Design and Development of a Tethys Framework
Web Application to Elucidate the HydroShare.org
Application Programmer Interface

Abhishek Amalaraj', Daniel P. Ames?

! Civil and Environmental Engineering, Brigham Young University, Provo, Utah 84602, abhishekamall8@gmail.com
? Civil and Environmental Engineering, Brigham Young University, Provo, Utah 84602, dan.ames@byu.edu

Abstract

In recent years, data and file sharing have advanced significantly, opening doors for engineers from all over
the world to stay connected with each other and share data, models, scripts and other information required for
scientific and engineering purposes. HydroShare (www.hydroshare.org) was developed by a consortium of
universities sponsored by the National Science Foundation (NSF) as a means for improving data and model
sharing. Originally released in 2014, and continually updated since that time, HydroShare has proven to be a
valuable resource for a growing number of active users in the field of water resources and environmental research.
The graphical user interface is relatively simple and easy to understand and the system provides users with a large
amount of free data storage, which makes it particularly useful for academics, researchers, and scientists as well
as practicing engineers. This project report presents the design and development of a web-based application (web
app) that demonstrates all core functions of HydroShare via a published application programmer interface (API).
The resulting web app was developed using the Tethys Platform which is intended for creating web-based
applications with database and mapping capabilities. This app demonstrates the use of all of the core functions of
the HydroShare Python REST client and includes sample code and instructions for using these functions. The
overarching goal of this work is to increase the use and usability of HydroShare via its API and to simplify using
the API for student and other programmers developing their own web applications.

Keywords: Hydrology, Education, Web development, Tethys Platform, HydroShare

http://www.hydroshare.org/

1.0 Introduction

Web based applications, web services, and online data and model sharing technologies are becoming
increasingly available to support hydrologic research. This promises benefits in terms of collaboration, computer
platform independence, and reproducibility of modeling workflows and results (Gan et al. 2020). New advances
in cyberinfrastructure and semantic mediation technologies have provided the means for creating better tools
supporting data discovery and access (Ames et al. 2012). The Consortium of Universities for the Advancement
of Hydrologic Science Inc. (CUAHSI) hydrological information system (HIS) is a widely used platform that is
service oriented to manage time series data (Sadler, Ames, and Livingston 2016). HydroShare is a web based
hydrologic information system of CUAHSI and that was developed to allow users to share and publish data and
models in a variety of flexible formats, and to make this information available in a citable, shareable and
discoverable manner. The CUAHSI HIS is an internet-based system to support the sharing of hydrologic data. It
is comprised of hydrologic databases and servers connected through web services as well as software for data
publication, discovery and access. The CUAHSI Observations Data Model (ODM) provides community defined
semantics needed to allow sharing of hydrologic information (Horsburgh et al. 2008). HydroShare enables users
to collaborate and work as teams in a web based collaborative environment, thereby enhancing research, education
and application of hydrologic knowledge. It includes tools (web apps) that can act on content in HydroShare
providing users with a gateway to computing and analysis. Much like Google Drive, the capability to have cloud
based applications that act on its data is a key part of HydroShare that advances its capability within general trend
towards providing web-based software services (Crawley et al. 2017). HydroShare also includes support for
hydrologic models and model input/output files which is expected to facilitate further use by water resources
engineers and managers who rely more and more on hydrologic models (Roberts et al. 2018).

One example of a web-based application that uses HydroShare is HydroShare GIS. It functions by accessing
the spatial metadata contained within the HydroShare resource data model and overlaying datasets as layers within
the OpenLayers JavaScript library which is a web-mapping client library for rendering interactive maps on a web
page (Hazzard 2011). Data are passed from the app’s server to a GeoServer data server and shared as web mapping
service layers. Thus, users can easily build map projects from data sources registered in HydroShare and save
them back to HydroShare as map project resources, which can both be shared with others and re-opened in
HydroShare GIS (Crawley et al. 2017). Shown below in Figure 1 is the HydroShare website home page.

@HYDHUSHARE HOME ~ MYRESOURCES DISCOVER COLLABORATE ~ APPS HELP DSIGN IN

év? "E\i(pes =fm:lurjiqg time se

\ | ' share

Figure 1 HydroShare website homepage.

HydroShare has a number of stated and intended uses as well as extended uses that researchers and water
resources engineers may find in the future. Stated uses of HydroShare include:

e Share hydrologic data and models with research colleagues.

e Manage who has access to the content that is shared.

e Share, access, visualize and manipulate a broad set of hydrologic data types and models.

e Use the web services application programmer interface (API) to program automated and client access.
e Publish data and models to meet the requirements of a data management plan.

e Discover and access data and models published by others.

e Use web apps to visualize, analyze and run models on data in HydroShare.

Water resources data scientists often require access to cloud-based data storage systems and end user models,
tools, and data analysis applications. In a service that is organized as a framework, interaction between end user
tools and the online data storage system is facilitated with the help of APIs (Ong et al. 2015). Upload and
download of large water related GIS data and hydrologic databases can cause a web application to perform poorly,
however when this information can be accessed and provided in smaller chunks, as needed, and processed for
specific purposes — i.e. through the use of API’s -these limitations can be avoided (Michaelis and Ames 2012).
HydroShare is a data and model sharing system and it comprises a systematic approach to file sharing using a
distributed file sharing back end called IRODs (Rajasekar et al. 2010). Data stored within the IRODS system is
primarily accessed through the HydroShare front-end web portal. However, there is also a built in capability to
access HydroShare resources and data using an API built on Representational State Transfer (REST) (Khare and
Taylor 2004). This API has been extended through a Python wrapper module called hs-restclient. The REST
interface and the hs-restclient Python module have both been used by developers creating web applications for
HydroShare but there is a lack of detailed demonstration code for this functionality, which limits use of these
powerful means of interacting with HydroShare. According to Crawley et al. (2017) “The good news is that much
advancement and innovation has been achieved in the field of spatial data cloud computing in recent years that
could contribute to and greatly simplify the development of a cloudbased application for interacting with
HydroShare’s spatial data”. The specific problem in HydroShare is that we have no tutorial features with the API
that can be useful with a beginner or any intermediate level programmer to incorporate the found code in the API.
The option to understand how it falls into place of any web app or website to use the same feature found in the
HydroShare API is not found in it. Hence, the universality or opportunity to expand for the HydroShare API
which being a forerunner in storing hydrologic data is restricted and also the resources and the option to store
water and scientific data cannot be used at their best potential. CUAHSI provides JUPYTER notebooks that are
notebooks to run Python code which help with running a block of code in the API but they are not self-explanatory.
In a growing world of environmental engineers and water scientists, there is also a rise in developing technologies
that make use of the web in a complete sense and having a cloud of such apps focused on helping this line of
fellow scholars is one of many aspirations that we hope to achieve and will help with establishing it in the not so
distant future. So, an app to provide some reference and education on this specific task will be greatly beneficial.
Previously we have discussed that CUAHSI has Jupyter notebooks to help with the purpose of understanding the
API and the blocks of code. These notebooks to practice script and functions are very smooth and fast. The idea
behind making this active feature is to fill the gap and sort of form a bridge between using the features on the
HydroShare website and learning how they work. But it does not go the extra mile in explaining step by step how
each piece of the script helps with accomplishing different specific tasks found on the website.

