and ResNet-50. 
The above-mentioned models are used to classify three 
laptop brands, including Apple, HP, and ThinkPad. First the 
Edge Histogram Descriptor (EHD) and Scale Invariant 
Feature Transform (SIFT) are used to extract features as 
inputs to ML models for classification. DL models use 
laptop images without pre-processing on feature extraction. 
The trained models are slightly overfitting due to the limited 
dataset and complexity of model parameters. Despite slight 

overfitting, the models can identify each brand. The findings 
prove that DL models outperform them of ML. Among DL 
models, GoogLeNet has the highest performance in 
identifying the laptop brands. 

 
Keywords: Machine learning, Deep learning, Laptop brand, 
Classification, Consumer electronic 

NOMENCLATURE 
𝑃(𝐶𝑘|𝑋)  Posterior in Bayes' theorem 
𝑃(𝑋|𝐶𝑘) Likelihood in Bayes' theorem 
𝑃(𝐶𝑘) Prior in Bayes' theorem 
𝑃(𝑋) Evidence in Bayes' theorem 
𝑝𝑘𝑖
𝑥𝑖 Probability when event 𝑘𝑖  occurs for 

sample 𝑥𝑖. 
𝑢𝑘 The mean of class k 
𝜎𝑘
2 The variance of class k 

Accuracy Accuracy of classifiers 
 
1. INTRODUCTION 

Waste Electrical and Electronic Equipment (WEEE) is 
a complex mixture of materials and components, such as 
computers, televisions, fridges, and mobile phones. It is 
currently considered the fastest-growing waste stream 
globally, with an estimated growth rate of 3% to 5% per year 
[1]. In 2005, the U.S. discarded 1.36–1.72 million metric 
tons of WEEE into landfills, and only 0.31–0.34 million 
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metric tons were recycled [2]. Currently, it is estimated that 
about 80% of WEEE globally is not documented or 
recycled, meaning its value is lost, and its management is 
likely to be rudimentary. Consequently, it is necessary to 
contribute to the efficient use of resources, reduce the 
amount of e-waste entering the landfill, and encourage the 
reuse and recycling of consumer electronics. 

The benefit of WEEE recovery is not limited to 
environmental consequences. The efficient recovery of used 
electronics avoids economic loss and makes the 
remanufacturing industry economically viable. Currently, 
the efficiency of remanufacturing operations is affected by 
many factors ranging from the uncertainty in incoming 
products to the lack of sufficient technology supporting the 
yield of remanufacturing operations. Robotics and artificial 
intelligence techniques are not sufficiently integrated into 
remanufacturing operations. To address this gap, we aim to 
show the application of AI techniques in helping 
remanufacturers sort different brands of certain consumer 
electronics. The AI algorithms are essential for equipping 
robots with image recognition methods to properly sort used 
electronics and ultimately manage the complexity and yield 
of recovery operations. The focus of this study is on sorting 
different brands of laptops.  

Laptops are selected as the case study for several 
reasons. The high volume of laptops available for recovery 
and the potential market for refurbished laptops make it a 
good case study. In the US, around 14-20 million personal 
laptops are discarded every year [3], 75% of which can be 
recovered [4]. Furthermore, 55% of laptops can be reused or 
harvested to retrieve specific components. Laptops often fail 
due to the failure of some critical components such as hard 
disk drive and battery, so they can be repaired and retested 
after removing failed parts [5]. In addition, the toxic 
materials in e-waste are dangerous for human health. A 
multi-elemental analysis in a facility dismantling lead 
batteries showed the presence of heavy metals in the air 
samples [6]. Besides, the recovery of rare earth elements in 
end-of-use laptops and hard disk drives is of utmost 
importance for the consumer electronic industry [7]. In 
addition to selecting laptops as a representative of electrical 
and electronic equipment, brands of laptops are the specific 
subject of this study. E-waste remanufacturers often collect 
and recycle the same type of equipment together but ignore 
recycling cost variations among brands [8] due to the 
enormously broad scope of equipment brands. Different 
brands may require different sets of remanufacturing 
operations which makes brand recycling to be expensive. 
Hence, developing accurate models for the separation of 
used electronics based on different features such as shape, 
color, brand, and geometry helps remanufacturers efficiently 
manage e-waste received in their facility. In this paper, we 
would like to highlight the importance of ML and DL 
techniques in the efficiency of brands sorting processes.  

