
 

 
Open Water Journal – Volume 7, Issue 1, Article 3 

Design and Development of a Tethys Framework 
Web Application to Elucidate the HydroShare.org 
Application Programmer Interface 
Research Article 

Abhishek Amalaraj1, Daniel P. Ames2  
1 Civil and Environmental Engineering, Brigham Young University, Provo, Utah 84602, abhishekamal18@gmail.com 
2 Civil and Environmental Engineering, Brigham Young University, Provo, Utah 84602, dan.ames@byu.edu 
 

Abstract 

In recent years, data and file sharing have advanced significantly, opening doors for engineers from all over 
the world to stay connected with each other and share data, models, scripts and other information required for 
scientific and engineering purposes. HydroShare (www.hydroshare.org) was developed by a consortium of 
universities sponsored by the National Science Foundation (NSF) as a means for improving data and model 
sharing.  Originally released in 2014, and continually updated since that time, HydroShare has proven to be a 
valuable resource for a growing number of active users in the field of water resources and environmental research. 
The graphical user interface is relatively simple and easy to understand and the system provides users with a large 
amount of free data storage, which makes it particularly useful for academics, researchers, and scientists as well 
as practicing engineers. This project report presents the design and development of a web-based application (web 
app) that demonstrates all core functions of HydroShare via a published application programmer interface (API). 
The resulting web app was developed using the Tethys Platform which is intended for creating web-based 
applications with database and mapping capabilities. This app demonstrates the use of all of the core functions of 
the HydroShare Python REST client and includes sample code and instructions for using these functions. The 
overarching goal of this work is to increase the use and usability of HydroShare via its API and to simplify using 
the API for student and other programmers developing their own web applications. 

Keywords: Hydrology, Education, Web development, Tethys Platform, HydroShare 

 

  

http://www.hydroshare.org/


Open Water Journal – Volume 7, Issue 1, Article 3 2 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

1.0 Introduction 

Web based applications, web services, and online data and model sharing technologies are becoming 
increasingly available to support hydrologic research. This promises benefits in terms of collaboration, computer 
platform independence, and reproducibility of modeling workflows and results (Gan et al. 2020). New advances 
in cyberinfrastructure and semantic mediation technologies have provided the means for creating better tools 
supporting data discovery and access (Ames et al. 2012). The Consortium of Universities for the    Advancement 
of Hydrologic Science Inc. (CUAHSI) hydrological information system (HIS) is a widely used platform that is 
service oriented to manage time series data (Sadler, Ames, and Livingston 2016). HydroShare is a web based 
hydrologic information system of CUAHSI and that was developed to allow users to share and publish data and 
models in a variety of flexible formats, and to make this information available in a citable, shareable and 
discoverable manner. The CUAHSI HIS is an internet-based system to support the sharing of hydrologic data. It 
is comprised of hydrologic databases and servers connected through web services as well as software for data 
publication, discovery and access. The CUAHSI Observations Data Model (ODM) provides community defined 
semantics needed to allow sharing of hydrologic information (Horsburgh et al. 2008). HydroShare enables users 
to collaborate and work as teams in a web based collaborative environment, thereby enhancing research, education 
and application of hydrologic knowledge. It includes tools (web apps) that can act on content in HydroShare 
providing users with a gateway to computing and analysis. Much like Google Drive, the capability to have cloud 
based applications that act on its data is a key part of HydroShare that advances its capability within general trend 
towards providing web-based software services (Crawley et al. 2017). HydroShare also includes support for 
hydrologic models and model input/output files which is expected to facilitate further use by water resources 
engineers and managers who rely more and more on hydrologic models (Roberts et al. 2018). 

One example of a web-based application that uses HydroShare is HydroShare GIS. It functions by accessing 
the spatial metadata contained within the HydroShare resource data model and overlaying datasets as layers within 
the OpenLayers JavaScript library which is a web-mapping client library for rendering interactive maps on a web 
page (Hazzard 2011). Data are passed from the app’s server to a GeoServer data server and shared as web mapping 
service layers. Thus, users can easily build map projects from data sources registered in HydroShare and save 
them back to HydroShare as map project resources, which can both be shared with others and re-opened in 
HydroShare GIS (Crawley et al. 2017). Shown below in Figure 1 is the HydroShare website home page. 

 

 

Figure 1 HydroShare website homepage. 



Open Water Journal – Volume 7, Issue 1, Article 3 3 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

HydroShare has a number of stated and intended uses as well as extended uses that researchers and water 
resources engineers may find in the future. Stated uses of HydroShare include: 

• Share hydrologic data and models with research colleagues.   
• Manage who has access to the content that is shared. 
• Share, access, visualize and manipulate a broad set of hydrologic data types and models. 
• Use the web services application programmer interface (API) to program automated and client access. 
• Publish data and models to meet the requirements of a data management plan. 
• Discover and access data and models published by others. 
• Use web apps to visualize, analyze and run models on data in HydroShare. 