“Sharing hydrological data across geographical boundaries can help alleviate damage from floods. Water rights
can be managed on a need basis instead of greed, thus preventing droughts and dry spells in downstream regions”
(Khattar and Ames 2020). The idea of the project began keeping in mind the beginner and intermediate level
programmer and the limited but unique challenge they face at understanding how to implement the REST API of

one of the best environmental science and engineering-based data storage and modelling systems. With the rise
in free services and literature online, one can use them to its full capacity but can also turn out to be a herculean
task to achieve a simple function with minimum documentation. The research project was funded by HydroShare.
Thorough research was done on the idea of implementing the REST API in a Tethys framework and enabling all
the functions. The project is focused at filling the gap that medium level programmers come across with
understanding APIs and database management.

The project began in May 2020 and was completed over the course of a few months. The completed app as
intended has all the demonstrations needed and a few improvisations which are successful and smooth. All the
features in the web app were tried and tested and they are also provided with the step-by-step instruction.

1.1 REST Architecture

REST is an architecture style that can be used for designing networked applications (Wei Zhou et al. 2014).
As “REST architectural style has gained more popularity in implementing loosely coupled systems, RESTful
services are becoming the style of choice for northbound API and gaining increasingly importance in Software
Defined Networking (SDN) architecture. Adopting REST for a SDN architecture has the following benefits:

1. Decentralized management of dynamic resources: REST does not use any centralized resource registry
but relies on connections between resources to discover and manage them. REST allows network
elements, such as routers, switches, middle boxes (e.g. NAT and DPI devices), to be dynamically deployed
and changed in a distributed fashion.

2. Heterogeneous clients: because REST separates resource representations, identification, and interaction,
it can adjust resource representations and network protocols based on SDN client capabilities and network
conditions to optimize API performance.

3. Service composition: the current trend in SDN is to use programming composition to achieve functional
flexibility, such as REST can provide service-oriented compositions that are independent of programming
languages and can run on different platforms.

4. Localized migration: since the functions of SDN are fast evolving, the northbound APIs of SDN
controllers will likely change accordingly. REST API supports backward-compatible service migration
through localized migration by which a newly added resource only affects the resources that connect to it.
Combined with uniform interface and hypertext-driven service discovery, it can ease the tension between
the new service deployments and backward compatibility.

5. Scalability: REST achieves server scalability by keeping the server stateless and improves server
performance through layered caches. This feature will become useful, when an SDN controller needs to
support many concurrent host-based applications and to use network resources in an efficient way.” (W.
Zhou et al. 2014).

1.2 Application Programming Interfaces (APIs)

An API is a computing technique which establishes communication between many software intercessors. API
can be completely customized, discretely made for an element in the app, or it can be planned out for an
organization to ensure integrative usefulness. It sets the types of calls, requests or queries that can be made, their
nature, the data types that have to be used and the agreements that should follow. These interfaces can also be
prepared to furnish certain special mechanisms that offer capabilities in several ways and formats (Ofoeda,
Boateng, and Effah 2019). In software applications, an API simplifies programming by abstracting the underlying
implementation and only exposing objects or actions the developer needs. While a graphical interface for an email
client might provide a user with a button that performs all the steps for fetching and highlighting new emails, an

API for file input/output might give the developer a function that copies a file from one location to another without
requiring that the developer understand the file system operations occurring behind the scenes.

To understand the way an API works is to visualize a middle person capable of transferring communication
between two separate parties and also provides the service as part of that communication. For example, as shown
in Figure 2, imagine giving an order to a waiter in a drive through restaurant. He takes in the order over the
microphone and then passes the information of your order to the kitchen where the food is processed. The kitchen
processes the food and gives it to the person who took the order who then eventually delivers it. This sort of
service sees that communication is performed effectively to get the end product delivered.

User (post a

request)

API (middle
person)

Server (request is

executed)

Figure 2 Understanding how an API works

An API works similar to the example described earlier and helps with transferring the command from the user
to the server and the server then executes the command and transfers the end product or the query result to the
user through the API which acts as the middleman. HydroShare provides a Python based API that can be used in
our Tethys app as we use a Django framework for creating and developing an app. This project will help with
using all the functions on the API provided to make the app as useful as possible and import the major functions
in the HydroShare page. The Python API provided has good support and is updated annually. That way, the
features of HydroShare not supported by the API now could have it added to the documentation sometime later
in the future.

1.3 Tethys Platform

Programming can be a difficult skill to adapt (Gries 2012) and would require creative thinking and problem
solving to accomplish simple to advanced steps. Web programming involves the use of understanding frameworks
and how the elements in different file formats fall into place and depend on each other. “The interactive nature of

web applications or ‘web apps’ makes them a well-suited medium for conveying complex scientific concepts to
lay audiences and creating decision support tools that harness cutting edge modeling techniques and promote the
work of environmental scientists and engineers. Despite this potential, the technical expertise required to develop
web apps represents a formidable barrier—even for scientists and engineers who are skilled programmers” (Swain
et al. 2016). Tethys is a platform that makes web development a lot easier by supporting APIs from various
sources and software packages and enabling to incorporate them very effectively into our apps. The platform
synthesizes several free and open source software projects that are needed for the development of cloud-based
hydrologic modeling applications and includes software that offers typical web development tools in the form of
a web framework as well as web-based geographic information systems (GIS), high performance computing
management utilities and interactive scientific visualization libraries (Jones et al. 2014).

Tethys Platform is updated periodically and is open source. The software package is written in such a way that
even beginner and intermediate level programmers with low to minimal programming skills can catch up and
build a fully functioning web app that does all that they intend to do with it. Tethys Platform provides a suite of
free and open source software. Included in the Software Suite is PostgreSQL with the PostGIS extension - which
is a spatial database add-on including support for all of advanced spatial processing and querying entirely at the
SQL command-line (Ramsey and Columbia 2005), GeoServer for spatial data publishing (Youngblood 2013).
Tethys also provides Gizmos for inserting OpenLayers (a dynamic web interactive service) (Farkas 2016) and
Google Maps for interactive spatial data visualizations in web apps. The Software Suite also includes HTCondor
for managing distributed computing resources and scheduling computing jobs (Fajardo et al. 2015).