ML and DL have been widely used in different 
applications. In the current information age, digital images 

carry important information for storing, describing, and 
sharing. Storing information in images is a cost-effective 
method with indispensable use in industry. Besides, image 
processing is critical in retrieving information stored in 
image databases. For large databases, it is essential to find 
useful information in a timely manner [9]. Therefore, the 
need for image recognition and classification methods has 
been growing rapidly. ML and DL have developed many 
image classification algorithms with excellent performance. 
ML uses statistical methods to enable image classification. 
Image recognition in ML is a supervised learning approach, 
where the model learns from a provided dataset and uses the 
obtained knowledge to perform classification on unseen 
data [10]. Besides ML techniques, recent developments in 
DL architectures for computer vision have drastically 
improved the ability to detect and recognize objects on 
images [11][12]. Nowakowski and Pamuła [11] have 
already applied DL for e-waste classification. They used a 
region-based convolutional neural network (R-CNN) to 
recognize the category and size of used equipment. 
However, the current study's focus is not on product type but 
on detecting product features such as brand.  

This study applies several ML and DL techniques to 
classify different brands of laptops. The primary purpose is 
to use classification algorithms to enhance the sorting 
process accuracy in remanufacturing sites.  
 
2. DATASET AND EXPERIMENTAL DESIGN 

Three popular brands of laptops, including Apple, HP, 
and ThinkPad, are selected for classification. The high 
popularity and sales volume of these brands highlights their 
world-wide usage as well as their recycling needs. Laptops 
of these three brands have multiple differences both 
internally and externally, such as the location of the brand 
logo, attractive colors, keyboard design, and so on. Different 
brands require different disassembly and remanufacturing 
operations. Accurate sorting methods can avoid the time and 
labor cost of recycling.  

The dataset used in this study contains a total of 210 
images with the size of 200x200 pixels. Each brand has 70 
images. The images are collected from Google Images, as 
shown in Figure 1. Different angles, sizes, and views of 
images are considered when training ML and DL models. 
The proposed procedure is shown in Figure 2. For ML, we 
applied cross-validation with k-fold of 10. And the dataset 
is randomly split into the training and test sets for DL, where 
the training-set contains 80% of the data and the test-set 
contains 20%. In order to acquire more training data, the 
data augmentation is applied by random resizing, translating 
rotating, and flipping the original dataset. The best 
hyperparameters are trained by computing accuracy. For the 
ML part, the focus is on Naïve Bayes and SVM models, and 
for the DL part, five different architectures, including VGG-
16, GoogLeNet, Inception-v3, ResNet-50, and Inception-v4, 
are used. 
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FIGURE 1: DIFFERENT ANGLES, SIZES, AND VIEWS OF 
PICTURES WILL BE USED IN MACHINE LEARNING 
MODELS. 
 

 
FIGURE 2: THE PROPOSED STRUCTURE OF THIS STUDY. 
 
3. METHOD 

The Edge Histogram Descriptor (EHD) and Scale 
Invariant Feature Transform (SIFT) are applied to extract 
image features before training each ML model. The DL 
architectures are trained by the input images directly. Each 
method is briefly discussed in the following subsections. 
 