Water resources data scientists often require access to cloud-based data storage systems and end user models, 
tools, and data analysis applications. In a service that is organized as a framework, interaction between end user 
tools and the online data storage system is facilitated with the help of APIs (Ong et al. 2015). Upload and 
download of large water related GIS data and hydrologic databases can cause a web application to perform poorly, 
however when this information can be accessed and provided in smaller chunks, as needed, and processed for 
specific purposes – i.e. through the use of API’s -these limitations can be avoided (Michaelis and Ames 2012). 
HydroShare is a data and model sharing system and it comprises a systematic approach to file sharing using a 
distributed file sharing back end called IRODs (Rajasekar et al. 2010). Data stored within the IRODS system is 
primarily accessed through the HydroShare front-end web portal. However, there is also a built in capability to 
access HydroShare resources and data using an API built on  Representational State Transfer (REST) (Khare and 
Taylor 2004). This API has been extended through a Python wrapper module called hs-restclient. The REST 
interface and the hs-restclient Python module have both been used by developers creating web applications for 
HydroShare but there is a lack of detailed demonstration code for this functionality, which limits use of these 
powerful means of interacting with HydroShare. According to Crawley et al. (2017) “The good news is that much 
advancement and innovation has been achieved in the field of spatial data cloud computing in recent years that 
could contribute to and greatly simplify the development of a cloudbased application for interacting with 
HydroShare’s spatial data”. The specific problem in HydroShare is that we have no tutorial features with the API 
that can be useful with a beginner or any intermediate level programmer to incorporate the found code in the API. 
The option to understand how it falls into place of any web app or website to use the same feature found in the 
HydroShare API is not found in it. Hence, the universality or opportunity to expand for the HydroShare API 
which being a forerunner in storing hydrologic data is restricted and also the resources and the option to store 
water and scientific data cannot be used at their best potential. CUAHSI provides JUPYTER notebooks that are 
notebooks to run Python code which help with running a block of code in the API but they are not self-explanatory. 
In a growing world of environmental engineers and water scientists, there is also a rise in developing technologies 
that make use of the web in a complete sense and having a cloud of such apps focused on helping this line of 
fellow scholars is one of many aspirations that we hope to achieve and will help with establishing it in the not so 
distant future. So, an app to provide some reference and education on this specific task will be greatly beneficial. 
Previously we have discussed that CUAHSI has Jupyter notebooks to help with the purpose of understanding the 
API and the blocks of code. These notebooks to practice script and functions are very smooth and fast. The idea 
behind making this active feature is to fill the gap and sort of form a bridge between using the features on the 
HydroShare website and learning how they work. But it does not go the extra mile in explaining step by step how 
each piece of the script helps with accomplishing different specific tasks found on the website.  

“Sharing hydrological data across geographical boundaries can help alleviate damage from floods. Water rights 
can be managed on a need basis instead of greed, thus preventing droughts and dry spells in downstream regions” 
(Khattar and Ames 2020). The idea of the project began keeping in mind the beginner and intermediate level 
programmer and the limited but unique challenge they face at understanding how to implement the REST API of 



Open Water Journal – Volume 7, Issue 1, Article 3 4 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

one of the best environmental science and engineering-based data storage and modelling systems. With the rise 
in free services and literature online, one can use them to its full capacity but can also turn out to be a herculean 
task to achieve a simple function with minimum documentation. The research project was funded by HydroShare. 
Thorough research was done on the idea of implementing the REST API in a Tethys framework and enabling all 
the functions. The project is focused at filling the gap that medium level programmers come across with 
understanding APIs and database management. 

The project began in May 2020 and was completed over the course of a few months. The completed app as 
intended has all the demonstrations needed and a few improvisations which are successful and smooth. All the 
features in the web app were tried and tested and they are also provided with the step-by-step instruction.  

1.1 REST Architecture 

REST is an architecture style that can be used for designing networked applications (Wei Zhou et al. 2014). 
As “REST architectural style has gained more popularity in implementing loosely coupled systems, RESTful 
services are becoming the style of choice for northbound API and gaining increasingly importance in Software 
Defined Networking (SDN) architecture. Adopting REST for a SDN architecture has the following benefits: 

1. Decentralized management of dynamic resources: REST does not use any centralized resource registry 
but relies on connections between resources to discover and manage them. REST allows network 
elements, such as routers, switches, middle boxes (e.g. NAT and DPI devices), to be dynamically deployed 
and changed in a distributed fashion. 

2. Heterogeneous clients: because REST separates resource representations, identification, and interaction, 
it can adjust resource representations and network protocols based on SDN client capabilities and network 
conditions to optimize API performance. 

3. Service composition: the current trend in SDN is to use programming composition to achieve functional 
flexibility, such as REST can provide service-oriented compositions that are independent of programming 
languages and can run on different platforms. 

4. Localized migration: since the functions of SDN are fast evolving, the northbound APIs of SDN 
controllers will likely change accordingly. REST API supports backward-compatible service migration 
through localized migration by which a newly added resource only affects the resources that connect to it. 
Combined with uniform interface and hypertext-driven service discovery, it can ease the tension between 
the new service deployments and backward compatibility. 

5. Scalability: REST achieves server scalability by keeping the server stateless and improves server 
performance through layered caches. This feature will become useful, when an SDN controller needs to 
support many concurrent host-based applications and to use network resources in an efficient way.” (W. 
Zhou et al. 2014). 

1.2 Application Programming Interfaces (APIs) 
An API is a computing technique which establishes communication between many software intercessors. API 

can be completely customized, discretely made for an element in the app, or it can be planned out for an 
organization to ensure integrative usefulness. It sets the types of calls, requests or queries that can be made, their 
nature, the data types that have to be used and the agreements that should follow. These interfaces can also be 
prepared to furnish certain special mechanisms that offer capabilities in several ways and formats (Ofoeda, 
Boateng, and Effah 2019). In software applications, an API simplifies programming by abstracting the underlying 
implementation and only exposing objects or actions the developer needs. While a graphical interface for an email 
client might provide a user with a button that performs all the steps for fetching and highlighting new emails, an 



Open Water Journal – Volume 7, Issue 1, Article 3 5 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

API for file input/output might give the developer a function that copies a file from one location to another without 
requiring that the developer understand the file system operations occurring behind the scenes. 