Building a Tethys app is much easier than building a web app from scratch. The dependencies and the
framework are set in stone right from the beginning. Changes can be made to the core structure and styling of the
app with very few and simple steps(Swain et al. 2016). Tethys Platform requires the ‘Conda’ packaging system.
Conda standardizes software installations across various language ecosystems by describing each specific
software with a human readable recipe that defines meta-information and dependencies, and also the simple ‘build
script’ that performs the tasks necessary to build and install the software (Griining et al. 2018) and is an open
source package management system that runs on Windows, macOS and Linux. Conda quickly installs, runs and
updates packages and their dependencies. Tethys Platform includes a modern web portal built on Django (Forcier,
Bissex, and Chun 2008) that is used to host web apps called Tethys Portal. It provides the core website
functionality that is often taken for granted in modern web applications including a user account system with a
password reset mechanism for forgotten passwords (Holovaty and Kaplan-Moss 2009).

The software development kit takes advantage of the Django template system to help with building dynamic
pages for web apps while writing less HTML. It also provides a series of modular user interface elements called
Gizmos. With only a few lines of code you can add range sliders, toggle switches, auto completes, interactive
maps, and dynamic plots to your web app. The platform also includes Python modules that allow you to provision
and run computing jobs in distributed computing environments. With CondorPy you can define your computing
jobs and submit them to distributed computing environments provided by HTCondor. This technology has been
used to build the app and makes full use of its sustainable functionality

The unique value of Tethys is that it has some shortcuts for setting up the PSQL databases you need in a
Django app, for setting up the user management database, and also providing the admin interface. They are very
useful especially to set up a production web app server. To understand it better, it is basically Django. The above-
mentioned features, from Tethys actually do not. The other ‘Tethys’ features are really other Django extensions
or other software which there are docker containers for. Web apps add huge value to research projects and can be
useful tools for scientists, engineers or other users.

The app can be enhanced by incorporating the hs_restclient API in it. The REST client will be inserted in the
controllers.py file of the framework created while creating the app. This Python file can run all the major functions
and 1s responsible for the running and executing of the different features enabled with the app. A few dependent

JavaScript files will be added to the app to help with simple tasks like giving prompts and pop ups as well to
execute certain complex controller option which would require the need of combining more than one API function
in the REST client. Subsequently the app will also need updating in the app.py file to make sure that the function
mentioned in the html document can be read from the controllers.py file. This would account to a major chunk in
completing the app.

The source code is available for feedback and further improvement and is uploaded to the BYU
Hydroinformatics group found in GitHub. As mentioned earlier, the API is updated from time to time which could
be taken to advantage and the app can be improved and updated. The app will be hosted on the Brigham Young
University (BYU) Tethys portal (https://tethys.byu.edu/apps) and is ready to install from another Tethys app
called “Warehouse’ — a storehouse for similar Tethys web apps.

2.0 Design and Development of a HydroShare API Tethys App

The app is powered by the framework that Tethys provides and so it is provided with a base.html file that
displays all the features found on the page. The features of the app are ordered neatly on the left pane of the page
individually which makes it easier to fully understand how the functions in the REST API come into play. If one
or more functions are used in the same page of the app, it could be a little difficult for the beginning user to follow.
The HydroShare API Tethys app is made with an introduction to HydroShare and what exactly we will be trying
to accomplish in terms of understanding how the API provided by HydroShare works. For that reason, there is a
tutorial page that also talks about how to get this app running. This app is made keeping in mind that it is a tutorial
app and so it is built with chunks of code inserted into each of the pages to display the function that the page will
be trying to incorporate in the app.

2.1 Elements of the app

a) CSS File - The CSS file dedicated to making visible and static UI changes is named as the main.css file and
we can modify the logo and other similar things like having a background color, image and changes to the font
and other similar details. This Tethys app will be closely connected to the HydroShare website and so it is styled
very similar to the website.

b) JavaScript - The role that JavaScript plays in this app is that it helps with a lot of simple basic UI features like
displaying a pop up or showing a loading status for when the app fetches information. It also helps a lot to perform
certain complicated functions like joining more than function in the API to perform a specific task which will be
shown later in the document.

¢) HTML Templates - The HTML templates are predefined as part of the package and they help with making
the app display various types of information and are stitched to the base.html file which makes the pages
accessible from there. This action is done by extending each page from the base.html file using a HTML function.

d) Controllers.py - As mentioned earlier in this paper, the app is powered by Tethys which is a modified and a
robust Django framework which uses Python to assign tasks and implement functions. The powerhouse for the
framework would be the ‘controllers.py’ file. Here, we have all the API functions from REST assigned to their
individual pages and the gizmos assigned to do certain specific functions.

¢) Template Gizmos API - Template Gizmos are building blocks that can be used to create beautiful interactive
controls for web apps. Using the Template Gizmos API, developers can add date-pickers, plots, and maps to their
app pages with minimal coding. These blocks are very efficient and cleans up the code by having them do an

assigned function from the controllers.py file without having to repeat them over and over again in the HTML
templates.

2.2 Arrangement of the controllers.py File

The HydroShare API Tethys app is Django based and uses Python as its programming language. The app
framework is designed to be of highest convenience, and it comes with a ‘controllers.py’ file. The file is the
powerhouse of the app as all the functions that are run in the web app are entered in this file and are connected to
the “url maps’ in the app.py file. These functions are then made available to the template from which it is used
on the front end. Overall, this file is what makes the app to use the REST API in its functions to import the
functionality of the HydroShare web page.

a) Packages - The controllers.py file needs to be stacked with the packages that are needed for the app to run
smoothly and effectively. These packages are listed at the top of the file as Python requires indentation in a
specific format and shown below are all the packages we have used for the app.

from django.shortcuts import render

from tethys sdk.permissions import login required

from tethys sdk.gizmos import Button

from tethys sdk.gizmos import TextInput, DatePicker, SelectInput
from tethys sdk.gizmos import DataTableView

from tethys services.backends.hs restclient helper import get ocauth hs
from django.shortcuts import redirect, reverse

from django.contrib import messages

from django.http import HttpResponse, JsonResponse

from hs restclient import HydroShare, HydroShareAuthBasic

from django.utils.encoding import smart str

from wsgiref.util import FileWrapper

import os

import tempfile

import zipfile

import Jjson

from django.core import serializers

b) Classes - The controllers.py file is Python based and so its organized into classes and each class is defined
with functions which use the API and helps with the execution of the function. The different functions are used
by the HTML templates when it is connected to the url maps in the app.py file. For an example, the class and
function shown below is for adding a file to a resource in HydroShare and it could be used to add multiple files.
From the structure of it we see a controller for the homepage.