3.1 Machine learning 
3.1.1 Edge Histogram Descriptor  

The EHD is useful tool to extract features for image 
processing. EHD has scale-invariant benefits by 
normalizing the extracted features [13] and is a useful tool 
for retrieving images [14], [15]. EHD has been widely used 
in the literature. Agarwal et al. (2013) used EHD to retrieve 
image features to study Content-Based Image Retrieval 
[16]. Ali et al. (2020) also applied EHD to study Content-
Based Image Retrieval for four types of images of car 
accidents, fire, abnormal objects, and digs [17]. When using 
EHD, feature types such as vertical, horizontal, degrees, and 

non-orientation are considered. The output will be a 1x5 
sized filter with five matrixes corresponding to each type of 
feature as shown in Table 1. After extracting features from 
each image, ML models will be trained using these features. 
But with the same orientation and size of different laptops, 
the output of EHD will be identical, which can be addressed 
by increasing the size of the dataset. 

 
3.1.2 Scale Invariant Feature Transform 

SIFT is an image descriptor and feature detection 
algorithm in computer vision that is invariance to image 
scale and rotation [18][19]. Five steps are involved in SIFT 
including scale-space peak selection for locating features, 
keypoint localization, orientation assignment, keypoint 
descriptor to describe key points as a high dimensional 
vector, and keypoint matching. Locality, distinctiveness, 
quantity, efficiency, and extensibility are advantages of 
SIFT  [20] which makes it a suitable descriptor for object 
categorization [21], texture classification [22], and image 
alignment tasks [23]. 
 
TABLE 1: THE REPRESENTATION OF EACH EDGE 
TYPE OF MASK [34]. 

 
 

3.1.3 Naïve Bayes 
For the ML algorithms, the Naïve Bayes (NB) is used 

for classification. The NB method considers the probability 
distribution of the training dataset based on Bayes 
assumption. The conditional probability can be expressed 
as: 

𝑃(𝐶𝑘|𝑋) =
𝑃(𝑋|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑋)
 (1) 

where 𝐶𝑘  denotes class k, 𝑋  is the input dataset, the 
𝑃(𝐶𝑘|𝑋)  is the posterior, 𝑃(𝑋|𝐶𝑘)  is the likelihood 
multiplied by 𝑃(𝐶𝑘) as the prior, which equals the number 
of class k divided by the total number of samples, and 𝑃(𝑋) 
is the evidence. After considering different probability 
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distributions for 𝑃(𝑋|𝐶𝑘) such as Bernoulli, Gaussian, and 
Multinomial, the NB classifiers can be used [24], [25]. 
 
3.1.4  Support-Vector Machine 

SVM [26] is a supervised learning model with 
considerable accuracy. This algorithm can be used for 
classification [27], regression [28], and outlier detection 
[29] tasks. SVM algorithm performs a non-probabilistic 
binary linear classifier or adopts kernel trick [30][31] to 
efficiently perform non-linear classification. In this paper, 
we adopted SVM with Linear, Radial Basis Function (RBF), 
Polynomial, and Sigmoid kernels and renamed them as 
SVM-Linear, SVM-RBF, SVM-Poly, and SVM-Sigmoid 
respectively. 
 
3.2 Deep learning 

For the DL part, our focus is on Convolutional Neural 
Network (CNN). CNN is a class of deep neural networks 
with efficient learning algorithms which have shown 
exemplary performance in image segmentation, 
classification, detection, recognition, retrieval, and analysis 
[35]–[38]. CNN has received attention not only from 
academia but from the industry as well, where high tech 
companies such as Google, Microsoft, AT&T, NEC, and 
Facebook have developed active research groups for 
exploring CNN's new architectures [35]. There are different 
well-developed architectures in CNNs like AlexNet, VGG, 
Inception, ResNet, and Xception. In this paper, we adopted 
five different architectures to classify different brands of 
laptops. We used MATLAB software to train GoogLeNet. 
The MATLAB provides a deep learning toolbox to create 
new architectures or apply transfer learning, which adopts 
existing pre-trained models that have been used for other 
tasks to accelerate the development process for a new task 
[39]. Also, we applied TensorFlow and Keras on other 
network architectures such as VGG-16, ResNet-50, etc. 