To understand the way an API works is to visualize a middle person capable of transferring communication 
between two separate parties and also provides the service as part of that communication. For example, as shown 
in Figure 2, imagine giving an order to a waiter in a drive through restaurant. He takes in the order over the 
microphone and then passes the information of your order to the kitchen where the food is processed. The kitchen 
processes the food and gives it to the person who took the order who then eventually delivers it. This sort of 
service sees that communication is performed effectively to get the end product delivered.  

 

 

 

 

 

 

 

 

 

 

 

                                                                                           

        

                                                                                                 

An API works similar to the example described earlier and helps with transferring the command from the user 
to the server and the server then executes the command and transfers the end product or the query result to the 
user through the API which acts as the middleman. HydroShare provides a Python based API that can be used in 
our Tethys app as we use a Django framework for creating and developing an app. This project will help with 
using all the functions on the API provided to make the app as useful as possible and import the major functions 
in the HydroShare page. The Python API provided has good support and is updated annually. That way, the 
features of HydroShare not supported by the API now could have it added to the documentation sometime later 
in the future. 

1.3 Tethys Platform 

Programming can be a difficult skill to adapt (Gries 2012) and would require creative thinking and problem 
solving to accomplish simple to advanced steps. Web programming involves the use of understanding frameworks 
and how the elements in different file formats fall into place and depend on each other. “The interactive nature of 

User (post a 

request) 

API (middle 

person) 

Server (request is 

executed) 

Figure 2 Understanding how an API works 



Open Water Journal – Volume 7, Issue 1, Article 3 6 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

web applications or ‘web apps’ makes them a well-suited medium for conveying complex scientific concepts to 
lay audiences and creating decision support tools that harness cutting edge modeling techniques and promote the 
work of environmental scientists and engineers. Despite this potential, the technical expertise required to develop 
web apps represents a formidable barrier—even for scientists and engineers who are skilled programmers” (Swain 
et al. 2016). Tethys is a platform that makes web development a lot easier by supporting APIs from various 
sources and software packages and enabling to incorporate them very effectively into our apps. The platform 
synthesizes several free and open source software projects that are needed for the development of cloud-based 
hydrologic modeling applications and includes software that offers typical web development tools in the form of 
a web framework as well as web-based geographic information systems (GIS), high performance computing 
management utilities and interactive scientific visualization libraries (Jones et al. 2014).  

Tethys Platform is updated periodically and is open source. The software package is written in such a way that 
even beginner and intermediate level programmers with low to minimal programming skills can catch up and 
build a fully functioning web app that does all that they intend to do with it. Tethys Platform provides a suite of 
free and open source software. Included in the Software Suite is PostgreSQL with the PostGIS extension - which 
is a spatial database add-on including support for all of advanced spatial processing and querying entirely at the 
SQL command-line (Ramsey and Columbia 2005), GeoServer for spatial data publishing (Youngblood 2013). 
Tethys also provides Gizmos for inserting OpenLayers (a dynamic web interactive service) (Farkas 2016) and 
Google Maps for interactive spatial data visualizations in web apps. The Software Suite also includes HTCondor 
for managing distributed computing resources and scheduling computing jobs (Fajardo et al. 2015). 

Building a Tethys app is much easier than building a web app from scratch. The dependencies and the 
framework are set in stone right from the beginning. Changes can be made to the core structure and styling of the 
app with very few and simple steps(Swain et al. 2016). Tethys Platform requires the ‘Conda’ packaging system. 
Conda standardizes software installations across various language ecosystems by describing each specific 
software with a human readable recipe that defines meta-information and dependencies, and also the simple ‘build 
script’ that performs the tasks necessary to build and install the software (Grüning et al. 2018) and is an open 
source package management system that runs on Windows, macOS and Linux. Conda quickly installs, runs and 
updates packages and their dependencies. Tethys Platform includes a modern web portal built on Django (Forcier, 
Bissex, and Chun 2008) that is used to host web apps called Tethys Portal. It provides the core website 
functionality that is often taken for granted in modern web applications including a user account system with a 
password reset mechanism for forgotten passwords (Holovaty and Kaplan-Moss 2009).  

The software development kit takes advantage of the Django template system to help with building dynamic 
pages for web apps while writing less HTML. It also provides a series of modular user interface elements called 
Gizmos. With only a few lines of code you can add range sliders, toggle switches, auto completes, interactive 
maps, and dynamic plots to your web app. The platform also includes Python modules that allow you to provision 
and run computing jobs in distributed computing environments. With CondorPy you can define your computing 
jobs and submit them to distributed computing environments provided by HTCondor. This technology has been 
used to build the app and makes full use of its sustainable functionality 

The unique value of Tethys is that it has some shortcuts for setting up the PSQL databases you need in a 
Django app, for setting up the user management database, and also providing the admin interface. They are very 
useful especially to set up a production web app server. To understand it better, it is basically Django. The above-
mentioned features, from Tethys actually do not. The other ‘Tethys’ features are really other Django extensions 
or other software which there are docker containers for. Web apps add huge value to research projects and can be 
useful tools for scientists, engineers or other users. 