@login_required()
def add file(request):

Controller for the Add Dam page.
Default Values

username '
password = "'
resourcein =

Errors

username error =
password error =
resourcein error =

loggedin = False

try:

pass in request object
hs = get oauth hs(request)
loggedin = True

except Exception as e:

pass
handle exceptions

Handle form submission
if request.POST and 'add-button' in request.POST:

Get values

has errors = False

username = request.POST.get ('username', None)
password = request.POST.get ('password', None)
resourcein = request.POST.get ('resourcein', None)

print (dict (request.FILES))
uploaded file = request.FILES['addfile']

with tempfile.TemporaryDirectory() as temp dir:
temp zip path = os.path.join(temp dir, uploaded file.name)
print (temp zip path)

Use with statements to ensure opened files are closed when done
with open(temp zip path, 'wb') as temp zip:
for chunk in uploaded file.chunks():
temp zip.write (chunk)

Validate
try:
pass in request object
hs = get oauth hs(request)

your logic goes here. For example: list all HydroShare resources
for resource in hs.getResourcelList () :
print (resource)

except Exception as e:
handle exceptions
if not username:
has errors = True
username error = 'Username is required.'

elif not password:
has errors = True
password error = 'Password is required.'

else:
auth = HydroShareAuthBasic (username= username, password= password)

hs = HydroShare (auth=auth)

if not resourcein:

has errors = True
resourcein error = 'Resource is required.'

if not has errors:
fpath = temp zip path
resource_id = hs.addResourceFile (resourcein,

messages.success (request, "File added successfully")

if has_errors:
messages.error (request, "Please fix errors.")

Define form gizmos

resourcein input = TextInput (
display text='Resource ID',
name="'resourcein',

placeholder="'Enter id here eg: 08c6e88adaa647cd9%b28e5d619178e0

username input = TextInput (
display text='Username',
name="'username',
placeholder="Enter your username'

password input = TextInput (
display text='Password',
name='password',
attributes={"type":"password"},
placeholder="Enter your password'

add button = Button (
display text='Add',
name="'add-button',
icon="glyphicon glyphicon-plus',
style='success',
attributes={'form': 'add-dam-form'},
submit=True

cancel button = Button (
display text='Cancel',
name="'cancel-button’',
href=reverse ('hydroshare python:home')

context = {
'loggedin' : loggedin,
'resourcein input': resourcein input,
'username_input': username input,
'password input': password input,
'add button': add button,
'cancel button': cancel button,

return render (request, 'hydroshare python/add file.html', context)

A}

¢) App.py File - The url maps methods is tightly related to the App Base Class API. The url maps methods is
tightly related to the App Base Class API. The app.py file has a url_maps function that has the duty to map or
locate the functions in the controllers.py file and utilize them in on their respective urls. UrlMap objects must be
created from a UrlMap class that is bound to the root_url of the app. Use the url map maker() function to create
the bound UrlMap class. If an app is generated from the scaffold, this is done automatically. Starting in Tethys
3.0, the WebSocket protocol is supported along with the HTTP protocol. To create a WebSocket UrlMap, follow
the same pattern used for the HTTP protocol. The URL should be typed with precision and could lead to typo
errors or indent errors. A proper way to avoid that is to maintain the same name throughout the project for a
function and its execution in the web app.

def url maps(self):

mwwan

Add controllers

mwwan

UrlMap = url map maker (self.root url)

url maps = (
UrlMap (
name="home',
url="'hydroshare-python',
controller="hydroshare python.controllers.home'

),

UrlMap (
name='get file',
url='hydroshare-python/get file',
controller="hydroshare python.controllers.get file'

)
3.0 App Implementation

The HydroShare API Tethys app is by nature a well-documented tutorial app that is self-explanatory to the
point of working the functions on the app and has a very simple GUI. Following is a discussion of the development
of the code and how we made and connected all these elements with the API to bring it onto the front-end surface.
The primary functions of our HydroShare API demonstration web app are as follows:

e Create a Resource

e Browse for a Resource

e View the boundaries of a Resource
e GeoServer - View a Resource

e Metadata
e Qet science Metadata
e AddacFile

e Download a File

e Delete a File

e Delete a Resource

¢ Download a Resource

o Change a Resource from Private to Public
e Create a Folder

e Delete a Folder

The simpler the process in executing a function the easier it is to grasp the concept of it. With that regard, the
best function of the app that we can demonstrate is the ‘Create Folder’ function. The ‘Create Folder’ feature on
the page looks like the image shown below. The source code for the Create Folder function follows.

= j‘* HydroShare Python APl Demonstration

Create a Folder

The ‘Create a Folder’ feature allows for a new folder to be made, better organizing the HydroShare resource. This feature is run by the HydroShare API Python library.
Below are step by step instructions on how to create a folder:
Step 1: Sign into HydroShare using your credentials

In the boxes below you enter your HydroShare username and its password. If you have to make an HydroShare account, click here.

Username

admin

Password

Step 2: Enter in the Resource ID of the resource in which you intend to create a folder:

The resource ID is a unique identifier for every resource on HydroShare. You can find it by clicking on your resource in HydroShare, scrolling down to the “How to Cite”
section, and copying the ID from the URL. This is an example hyperlink: https://www.hydroshare.org/resource/08c6e88adaa647cd9bb28e5d619178e0/ from which The
32 letter combination at the end is called the resource ID. The resource ID from the example hyperlink is 08c6e88adaa647cd9bb28e5d619178e0.

C | @ htips://www. hydroshare.org 08c6e88adaaba7cd9bb28e5d613178e0

Resource ID
Enter the Resource ID
Name of the Folder

Enter the name of the folder

=+ Create Folder

Figure 3 ‘Create Folder’ User Interface

@login_required()
def create folder (request):

mwriwn

Controller for the Add Dam page.

mwriwn

Default Values

username =

password = "'

river = "'
resourcein = "'
foldername = "'

Errors

username error = "'
password error = ''
resourcein error = "'
foldername error = ''
loggedin = False

try:

pass in request object
hs = get oauth hs(request)
loggedin = True

except Exception as e:
pass

Handle form submission
if request.POST and 'create-button' in request.POST:
Get values

has errors = False
username = request.POST.get ('username', None)
password = request.POST.get ('password', None)
resourcein = request.POST.get ('resourcein', None)
foldername = request.POST.get ('foldername', None)
Validate
if not resourcein:

has errors = True

resourcein error = 'resourcein is required.'
try:

pass in request object
hs = get oauth hs(request)

your logic goes here. For example: list all HydroShare resources

except Exception as e:
handle exceptions

if not username:
has errors = True
username error = 'Username is required.'

elif not password:
has errors = True
password error = 'Password is required.'

else:
auth = HydroShareAuthBasic (username=username, password=password)
hs = HydroShare (auth=auth)

if not foldername:
has errors = True
foldername error = 'Folder name is required.'

if not has errors:

folder to create = foldername
response_json = hs.createResourceFolder (resourcein, folder to create)
messages.success (request, "Folder created successfully")
if has errors:
messages.error (request, "Please fix errors.")