 
3.2.1 VGG-16 

Increasing the size of CNNs may enhance its 
performance [40]. the Visual Geometry Group (VGG) team 
invented VGG-16 in 2014, consisting of 138 million 
parameters [41]. With 13 convolutional layers and 3 fully-
connected layers, VGG-16 is deeper than AlexNet, but has 
a smaller filter size of 2×2 and 3×3 and the same ReLU 

activation function [42]. The weight configuration of the 
VGG-16 is publicly available. The model adopted in this 
paper is the pretrained model used by the VGG team in the 
ILSVRC-2014 competition with a further update, such as 
reducing the number of parameters by applying all 
convolutional layers with small 3×3 filters. It is trained with 
scale jittering [41]. Figure 3 shows VGG-16tarchitecture.  

 
3.2.2 GoogLeNet  

GoogLeNet is another architecture used in this paper as 
shown in Figure 4. It was first proposed by Szegedy et al. in 
2014 [40]. It is the first version of Inception, namely 
Inception-v1. Many researchers used GoogLeNet to classify 
images in different applications. Singla et al. (2016) applied 
GoogLeNet to identify food images using transfer learning 
[43]. Lee et al. (2018) used it to improve the performance of 
recognition on Korean characters [44]. Jahandad et al. 
(2019) created an offline signature verification system by 
using GoogLeNet [45]. The GoogLeNet was trained by over 
a million images with 1000 different objects and has 22 
layers (27 layers considering pooling layers. GoogleNet 
uses the global average pooling at the last inception module. 

 
3.2.3. Inception-v3 
Inception-v2 [46] and Inception-v3 [47] were put 

forward as successors to Inception-v1 in 2015. For 
Inception-v2, the authors recorded some successful tweaks,  
such as changes to the optimizer, loss function, and adding 
batch normalization to the auxiliary layers in the auxiliary 
network [48][46] through extensive experiments. Inception-
v2 is not commonly used since it is a prototype of Inception-
v3 [48]. We adopted Inception-v3 in this paper. Inception-
v3 is the runner-up for image classification in ILSVRC 2015 
with 24 million parameters and 48 layers deep [47]. The cost 
of computation is only 2.5 higher than that of GoogLeNet, 
and it is more efficient than VGGnet with similar 
complexity [40], [41], [47], [49]. We utilized the pre-trained 
model with transfer learning to retrain and test the laptop 
dataset. Transfer learning is a way to improve learning 
architectures to transfer the knowledge which has already 
been learned from a related task [39]. 
 
 

 
FIGURE 3: ARCHITECTURE OF VGG-16 OBTAINED FROM REF [48] BASED ON REF [41]. 



              5 © 2021 by ASME 
 

 
FIGURE 4: ARCHITECTURE OF GOOGLENET (INCEPTION-V1) OBTAINED FROM REF [48] BASED ON REF [40]. 

 
 

3.2.4. ResNet-50 
Stacking layers and making deeper networks will cause 

the accuracy to get saturated and degrade rapidly [50]. To 
address this issue, Microsoft Research launched Residual 
Neural Network (ResNet) in 2015, as a novel architecture 
with “shortcut connections” (or skip connections, residuals) 
[50] that skips one or more layers and has the heavy batch 
normalization function [46] in building models 
deeper.ResNet is a deeper trained Neural Network while 
maintaining lower complexity compared to VGGnet [51]. 
The original models (ResNet-50, ResNet-101, and ResNet-
152) were used in ILSVRC and COCO 2015 competitions, 
which won the 1st places in: ImageNet classification, 
ImageNet detection, ImageNet localization, COCO 
detection, and COCO segmentation [50]. We retrained 
ResNet-50, which has 50 layers and 26 million parameters.  
 