The app can be enhanced by incorporating the hs_restclient API in it. The REST client will be inserted in the 
controllers.py file of the framework created while creating the app. This Python file can run all the major functions 
and is responsible for the running and executing of the different features enabled with the app. A few dependent 



Open Water Journal – Volume 7, Issue 1, Article 3 7 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

JavaScript files will be added to the app to help with simple tasks like giving prompts and pop ups as well to 
execute certain complex controller option which would require the need of combining more than one API function 
in the REST client. Subsequently the app will also need updating in the app.py file to make sure that the function 
mentioned in the html document can be read from the controllers.py file. This would account to a major chunk in 
completing the app. 

The source code is available for feedback and further improvement and is uploaded to the BYU 
Hydroinformatics group found in GitHub. As mentioned earlier, the API is updated from time to time which could 
be taken to advantage and the app can be improved and updated. The app will be hosted on the Brigham Young 
University (BYU) Tethys portal (https://tethys.byu.edu/apps) and is ready to install from another Tethys app 
called ‘Warehouse’ – a storehouse for similar Tethys web apps. 

2.0 Design and Development of a HydroShare API Tethys App 

The app is powered by the framework that Tethys provides and so it is provided with a base.html file that 
displays all the features found on the page. The features of the app are ordered neatly on the left pane of the page 
individually which makes it easier to fully understand how the functions in the REST API come into play. If one 
or more functions are used in the same page of the app, it could be a little difficult for the beginning user to follow.  
The HydroShare API Tethys app is made with an introduction to HydroShare and what exactly we will be trying 
to accomplish in terms of understanding how the API provided by HydroShare works. For that reason, there is a 
tutorial page that also talks about how to get this app running. This app is made keeping in mind that it is a tutorial 
app and so it is built with chunks of code inserted into each of the pages to display the function that the page will 
be trying to incorporate in the app.  

2.1 Elements of the app 

a) CSS File - The CSS file dedicated to making visible and static UI changes is named as the main.css file and 
we can modify the logo and other similar things like having a background color, image and changes to the font 
and other similar details. This Tethys app will be closely connected to the HydroShare website and so it is styled 
very similar to the website. 
 
b) JavaScript - The role that JavaScript plays in this app is that it helps with a lot of simple basic UI features like 
displaying a pop up or showing a loading status for when the app fetches information. It also helps a lot to perform 
certain complicated functions like joining more than function in the API to perform a specific task which will be 
shown later in the document. 
 
c) HTML Templates - The HTML templates are predefined as part of the package and they help with making 
the app display various types of information and are stitched to the base.html file which makes the pages 
accessible from there. This action is done by extending each page from the base.html file using a HTML function. 
 
d) Controllers.py - As mentioned earlier in this paper, the app is powered by Tethys which is a modified and a 
robust Django framework which uses Python to assign tasks and implement functions. The powerhouse for the 
framework would be the ‘controllers.py’ file. Here, we have all the API functions from REST assigned to their 
individual pages and the gizmos assigned to do certain specific functions. 
 
c) Template Gizmos API - Template Gizmos are building blocks that can be used to create beautiful interactive 
controls for web apps. Using the Template Gizmos API, developers can add date-pickers, plots, and maps to their 
app pages with minimal coding. These blocks are very efficient and cleans up the code by having them do an 



Open Water Journal – Volume 7, Issue 1, Article 3 8 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

assigned function from the controllers.py file without having to repeat them over and over again in the HTML 
templates. 

2.2 Arrangement of the controllers.py File 

The HydroShare API Tethys app is Django based and uses Python as its programming language. The app 
framework is designed to be of highest convenience, and it comes with a ‘controllers.py’ file. The file is the 
powerhouse of the app as all the functions that are run in the web app are entered in this file and are connected to 
the ‘url_maps’ in the app.py file. These functions are then made available to the template from which it is used 
on the front end. Overall, this file is what makes the app to use the REST API in its functions to import the 
functionality of the HydroShare web page. 
 

a) Packages - The controllers.py file needs to be stacked with the packages that are needed for the app to run 
smoothly and effectively. These packages are listed at the top of the file as Python requires indentation in a 
specific format and shown below are all the packages we have used for the app. 

 
from django.shortcuts import render 

from tethys_sdk.permissions import login_required 

from tethys_sdk.gizmos import Button 

from tethys_sdk.gizmos import TextInput, DatePicker, SelectInput 

from tethys_sdk.gizmos import DataTableView 

from tethys_services.backends.hs_restclient_helper import get_oauth_hs 

from django.shortcuts import redirect, reverse 

from django.contrib import messages 

from django.http import HttpResponse, JsonResponse 

from hs_restclient import HydroShare, HydroShareAuthBasic 

from django.utils.encoding import smart_str 

from wsgiref.util import FileWrapper 

import os 

import tempfile 

import zipfile 

import json 

from django.core import serializers 

 
b) Classes - The controllers.py file is Python based and so its organized into classes and each class is defined 

with functions which use the API and helps with the execution of the function. The different functions are used 
by the HTML templates when it is connected to the url_maps in the app.py file. For an example, the class and 
function shown below is for adding a file to a resource in HydroShare and it could be used to add multiple files. 
From the structure of it we see a controller for the homepage. 

 
@login_required() 

def add_file(request): 

    """ 

    Controller for the Add Dam page. 