Define form gizmos

username_ input = TextInput (
display text='Username',
name='username',

placeholder="Enter your username'

password input = TextInput (
display text='Password',
name="'password',
attributes={"type":"password"},
placeholder="Enter your password'

foldername input = TextInput (
display text='Name of the Folder',
name="'foldername',
placeholder="Enter the name of the folder'

resourcein input = TextInput (
display text='Resource ID',
name="'resourcein',
placeholder="'Enter the Resource ID'

create button = Button(
display text='Create Folder',
name="'create-button',
icon='"glyphicon glyphicon-plus',
style='success',
attributes={'form': 'add-dam-form'},
submit=True

cancel button = Button(
display text='Cancel',
name="'cancel-button’',
href=reverse ('hydroshare python:home')

context = {
'loggedin': loggedin,
'username input': username input,
'password input': password input,
'resourcein input': resourcein input,
'create button': create button,
'cancel button': cancel button,
'foldername input': foldername input,

}

return render (request, 'hydroshare python/create folder.html', context)

The add file feature is found on the HydroShare website which as the name suggests, enables the end user to
create a folder inside a resource that you own. The feature proves to be very useful as it helps with organizing the
resource very effectively. The first step in the process of creating a function is creating default values which are
basically arrays that store the values that are manually entered by the user.

a) The values necessary for this function are the username, password, resource ID and the name of the folder
that we want to create.

Default Values

username = "'

password = "'

resourcein = "'

foldername '

b) Error defaults — Just as above, here we are setting a set of defaults for the errors and create errors for the
functions in case there are any. There is also a try object that is used for signing into HydroShare.

Errors
username _error
password error
river error =
resourcein error = "'
foldername error = ''
loggedin = False

try:

pass in request object
hs = get ocauth hs(request)
loggedin = True

except Exception as e:
pass

c) Handle form submission — The requests and posts are handled here where information is received and then
sent for further processing when we hit the ‘create’ button which in other cases are buttons named after
their specific functions.

Handle form submission

if request.POST and 'create-button' in request.POST:
Get values

has errors = False

username = request.POST.get ('username', None)
password = request.POST.get ('password', None)
resourcein = request.POST.get ('resourcein', None)
foldername request.POST.get ('foldername', None)

d) Validating — We further go on to validate the requests to see if they have a value and if they do, we fill
them up in the array that we create for default values and if there is an invalid value like null or invalid
type, then we enter it in the error defaults and proceed. Each condition is checked to be complete and
ready for the submission and the task to be performed is entered in the ‘if not has_errors’ part where we
use the API of HydroShare which is as shown below:

auth = HydroShareAuthBasic (username="'myusername', password='mypassword')

hs = HydroShare (auth=auth)

folder to create = "folder 1/folder 2"

response_json = hs.createResourceFolder ('ID OF RESOURCE', folder to create)

The code is modified a little as the order in which the elements are placed depends on our specific individual
app as follows:

Validate
if not resourcein:
has errors = True
resourcein error = 'resourcein is required.'

try:
pass in request object
hs = get oauth hs(request)

your logic goes here. For example: list all HydroShare resources

except Exception as e:
handle exceptions

if not username:
has errors = True

username error = 'Username is required.'

elif not password:

has errors = True
password error = 'Password is required.'
else:

auth = HydroShareAuthBasic (username= username, password= password)
hs = HydroShare (auth=auth)

if not foldername:
has _errors = True
foldername error = 'Folder name is required.'

if not has errors:
folder to create = foldername
response_ json = hs.createResourceFolder (resourcein, folder to create)
messages.success (request, "Folder created successfully")
if has errors:
messages.error (request, "Please fix errors.")

The messages.success and the messages.error help with displaying the messages on execution of the function.
The ‘if not has_errors’ is the block that implements the API at the request of the create button.

a. The ‘gizmos’ — The gizmos are building blocks that accomplish simple tasks in Tethys apps for certain
assigned functions. Though limited to their predefined nature, these blocks cover a wide range of useful
functions. These blocks have to be activated from the controllers.py using their special gizmo tag.

Define form gizmos
username_ input = TextInput (
display text='Username',
name='username',
placeholder="'Enter your username'

)

password input = TextInput (
display text='Password',
name="'password',
attributes={"type":"password"},
placeholder="Enter your password'

foldername input = TextInput (
display text='Name of the Folder',
name="'foldername',
placeholder="Enter the name of the folder'
)

resourcein input = TextInput(
display text='Resource ID',
name='resourcein',
placeholder="'Enter the Resource ID'

)

create button = Button(
display text='Create Folder',
name='create-button’',
icon='glyphicon glyphicon-plus',
style='success',
attributes={"'form': 'add-dam-form'},
submit=True

)

cancel button = Button(
display text='Cancel',
name='cancel-button’',
href=reverse ('hydroshare python:home')

Context — The context tag transmits the functionality of all the objects and variables to the template when the
tag is placed there in the html file. It can be understood as importing it there.

context = {
'loggedin' : loggedin,
'username_input': username input,
'password input': password input,
'resourcein input': resourcein input,
'create button': create button,
'cancel button': cancel button,
'foldername input': foldername input,

The gizmo tags like the username and password are shown below:

<p>In the boxes below you enter your HydroShare username and its password. If you hav
e to make an HydroShare account, <a href="https://www.hydroshare.org/sign-
up/?next=">click here.</p>

{% 1f not loggedin %}
{% gizmo username_ input %}

3.1 Graphical User Interface

Shown below is the ‘Create a Resource’ feature with the different stages of its execution. The screenshots are
numbered to avoid confusion and to maintain the order of flow.

a) The first stage of the ‘Create Resource’ feature where we enter the information that is needed to create a
resource in database and avoid recurring repetitions.

= &% HydroShare Python API Demonstration

Create a Resource

Step 2: Enter the metadata as indicated below
Author/Co-authors

Abhishek Amalara)

Title

Demo resource

Keywords

demo, shapefile

Abstract

Figure 4 'Create Resource' User Interface

b) A feature has been added to the app that enables the user to add a file to the fresh resource that is being
created.

Password

Step 2: Enter the metadata as indicated below

Author/Co-authors

Abhishek Amalaraj

the praject 15
Title

Dema resource

Keywords

demo, shapefile

Absuract
Step 3: Choose the file that
'Create’ button below

Chiogse File | No file chosen

| click the

Learn more

Figure 5 Adding a file to a resource

Open Water Journal — Volume 7, Issue 1, Article 3 20

c) The ‘Create’ button executes the code present in the function.