3.2.5. Inception-v4 
Inception-v4 is an improvement from Inception-v3 with 

43 million parameters. The inception-v4 architecture is 
similar to Inception-v3 with a different stem module 
modified by the Google team. For each grid size, the Google 
team made uniform choices for Inception blocks [52]. 
Moreover, a Reduction Blocks was applied to change the 
dimension of the gird, which has not been used in the earlier 
versions [40], [47], [52]. There are many applications of 

Inception-v4. Too et al. (2018) used it to detect plant 
diseases [53]. Cogan et al. (2019) also applied it on 
automatic detection of anatomical landmarks and diseases 
[54]. We applied transfer learning to this model to conduct 
the classification task. 
 

3.2.6. Comparison of each architecture 
VGG-16 with 16 layers and 138 million parameters was 

invented in 2014 [41]. GooLeNet (Inception-v1) is 22-layer 
deep with 5 million parameters [40]. As a successor of 
GooLeNet, Inception-v3 is deeper with 48 layers and 24 
million parameters [47]. ResNet-50 has 50 layers and 26 
million parameters [50]. Finally, Inception-v4 is a modified 
version of Inception-v3 with 164-layers and 43 million 
parameters [52]. Table 2 shows the comparison of them. 

 
TABLE 2: COMPARISON OF DEEP LEARNING MODELS. 

Deep 
Learning 
Models 

Year Developer 
Number 
of 
Layers 

Number of  
Parameters 

VGG-16 2014 VGG 16 138 million 
GooLeNet 2014 Google 22 5 million 
Inception-v3 2015 Google 48 24 million 
ResNet-50 2015 Microsoft 50 26 million 
Inception-v4 2016 Google 75 43 million 
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4. IDENTIFY LAPTOP BRANDS BY MACHINE 
LEARNING AND DEEP LEARNING 

4.1 Performance of deep learning architectures 
We trained the five architectures, including VGG-16, 

GoogLeNet, Inception-v3, Inception-v4, and ResNet-50, 
and analyzed their performance. As shown in Table 3, 
GoogLeNet is outperforming other models. Figures 5 and 6 
show the normalized confusion matrix of VGG-16 and the 
GoogLeNet. Both VGG-16 and GoogLeNet have acceptable 
performance. The VGG-16 can identify Apple, HP, and 
ThinkPad with 77% accuracy. For example, 100 unlabeled 
Apple images are fed to VGG-16 model, 77 images were 
classified correctly. GoogLeNet can identify ThinkPad with 
100% correctly if the unlabeled data are full photos. Because 
we train the models with full images, if the unlabeled data 
are a partial part of images like the corner part of the 
keyboard, the performance will be decreased. Both VGG-16 
and GoogLeNet have acceptable performance. Inception-v3 
is an advanced version of GoogLeNet, but Inception-v3 
does not perform better than GoogLeNet in this example. 
The reason is that Inception-v3 is more complicated than 
GoogLeNet, and moreover, the training dataset (210 
images) is limited. Inception-v3 has more parameters, so it 
overfits easily. However, its performance is better than 
VGG-16. Also, as models become more complex such as 
Inception-v3 with 48 layers, Inception-v4 with 75 layers, 
and ResNet-50 with 50 layers, the test accuracy is decreased 
due to overfitting. 

 
FIGURE 5: THE TESTING RESULTS WITH 
NORMALIZED CONFUSION MATRIX OF VGG-16. 
 

 
FIGURE 6: THE TESTING RESULTS WITH 
NORMALIZED CONFUSION MATRIX OF 
GOOGLENET. 

 
FIGURE 7: THE GOOGLENET IDENTIFICATION 
RESULTS OF SIX ADDITIONAL PARTIAL IMAGES 
BEYOND 210 FULLY IMAGES DATASET. 

 
Although all models are trained by full images (80% of 

the dataset), GoogLeNet can identify partial images, as 
shown in Figure 7. Six additional images are collected, and 
GoogLeNet recognizes each keyboard brand. Even with 
other information in the images, such as human hands and 
messy backgrounds, GoogLeNet can identify them 
correctly.  
 