    """ 

    # Default Values 

    username = '' 

    password = '' 

    resourcein = '' 

     

    # Errors 



Open Water Journal – Volume 7, Issue 1, Article 3 9 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

    username_error = '' 

    password_error = '' 

    resourcein_error = '' 

    loggedin = False 

    try: 

            # pass in request object 

        hs = get_oauth_hs(request) 

        loggedin = True 

 

    except Exception as e: 

        pass 

        # handle exceptions 

 

    # Handle form submission 

    if request.POST and 'add-button' in request.POST: 

        # Get values 

        has_errors = False 

        username = request.POST.get('username', None) 

        password = request.POST.get('password', None) 

        resourcein = request.POST.get('resourcein', None) 

        print(dict(request.FILES)) 

        uploaded_file = request.FILES['addfile'] 

 

        with tempfile.TemporaryDirectory() as temp_dir: 

            temp_zip_path = os.path.join(temp_dir, uploaded_file.name) 

            print(temp_zip_path) 

 

            # Use with statements to ensure opened files are closed when done 

            with open(temp_zip_path, 'wb') as temp_zip: 

                for chunk in uploaded_file.chunks(): 

                    temp_zip.write(chunk) 

 

            # Validate 

            try: 

            # pass in request object 

                hs = get_oauth_hs(request) 

 

                # your logic goes here. For example: list all HydroShare resources 

                # for resource in hs.getResourceList(): 

                #     print(resource) 

 

            except Exception as e: 

            # handle exceptions 

                if not username: 

                    has_errors = True 

                    username_error = 'Username is required.' 

                 

                elif not password: 

                    has_errors = True 

                    password_error = 'Password is required.' 

 

                else: 

                    auth = HydroShareAuthBasic(username= username, password= password) 

                    hs = HydroShare(auth=auth) 

             

            if not resourcein: 



Open Water Journal – Volume 7, Issue 1, Article 3 10 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

                has_errors = True 

                resourcein_error = 'Resource is required.' 

 

            if not has_errors: 

                fpath = temp_zip_path  

                resource_id = hs.addResourceFile(resourcein, fpath)  

                messages.success(request, "File added successfully") 

            if has_errors: 

                messages.error(request, "Please fix errors.") 

 

    # Define form gizmos 

    resourcein_input = TextInput( 

        display_text='Resource ID', 

        name='resourcein', 

        placeholder='Enter id here eg: 08c6e88adaa647cd9bb28e5d619178e0 ' 

    ) 

 

    username_input = TextInput( 

        display_text='Username', 

        name='username', 

        placeholder='Enter your username' 

    ) 

 

    password_input = TextInput( 

        display_text='Password', 

        name='password', 

        attributes={"type":"password"}, 

        placeholder='Enter your password' 

    )  

 

    add_button = Button( 

        display_text='Add', 

        name='add-button', 

        icon='glyphicon glyphicon-plus', 

        style='success', 

        attributes={'form': 'add-dam-form'}, 

        submit=True 

    ) 

 

    cancel_button = Button( 

        display_text='Cancel', 

        name='cancel-button', 

        href=reverse('hydroshare_python:home') 

    ) 

 

    context = { 

        'loggedin' : loggedin, 

        'resourcein_input': resourcein_input, 

        'username_input': username_input, 

        'password_input': password_input, 

        'add_button': add_button, 

        'cancel_button': cancel_button, 

    } 

 

    return render(request, 'hydroshare_python/add_file.html', context) 

 



Open Water Journal – Volume 7, Issue 1, Article 3 11 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

c) App.py File - The url_maps methods is tightly related to the App Base Class API. The url_maps methods is 
tightly related to the App Base Class API. The app.py file has a url_maps function that has the duty to map or 
locate the functions in the controllers.py file and utilize them in on their respective urls. UrlMap objects must be 
created from a UrlMap class that is bound to the root_url of the app. Use the url_map_maker() function to create 
the bound UrlMap class. If an app is generated from the scaffold, this is done automatically. Starting in Tethys 
3.0, the WebSocket protocol is supported along with the HTTP protocol. To create a WebSocket UrlMap, follow 
the same pattern used for the HTTP protocol. The URL should be typed with precision and could lead to typo 
errors or indent errors. A proper way to avoid that is to maintain the same name throughout the project for a 
function and its execution in the web app.  

 

def url_maps(self): 

        """ 

        Add controllers 

        """ 

        UrlMap = url_map_maker(self.root_url) 

 

        url_maps = ( 

            UrlMap( 

                name='home', 

                url='hydroshare-python', 

                controller='hydroshare_python.controllers.home' 

            ), 

            UrlMap( 

                name='get_file', 

                url='hydroshare-python/get_file', 

                controller='hydroshare_python.controllers.get_file' 

            ) 

3.0 App Implementation 

The HydroShare API Tethys app is by nature a well-documented tutorial app that is self-explanatory to the 
point of working the functions on the app and has a very simple GUI. Following is a discussion of the development 
of the code and how we made and connected all these elements with the API to bring it onto the front-end surface.  
The primary functions of our HydroShare API demonstration web app are as follows: 

• Create a Resource 
• Browse for a Resource 
• View the boundaries of a Resource 
• GeoServer - View a Resource 
• Metadata 
• Get science Metadata 
• Add a File 
• Download a File 
• Delete a File 
• Delete a Resource 
• Download a Resource 
• Change a Resource from Private to Public 
• Create a Folder 
• Delete a Folder 

 



Open Water Journal – Volume 7, Issue 1, Article 3 12 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

The simpler the process in executing a function the easier it is to grasp the concept of it. With that regard, the 
best function of the app that we can demonstrate is the ‘Create Folder’ function. The ‘Create Folder’ feature on 
the page looks like the image shown below. The source code for the Create Folder function follows. 
 