HydroShare Python API Demonstration

® Llogih X

Bubiic Demo resource
Creats & Foldar The keywords are used 10 SOTT your resource with respect to its type and helps others find your data quickly when searching for & resource using these keywords

Keywords
Delete a Folder

demo, shapefile
Limiations

Type in your abstract in the tab below that would help explain your resource to another fellow user. Try not using more than 200 words
Abstract

A test resource 1o check If the code IS running smooth

Step 3: Choose the file that you want to upload to the new resource that you are creating and click the
‘Create’ button below:

[choase Fie | Abhishekama. aj_resume pdf

Learn more:

To try this on your own, you can use the code snipper below that is used in this demonstration

from hs_restclient inport Hydroshare, Hydroshareautheasic
suth = Hydroshareauthbasic(usernames ‘usernsne’,
hs = MydroShare{suthesuth)

abstract =~ date_bullt

keywords = ouner.split(*, '}

= ‘password’)

riype = “Genericfesource’

Fpath = */path/to/a/File’

metadsts = ‘[{"coverage”:{"type” "perion”, “value":{"start":"01/01/2000",
extra_metdats = '{"key- ve-1, Chey
resource_id = ha.creste
messages. ercor (request,
1 has_errars:

end”:*12/12/2010"}}}, ("crestor”:{"name":"Usernane™)}, (“creator®:{"name":"Usernsne2"}}]

“value

rtype, title, rescurce filesfpath, keywordsskeywords, sbstract=sbstract, metadatssmetadata, extra_metadste-extra metadata)
roe created successfully”)

messsges.error(request, "Please fix errors.”)

Figure 6 Emphasis on the 'Create' button

d) The pop-up message that asks us if we want to finalize our function.

= &% HydroShare Python APl Demonstration
Public: Demo resource

Create a Folder The keywords are used to sort your resou

Keywords
Dslato a Folder
dema, shapefile
Limiations
Type In your abstract in the tab below that would help explain your resource ta another fellow user. Try not using more than 200 wards
Abstract

Atest resource to check if the code is running smooth

Step 3: Choose the file that you want to upload to the new resource that you are creating and click the
'Create’ button below:

| Choose File | AbhishekAma...aj. resume.pdf

+ Create

Learn more:

To try this on your own, you can use the code snippet below that is used in this demonstration

from he_restclient import WydroShare, MydroSheresuthEssic

auth = HydroShareuthBasic(usernane= “username’, password= ‘passward’)
hs = Hydroshare {suth=
abstract - date_bu
keynards = ow
rtype = ‘Gene
foath =
metsdnts = °[
axtra_petadata = {"key-
resource_id = hi.cresteResource(rtype, title, resource file=fpath, kepn
messages error(request, "Resource crested successfully”)

if has_errars:

hito/a/File"

£71701/01/20007, "end”1"12/12/20187}}], {“crestor™:{"mame”:"Username™}}, [“crestor”:["name”:"Usernane2"}}]"

2, sbitr _ &

) extras ,_metadata)

messages.arcor(request, "Plesss Fix errors.”

Figure 7 Pop up input prompt message box

© Copyright owned by the authors unless otherwise noted. OpenWaterJournal.org

e) Tethys has a success message and an error message that is displayed depending on the success of the operation.
In our case, we get a message saying that the operation was successful.

= &% HydroShare Python APl Demonstration ® logh x

Re:

Hame
Tethys - A Brief Intraduction

Tohnih et howr o ot 4t g Create a Resource

Ay : g e

ng this Task. Be

Browse for a Resource Hydro

: The way you could go about performing this funcrion is by following the instructions below
Viaw tho b X

Gaoserver - View a Resource

Step 1: Sign into HydroShare using your credentials

n the boxes helow ord. If you need to make a HydroShare accaunt, click here
Metadata
Username
Get sciance Metadata sbu13ss
Adda Fils Password
Download a File Gk
elete a F y 3
Dl e PR Step 2: Enter the metadata as indicated below
Delete a Resource Enter the name of the Author and co-authars if you have any, this helps with sharing access and making things available to peaple who could to the proj
S Author/Co-authors
Change a Resource from Private o
Public The title of the project is basically the name of your resource. Try to keep it short, but descriptive in order ta avoid confusion when others search for your data
Create a Folder Title
Delste & Folder
The keywords are used to SOIT your resource with respect to its type and helps others find your data quickly when searching for a resource using these keywords
Limaations
Keywords
Type in your abstract in the tab below that would help explain your resource ta anather fellow user. Try not using more than 200 wor

Figure 8 Success message - a default Tethys function
f) Shown below is the HydroShare website with the resource created successfully and is added to the resources
that the author owns.

QHVDHUSHARE HOME ~ MYRESOURCES DISCOVER COLLABORATE APPS HELP ‘ A

My Resources interact with your HydroShare Content.

® x @ Q Searc > -
Q Filter
: First Date Last
Qunedbyme; €@ g Tipe T Author Created ™ Modified
[Sharedwith @)
me Dec 12, Dec 12,
Abhishek - 2
[69)] E' 8@ Demo resource 2020 at 2020 at
& Added by me
] ¥ o — Amslaroy 323am. 323am
Favorites (0]
[Recently [1] Amalaraj, g1z, Aug 17,

O*x % H &6 & Berlin E i 20204t 2020 at
Updated — Abhishek 508 pm 504pm

Apr 09, oct 02,

W Labels Abhishek

[} ‘E::{ 660 UtahMunicipal e 202t 2020 at
No Iabeis found 755am. 527pm

R Feb 26, Feb27,

o Hle6e viewBuild Data EHL ‘1“ 2020 at 2020 at
— = s14pm. 749pm

Ansir Feb 25, Feb 25,

0% S H) &6 ® AnaheimCA Abh\fh:i. 20203t 2020t
— o 538pm. 550pm

kil Feb 25, May 13,

O * R Blae NewYorkshapefile A‘b‘:shi‘l‘- 20208t 20204t
— S 524pm. 549pm

" Feb 24, May 21,

O* 9 Blaeo StatesUSAshapefile e ’i' 2020at 2020at

- Al €l

&52pm. 8:33pm

Figure 9 Resource added successfully to the HydroShare database

g) Below, we can see the information we entered in our app.

6H\'[]H[|S|-|ARE HOME MYRESOURCES DISCOVER COLLABORATE ~ APPS HELP
Demo resource
Authors: Abhishek Amalaraj Sharing Status: Private
owners: Abhishek Amalaraj Views: 1
Resource type: Composite Resource Downloads: 0

Storage: The size of this resource is 147.1 KB +1 Votes: Be the first one to ﬁ this.
Created: Dec 12, 2020 at 3:23 a.m. Comments: No comments (yet)
Lastupdated: Dec 12, 2020 at 3:23 a.m. Abhishek Amalaraj

Citation: See how to cite this resource

Abstract

Atest resource to check if the code is running smooth
Subject Keywords

demo shapefile

Figure 10 Resource created with the information entered in our app

h) The GUI of the ‘Browse for a Resource’ function which searches and displays the name and resource ID of
a function based on the parameter ‘subject’

n APl Demonstration

using the subject parameter.