4.2 Comparison of machine learning and deep 

learning 
Table 3 shows the training and testing results for each 

algorithm. Among ML models, the best performing model 
is SVM-Poly (SIFT) with 0.900 training and 0.696 testing 
accuracy. Among DL models, GoogLeNet is outperforming. 
The testing accuracy can reach up to 0.929, more efficient 
than ML. The ML models require extracted features for 
training, but the DL models can learn directly from training 
data. Also, during training, DL models will extract features 
repeatedly by adjusting different convolution layers.  

It seems that ML only considers one type of feature by 
one-time feature extraction, but DL computes various 
features by using different types of convolution layers and 
pooling layers.  

However, the trained models are slightly overfitting due 
to the limited dataset (210 images of three laptop brands) 
and the large numbers of parameters in each model. 
Although we tried to adjust different parameters to avoid 
overfitting, the intrinsic parameters of each model still learn 
to overfit. However, we still achieve acceptable accuracy in 
identifying each laptop brand. 

Although the accuracy of ML is not approximate as DL 
models, ML models can still identify characteristics of each 
brand. ML models are fast and easy to train using large 
datasets in a timely manner compared to DL. Therefore, ML 
models are still necessary under time-limited conditions. 
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TABLE 3: THE TRAINING AND TESTING RESULTS 
OF EACH MODEL. 

Model 
Training 
Accuracy 

Testing 
Accuracy 

Machine learning     
NB-Bernoulli (EHD) 0.457 0.441 
NB-Gaussian (EHD) 0.607 0.595 
NB-Multinomial (EHD) 0.491 0.477 
SVM-Linear (EHD) 0.306 0.345 
SVM-RBF (EHD) 0.599 0.572 
SVM-Poly (EHD) 0.585 0.583 
SVM-Sigmoid (EHD) 0.505 0.488 
NB-Bernoulli (SIFT) 0.542 0.453 
NB-Gaussian (SIFT) 0.594 0.530 
NB-Multinomial (SIFT) 0.590 0.554 
SVM-Linear (SIFT) 1 0.638 
SVM-RBF (SIFT) 0.886 0.673 
SVM-Poly (SIFT) 0.900 0.696 
SVM-Sigmoid (SIFT) 0.586 0.572 
Deep learning     
VGG-16 0.793 0.776 
GoogLeNet 0.983 0.929 
Inception-v3 0.868 0.845 
ResNet-50 0.620 0.602 
Inception-v4 0.589 0.574 

 
5. CONCLUSION 

In this study, several ML and DL techniques are applied 
to classify images of different laptop brands. ML algorithms 
include EHD and SIFT for feature extraction and NB and 
SVM for classification. DL models include VGG-16, 
GoogLeNet, Inception-v3 and Inception-v4, and ResNet-50. 
Among ML models, SVM-Poly (SIFT) has the best 
performance. Among DL algorithms, GoogLeNet performs 
better than others. Overall, the results proved that DL 
models outperform ML algorithms. Meanwhile, overfitting 
occurred slightly in the training process for both SVM-Poly 
(SIFT) and GoogLeNetdue to the limited dataset and 
complexity of model parameters. Although the dataset is 
limited, the DL models can identify each brand with 
satisfying accuracy. Also, ML models can still be used in 
the case of large datasets and the need for a fast response. 

This study can be extended in several ways. First, the 
results can be validated by collecting real-world image data 
from remanufacturing sites rather than using online images. 
Second, this research's outcomes can be employed in actual 
robotic applications in assembly and disassembly tasks. 
Third, other DL architectures can be developed to recognize 
and sort different types of products such as computers, 
refrigerators, and printers. Moreover, algorithms can be 
extended to other feature and component recognition tasks 
to harvest parts and critical components in used devices.  
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