 

Figure 3 ‘Create Folder’ User Interface 

@login_required() 

def create_folder(request): 

    """ 

    Controller for the Add Dam page. 

    """ 

    # Default Values 

    username = '' 

    password = '' 

    # river = '' 

    resourcein = '' 

    foldername = '' 

     

 

    # Errors 

    username_error = '' 

    password_error = '' 

    resourcein_error = '' 

    foldername_error = '' 

    loggedin = False 

    try: 

            # pass in request object 

        hs = get_oauth_hs(request) 

        loggedin = True 



Open Water Journal – Volume 7, Issue 1, Article 3 13 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

 

    except Exception as e: 

        pass 

 

    # Handle form submission 

    if request.POST and 'create-button' in request.POST: 

        # Get values 

        has_errors = False 

        username = request.POST.get('username', None) 

        password = request.POST.get('password', None) 

        resourcein = request.POST.get('resourcein', None) 

        foldername = request.POST.get('foldername', None) 

         

 

        # Validate 

        if not resourcein: 

            has_errors = True 

            resourcein_error = 'resourcein is required.' 

 

        try: 

            # pass in request object 

            hs = get_oauth_hs(request) 

 

        # your logic goes here. For example: list all HydroShare resources 

 

        except Exception as e: 

    # handle exceptions 

         

            if not username: 

                has_errors = True 

                username_error = 'Username is required.' 

             

            elif not password: 

                has_errors = True 

                password_error = 'Password is required.' 

 

            else: 

                auth = HydroShareAuthBasic(username=username, password=password) 

                hs = HydroShare(auth=auth) 

         

            

        if not foldername: 

            has_errors = True 

            foldername_error = 'Folder name is required.' 

 

        if not has_errors: 

            folder_to_create = foldername 

            response_json = hs.createResourceFolder(resourcein, folder_to_create) 

            messages.success(request, "Folder created successfully") 

        if has_errors:     

            messages.error(request, "Please fix errors.") 

 

    # Define form gizmos 

    username_input = TextInput( 

        display_text='Username', 

        name='username', 



Open Water Journal – Volume 7, Issue 1, Article 3 14 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

        placeholder='Enter your username' 

    ) 

 

    password_input = TextInput( 

        display_text='Password', 

        name='password', 

        attributes={"type":"password"}, 

        placeholder='Enter your password' 

    )  

 

     

    foldername_input = TextInput( 

        display_text='Name of the Folder', 

        name='foldername', 

        placeholder='Enter the name of the folder' 

    ) 

     

    resourcein_input = TextInput( 

        display_text='Resource ID', 

        name='resourcein', 

        placeholder='Enter the Resource ID' 

    ) 

 

    create_button = Button( 

        display_text='Create Folder', 

        name='create-button', 

        icon='glyphicon glyphicon-plus', 

        style='success', 

        attributes={'form': 'add-dam-form'}, 

        submit=True 

    ) 

 

    cancel_button = Button( 

        display_text='Cancel', 

        name='cancel-button', 

        href=reverse('hydroshare_python:home') 

    ) 

 

    context = { 

        'loggedin': loggedin, 

        'username_input': username_input, 

        'password_input': password_input, 

        'resourcein_input': resourcein_input, 

        'create_button': create_button, 

        'cancel_button': cancel_button, 

        'foldername_input': foldername_input, 

    } 

   return render(request, 'hydroshare_python/create_folder.html', context) 

 
The add file feature is found on the HydroShare website which as the name suggests, enables the end user to 

create a folder inside a resource that you own. The feature proves to be very useful as it helps with organizing the 
resource very effectively. The first step in the process of creating a function is creating default values which are 
basically arrays that store the values that are manually entered by the user. 

 



Open Water Journal – Volume 7, Issue 1, Article 3 15 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

a)  The values necessary for this function are the username, password, resource ID and the name of the folder 
that we want to create.  
 

# Default Values 

username = '' 

password = '' 

resourcein = '' 

foldername = '' 

b) Error defaults – Just as above, here we are setting a set of defaults for the errors and create errors for the 
functions in case there are any. There is also a try object that is used for signing into HydroShare. 

 

# Errors 

username_error = '' 

password_error = '' 

# river_error = '' 

resourcein_error = '' 

foldername_error = '' 

loggedin = False 

try: 

# pass in request object 

hs = get_oauth_hs(request) 

loggedin = True 

 

except Exception as e: 

pass 

 
c) Handle form submission – The requests and posts are handled here where information is received and then 

sent for further processing when we hit the ‘create’ button which in other cases are buttons named after 
their specific functions. 
 

# Handle form submission 

if request.POST and 'create-button' in request.POST: 

# Get values 

has_errors = False 

username = request.POST.get('username', None) 

password = request.POST.get('password', None) 

resourcein = request.POST.get('resourcein', None) 

foldername = request.POST.get('foldername', None) 

 
 

d) Validating – We further go on to validate the requests to see if they have a value and if they do, we fill 
them up in the array that we create for default values and if there is an invalid value like null or invalid 
type, then we enter it in the error defaults and proceed. Each condition is checked to be complete and 
ready for the submission and the task to be performed is entered in the ‘if not has_errors’ part where we 
use the API of HydroShare which is as shown below: 

 
auth = HydroShareAuthBasic(username='myusername', password='mypassword') 

hs = HydroShare(auth=auth) 

folder_to_create = "folder_1/folder_2" 

response_json = hs.createResourceFolder('ID OF RESOURCE', folder_to_create) 

 



Open Water Journal – Volume 7, Issue 1, Article 3 16 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

The code is modified a little as the order in which the elements are placed depends on our specific individual 
app as follows: 
 

        # Validate 
        if not resourcein: 

            has_errors = True 

            resourcein_error = 'resourcein is required.' 