Step 1: Enter in your username and password

n the boxes below enter your HydroShare username and password. If you need to make a HydroShare account

Browse for a Re

View the boundaries of a Resource
click here

Geoserver - View a Resource

Motadata

Get science Metadata

Add a File

Download a File

Delete 2 File

Dalete 2 Resource

Download a Resource

Change a Resource from Private lo
Public

Create a Folder

Delete Folder

Limitations

Username

abhishekamal 8@gmail.com

Password

Step 2: Type in your subject of the resource you are looking for
Subject
EPANET

Step 3: Browse for the resource you are looking for

[Find Resources

The resources related to the subject, mentioned above, will appear In the scroll below. Depending on the numbej

s 10 a few minutes

2id use in other features of the app like

EPANET

EPANET_2.0 lrce
EPANET sample model Netl

EPANET sample model Net2
EPANET sample mode| Net3
EPANET sample model tutorial
Test

Test node fedge edit 1

Test drag node save |

test drag 1

test drag 2

Ted Cleveland Example 7

Ted Cleveland Example 6

Ted Cleveland Example 5

Ted Cleveland Example 4

Ted Cleveland Example 3

Ted Cleveland Example 2

Ted Cleveland Example 1

Ted Cleveland carolinefFGN +

the code snippet below, or download the full javascript file T

Share, MydrosharesuthBasic
ame="usernams’, password='password’)

Hewr)

resourceList))

r of the resources with respect to the subject in HydroShare, it

ing a file or downloading a file or even deleting a file from a resource

is used In this demonstration

Figure 11 'Browse for a Resource' User Interface

The GUI of the ‘View the boundaries of a resource’ function which shows the geographic extent of a
resource.

Download a File

Delate a Fila

Delete & Resource

Download a Resource

Change a Resource from Private 1o
Publ

Create a Folder

Dalete Folder

Limitations

Find Resources

WRF-Hydro

St Case a1 Croton New York v

The resource ID is what you could use In other features of th like adding a file, downloading a file, or even deleting a
Resource id of the selecred Resource: 0éf1e94ac2794eas! 626
(€ selected resource on the map below
Cancel
: (OB
|+ Catakill Park
_— Rockiand e
&
i
il Hyele Park.
o Wawarsg
slsburg)
Damious Poughkeepsi
Bethel e o
Morticelo
Plattekill s,
e Chkur:‘h-" et Now Millard il
erry Ridge (
- avburgh Patterson M
v \ ==
P L
B K .) i
Kiryss Jol
pii: £ Shalton,
Pakskill
Wantage % 7
-
rat
Oolméars by
b Pesne WeatMilgrd | s ing Villby. Norwalk
Spacta o Stamford
East Township Wi Plains f
Siroudshiry
L) Hopatiang ‘Patarssr Yonkers.
= AL S R] uctar B

file from a resource

& wiebl

EB Tolland
Hartford Mansfield
E Windham
Kok Planfield
CONNECTICUT
o Griswoid
Colchester.
Meriden o
Wallinglard Montvillg]
Hamden &
New Lordon
Branford Ot Sighrook
13
East Hamplof
Rivochoad

Southiampten

Figure 12 Boundary of the Resource is displayed on the map

j) The feature shown below fetches the metadata of a resource and display it on the map.

Home

Tethys - A Brief Intraduction

Tutorial on how ta get this app running

Creats a Resource

Browse for a Resource

View the boundaries of a Resource

Geozarver - View a Resource

Metadata
Add s File

Dewnload a File
Delete a File

Delete a Resource
Download a Resource

Change a Resourcs from Privare 1o
Public

Create 2 Folder
Delete a Folder

Limi

=% HydroShare Python AP| Demons

the units u
step 1 will que te a list of files avail

Step 1: Get a list of files in a resource from HydroShare:

xes belaw you enter your HydroShare username and its password. If you have 1o make an HydroShare account

Username

abhishekamal1 8@gmail.com

Password

urce dabb

c6e8Badaatd7cdIbb28e5d6191 780

©® login
pecific type of metadata. The metadata provides a lot of
abl w y display the metadata of the

click here

e this

Resource ID

ba7528ac805c4ca998401 5dfa3655f50

Find files |

Figure 13 'Get science Metadata' User Interface

k) A resource created in the app is of type ‘Private’. The feature below exists to change the type to ‘Public’ by
entering the resource ID of the resource that was created.

= &% HydroShare Python APl Demonstration

Resource is now public

Home
Tethys - A Brief Infroduction

wwmmnenemsnms Change the type of resource from 'Private’ to 'Public’

Create a Resowrce This feature of the app helps changing the type of a resource that is present on the Hydroshare database The option to change it from private to public works very smoothly and it
is required because the resaurces that are private are not very accessible 1o the general user at HydroShar

Step 1: Enter in your username and password
In the boxes below you enter your HydroShare username and its password. If you have to make an HydroShare account, click here

Username

Metadata abu1%95
Get science Metadata Password
ders S
Dawnload & Fila Step 2: Enter in the Resource ID of the resource you want to change to 'Public’
ek IhEaoues) dentifiar for avery resouzce on Hydroshare. You can find It by clicking an in Hydroshare, scralling down ta the “How to Cite” secti
e ! urce b2 461917820/ from which The 32 letter combin

daa647cdobb28e5d619178e0

Delete a Resource

Enter your resource ID of the Resource

Create a Folder + Change ta Public

try this 6n your awn, you can use the code snippet below, or download the full javascript file that is used in this demonstration
Delata a Folder ¢

Figure 14 Private to public feature in the app

The ‘GeoServer — View a Resource’ feature that was created to show the resource shapefile in a separate
window on the app.

&5 HydroShare Python API Demonstration

AnaheimCA v

The resource 1D is what you could use in other features of the app like adding a file, downloading a file, or even deleting a file from a resource

Delete a Resource

Download a Resource

Change a Resource from Private to Resource id of the selected Resource: bf7fd5f1ddd47209cdf499824c06fc9
Public
=+ View on Map
Create a Folder (This button shows the selected resource on the map below)
Delete a Folder Cancel
Limitations

Figure 15 GeoServer - an improvised function in the app

This function is executed fetching the information of a resource that contains the geo-spatial content of a
shapefile and displays it in a window (lacovella 2017).

4.0 Discussion and Conclusions

Building a web application from scratch is a task that is becoming more common from day to day. However,
in the world of civil and environmental engineering a beginner level programmer always has a need to understand
the concept of building a web app even better. A web app that explains itself to a user on how it integrates an API
in a web app and smoothly performs functions like interacting with a database can be very beneficial. Cloud
computing and availability of apps online has always been a goal for BYU Hydroinformatics and to achieve this
goal and expand on it, more web programmers are that not only understand programming online but also know
how water data and shapefiles work and visualize.

This project helps accelerate that process and brings the user closer to the middle ground where he is close to
both the back-end programming and understand what are the elements that are being put together for function and
execution of tasks and also the front-end user experience and customizing the interface to be simpler to
understand. This project was built in that trajectory as the person behind the project had very little programming
experience and had to learn from the very start all the skills demonstrated in this paper.

Tethys is a product of BY U Hydroinformatics and is motivated to bring more engineers to collectively develop
cloud computing and data management. This project complements Tethys on its mission by educating a
programmer new to the field on the above stated purposes. Since most of the programming is done in Python it
follows along with the framework that Tethys uses, which is basically a Django platform. So, there is a factor of
convenience as well.