 

        try: 

            # pass in request object 

            hs = get_oauth_hs(request) 

 

        # your logic goes here. For example: list all HydroShare resources 

 

        except Exception as e: 

    # handle exceptions 

 

      if not username: 

   has_errors = True 

    username_error = 'Username is required.' 

             

    elif not password: 

        has_errors = True 

        password_error = 'Password is required.' 

 

       else: 

        auth = HydroShareAuthBasic(username= username, password= password) 

                hs = HydroShare(auth=auth) 

         

        if not foldername: 

            has_errors = True 

            foldername_error = 'Folder name is required.' 

 

        if not has_errors: 

            folder_to_create = foldername 

            response_json = hs.createResourceFolder(resourcein, folder_to_create) 

            messages.success(request, "Folder created successfully") 

        if has_errors:     

            messages.error(request, "Please fix errors.") 

 
The messages.success and the messages.error help with displaying the messages on execution of the function. 

The ‘if not has_errors’ is the block that implements the API at the request of the create button. 
 
a. The ‘gizmos’ – The gizmos are building blocks that accomplish simple tasks in Tethys apps for certain 

assigned functions. Though limited to their predefined nature, these blocks cover a wide range of useful 
functions. These blocks have to be activated from the controllers.py using their special gizmo tag. 
 

# Define form gizmos 

    username_input = TextInput( 

        display_text='Username', 

        name='username', 

        placeholder='Enter your username' 



Open Water Journal – Volume 7, Issue 1, Article 3 17 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

    ) 

 

    password_input = TextInput( 

        display_text='Password', 

        name='password', 

        attributes={"type":"password"}, 

        placeholder='Enter your password' 

    )  

 

     

    foldername_input = TextInput( 

        display_text='Name of the Folder', 

        name='foldername', 

        placeholder='Enter the name of the folder' 

    ) 

     

    resourcein_input = TextInput( 

        display_text='Resource ID', 

        name='resourcein', 

        placeholder='Enter the Resource ID' 

    ) 

 

    create_button = Button( 

        display_text='Create Folder', 

        name='create-button', 

        icon='glyphicon glyphicon-plus', 

        style='success', 

        attributes={'form': 'add-dam-form'}, 

        submit=True 

    ) 

 

    cancel_button = Button( 

        display_text='Cancel', 

        name='cancel-button', 

        href=reverse('hydroshare_python:home') 

) 

 
Context – The context tag transmits the functionality of all the objects and variables to the template when the 

tag is placed there in the html file. It can be understood as importing it there. 
 
context = { 

        'loggedin' : loggedin, 

        'username_input': username_input, 

        'password_input': password_input, 

        'resourcein_input': resourcein_input, 

        'create_button': create_button, 

        'cancel_button': cancel_button, 

        'foldername_input': foldername_input, 

    } 

 
The gizmo tags like the username and password are shown below: 
 



Open Water Journal – Volume 7, Issue 1, Article 3 18 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

<p>In the boxes below you enter your HydroShare username and its password. If you hav

e to make an HydroShare account, <a href="https://www.hydroshare.org/sign-

up/?next=">click here</a>.</p> 

{% if not loggedin %} 

{% gizmo username_input %} 

  



Open Water Journal – Volume 7, Issue 1, Article 3 19 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

3.1 Graphical User Interface  

Shown below is the ‘Create a Resource’ feature with the different stages of its execution. The screenshots are 
numbered to avoid confusion and to maintain the order of flow. 
a) The first stage of the ‘Create Resource’ feature where we enter the information that is needed to create a 

resource in database and avoid recurring repetitions. 

 

Figure 4 'Create Resource' User Interface 

b) A feature has been added to the app that enables the user to add a file to the fresh resource that is being 
created. 

 

Figure 5 Adding a file to a resource 



Open Water Journal – Volume 7, Issue 1, Article 3 20 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

c) The ‘Create’ button executes the code present in the function.  

 

 

Figure 6 Emphasis on the 'Create' button 

d) The pop-up message that asks us if we want to finalize our function.  

 

Figure 7 Pop up input prompt message box 

 



Open Water Journal – Volume 7, Issue 1, Article 3 21 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

e) Tethys has a success message and an error message that is displayed depending on the success of the operation. 
In our case, we get a message saying that the operation was successful. 
 

 

Figure 8 Success message - a default Tethys function 

f) Shown below is the HydroShare website with the resource created successfully and is added to the resources 
that the author owns. 

 

Figure 9 Resource added successfully to the HydroShare database 



Open Water Journal – Volume 7, Issue 1, Article 3 22 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

g)  Below, we can see the information we entered in our app. 

 

Figure 10 Resource created with the information entered in our app 

h) The GUI of the ‘Browse for a Resource’ function which searches and displays the name and resource ID of 
a function based on the parameter ‘subject’ 

 

Figure 11 'Browse for a Resource' User Interface 

 



Open Water Journal – Volume 7, Issue 1, Article 3 23 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

i) The GUI of the ‘View the boundaries of a resource’ function which shows the geographic extent of a 
resource. 