The project also helps the general user community as any help offered to understand web programming can
only help improve the situation of any company. The concepts discussed and explained in the paper focuses on
not just helping the BYU Civil and Environmental Engineering team but the whole web app development
ecosystem. A little work is done in this project in explaining the different ways we can modify the API and
perform advance functions that are not primarily covered in the API itself. The project also helps with spreading
the range of HydroShare and making it more ubiquitous. The more the API is explored and used in different
applications, the more it helps HydroShare with making hydrology and water data available to engineers and
scientists around the world.

Acknowledgements

This work was supported by the National Science Foundation under collaborative grants ACI 1148453 and
1148090 for the development of HydroShare (http:/www.hydroshare.org). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Software Availability

HydroShare API Tethys App, Version 1.0 code is open source and available online as of January 1, 2021,
retrievable at https://github.com/BYU-Hydroinformatics/hydroshare api_tethysapp.

http://www.hydroshare.org/
https://github.com/BYU-Hydroinformatics/hydroshare_api_tethysapp

References

Ames, Daniel P., Jeffery S. Horsburgh, Yang Cao, Jiii Kadlec, Timothy Whiteaker, and David Valentine.
2012. “HydroDesktop: Web Services-Based Software for Hydrologic Data Discovery, Download,
Visualization, and Analysis.” Environmental Modelling & Software 37 (November): 146-56.
https://doi.org/10.1016/j.envsoft.2012.03.013.

Crawley, Shawn, Daniel Ames, Zhiyu Li, and David Tarboton. 2017. “HydroShare GIS: Visualizing Spatial
Data in the Cloud.” Open Water Journal 4 (1): 3-20.

Fajardo, E. M., J. M. Dost, B. Holzman, T. Tannenbaum, J. Letts, A. Tiradani, B. Bockelman, J. Frey, and
D. Mason. 2015. “How Much Higher Can HTCondor Fly?” Journal of Physics: Conference Series 664 (6):
062014. https://doi.org/10.1088/1742-6596/664/6/062014.

Farkas, Gabor. 2016. Mastering OpenLayers 3. Packt Publishing Ltd.

Forcier, Jeff, Paul Bissex, and Wesley J. Chun. 2008. Python Web Development with Django. Addison-
Wesley Professional.

Gan, Tian, David G. Tarboton, Pabitra Dash, Tseganeh Z. Gichamo, and Jeffery S. Horsburgh. 2020.
“Integrating Hydrologic Modeling Web Services with Online Data Sharing to Prepare, Store, and Execute
Hydrologic Models.” Environmental Modelling & Software 130 (August): 104731.
https://doi.org/10.1016/j.envsoft.2020.104731.

Gries, David. 2012. The Science of Programming. Springer Science & Business Media.
Hazzard, Erik. 2011. OpenLayers 2.10 Beginner’s Guide. Packt Publishing Ltd.

Holovaty, Adrian, and Jacob Kaplan-Moss. 2009. The Definitive Guide to Django: Web Development Done
Right. Apress.

Horsburgh, Jeffery S., David G. Tarboton, David R. Maidment, and Ilya Zaslavsky. 2008. “A Relational
Model for Environmental and Water Resources Data.” Water Resources Research 44 (5).

Jones, Norm, Jim Nelson, Nathan Swain, Scott Christensen, David Tarboton, and Pabitra Dash. 2014.
“Tethys: A Software Framework for Web-Based Modeling and Decision Support Applications.”

Khare, R., and R. N. Taylor. 2004. “Extending the Representational State Transfer (REST) Architectural
Style for Decentralized Systems.” In Proceedings. 26th International Conference on Sofiware Engineering,
428-37. https://doi.org/10.1109/ICSE.2004.1317465.

Khattar, Rohit, and Daniel P. Ames. 2020. “A Web Services Based Water Data Sharing Approach Using
Open Geospatial Consortium Standards.” Open Water Journal 6 (1): 2.

Michaelis, Christopher D., and Daniel P. Ames. 2012. “Considerations for Implementing OGC WMS and
WES Specifications in a Desktop GIS” 2012 (April). https://doi.org/10.4236/jgis.2012.42021.

Ofoeda, Joshua, Richard Boateng, and John Effah. 2019. “Application Programming Interface (API)
Research: A Review of the Past to Inform the Future.” International Journal of Enterprise Information
Systems (IJEIS) 15 (3): 76-95.

Ong, Shyue Ping, Shreyas Cholia, Anubhav Jain, Miriam Brafman, Dan Gunter, Gerbrand Ceder, and
Kristin A. Persson. 2015. “The Materials Application Programming Interface (API): A Simple, Flexible and
Efficient API for Materials Data Based on REpresentational State Transfer (REST) Principles.”
Computational Materials Science 97 (February): 209—15. https://doi.org/10.1016/j.commatsci.2014.10.037.

Rajasekar, Arcot, Reagan Moore, Chien-Yi Hou, Christopher A. Lee, Richard Marciano, Antoine de Torcy,
Michael Wan, et al. 2010. “IRODS Primer: Integrated Rule-Oriented Data System.” Synthesis Lectures on
Information Concepts, Retrieval, and Services 2 (1): 1-143.
https://doi.org/10.2200/S00233ED1V01Y200912ICRO12.

Ramsey, Paul, and Victoria-British Columbia. 2005. “Introduction to Postgis.” Refractions Research Inc,
34-35.

Roberts, Wade, Gustavious P. Williams, Elise Jackson, E. James Nelson, and Daniel P. Ames. 2018.
“Hydrostats: A Python Package for Characterizing Errors between Observed and Predicted Time Series.”
Hydrology 5 (4): 66. https://doi.org/10.3390/hydrology5040066.

Sadler, Jeffrey M., Daniel P. Ames, and Shaun J. Livingston. 2016. “Extending HydroShare to Enable
Hydrologic Time Series Data as Social Media.” Journal of Hydroinformatics 18 (2): 198-209.
https://doi.org/10.2166/hydro.2015.331.

Swain, Nathan R., Scott D. Christensen, Alan D. Snow, Herman Dolder, Gonzalo Espinoza-Davalos, Erfan
Goharian, Norman L. Jones, E. James Nelson, Daniel P. Ames, and Steven J. Burian. 2016. “A New Open
Source Platform for Lowering the Barrier for Environmental Web App Development.” Environmental
Modelling & Software 85 (November): 11-26. https://doi.org/10.1016/j.envsoft.2016.08.003.

Youngblood, Brian. 2013. GeoServer Beginner’s Guide. Packt Publishing Ltd.

Zhou, Wei, Li Li, Min Luo, and Wu Chou. 2014. “REST API Design Patterns for SDN Northbound API.”
In 2014 28th International Conference on Advanced Information Networking and Applications Workshops,
358-65. https://doi.org/10.1109/WAINA.2014.153.