 

Figure 12 Boundary of the Resource is displayed on the map 

j) The feature shown below fetches the metadata of a resource and display it on the map. 

 

Figure 13 'Get science Metadata' User Interface 

 



Open Water Journal – Volume 7, Issue 1, Article 3 24 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

k) A resource created in the app is of type ‘Private’. The feature below exists to change the type to ‘Public’ by 
entering the resource ID of the resource that was created. 

 

Figure 14 Private to public feature in the app 

The ‘GeoServer – View a Resource’ feature that was created to show the resource shapefile in a separate 
window on the app. 

 

 

Figure 15 GeoServer - an improvised function in the app 



Open Water Journal – Volume 7, Issue 1, Article 3 25 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

This function is executed fetching the information of a resource that contains the geo-spatial content of a 
shapefile and displays it in a window (Iacovella 2017). 

4.0 Discussion and Conclusions 

Building a web application from scratch is a task that is becoming more common from day to day. However, 
in the world of civil and environmental engineering a beginner level programmer always has a need to understand 
the concept of building a web app even better. A web app that explains itself to a user on how it integrates an API 
in a web app and smoothly performs functions like interacting with a database can be very beneficial. Cloud 
computing and availability of apps online has always been a goal for BYU Hydroinformatics and to achieve this 
goal and expand on it, more web programmers are that not only understand programming online but also know 
how water data and shapefiles work and visualize.  

This project helps accelerate that process and brings the user closer to the middle ground where he is close to 
both the back-end programming and understand what are the elements that are being put together for function and 
execution of tasks and also the front-end user experience and customizing the interface to be simpler to 
understand. This project was built in that trajectory as the person behind the project had very little programming 
experience and had to learn from the very start all the skills demonstrated in this paper.  

Tethys is a product of BYU Hydroinformatics and is motivated to bring more engineers to collectively develop 
cloud computing and data management. This project complements Tethys on its mission by educating a 
programmer new to the field on the above stated purposes. Since most of the programming is done in Python it 
follows along with the framework that Tethys uses, which is basically a Django platform. So, there is a factor of 
convenience as well.  

The project also helps the general user community as any help offered to understand web programming can 
only help improve the situation of any company. The concepts discussed and explained in the paper focuses on 
not just helping the BYU Civil and Environmental Engineering team but the whole web app development 
ecosystem. A little work is done in this project in explaining the different ways we can modify the API and 
perform advance functions that are not primarily covered in the API itself. The project also helps with spreading 
the range of HydroShare and making it more ubiquitous. The more the API is explored and used in different 
applications, the more it helps HydroShare with making hydrology and water data available to engineers and 
scientists around the world.  

Acknowledgements 

This work was supported by the National Science Foundation under collaborative grants ACI 1148453 and 
1148090 for the development of HydroShare (http://www.hydroshare.org). Any opinions, findings, and 
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect 
the views of the National Science Foundation. 

Software Availability 

HydroShare API Tethys App, Version 1.0 code is open source and available online as of January 1, 2021, 
retrievable at https://github.com/BYU-Hydroinformatics/hydroshare_api_tethysapp. 
  

http://www.hydroshare.org/
https://github.com/BYU-Hydroinformatics/hydroshare_api_tethysapp


Open Water Journal – Volume 7, Issue 1, Article 3 26 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

References 

Ames, Daniel P., Jeffery S. Horsburgh, Yang Cao, Jiří Kadlec, Timothy Whiteaker, and David Valentine. 
2012. “HydroDesktop: Web Services-Based Software for Hydrologic Data Discovery, Download, 
Visualization, and Analysis.” Environmental Modelling & Software 37 (November): 146–56. 
https://doi.org/10.1016/j.envsoft.2012.03.013. 

Crawley, Shawn, Daniel Ames, Zhiyu Li, and David Tarboton. 2017. “HydroShare GIS: Visualizing Spatial 
Data in the Cloud.” Open Water Journal 4 (1): 3–20. 

Fajardo, E. M., J. M. Dost, B. Holzman, T. Tannenbaum, J. Letts, A. Tiradani, B. Bockelman, J. Frey, and 
D. Mason. 2015. “How Much Higher Can HTCondor Fly?” Journal of Physics: Conference Series 664 (6): 
062014. https://doi.org/10.1088/1742-6596/664/6/062014. 

Farkas, Gabor. 2016. Mastering OpenLayers 3. Packt Publishing Ltd. 

Forcier, Jeff, Paul Bissex, and Wesley J. Chun. 2008. Python Web Development with Django. Addison-
Wesley Professional. 

Gan, Tian, David G. Tarboton, Pabitra Dash, Tseganeh Z. Gichamo, and Jeffery S. Horsburgh. 2020. 
“Integrating Hydrologic Modeling Web Services with Online Data Sharing to Prepare, Store, and Execute 
Hydrologic Models.” Environmental Modelling & Software 130 (August): 104731. 
https://doi.org/10.1016/j.envsoft.2020.104731. 

Gries, David. 2012. The Science of Programming. Springer Science & Business Media. 

Hazzard, Erik. 2011. OpenLayers 2.10 Beginner’s Guide. Packt Publishing Ltd. 

Holovaty, Adrian, and Jacob Kaplan-Moss. 2009. The Definitive Guide to Django: Web Development Done 
Right. Apress. 

Horsburgh, Jeffery S., David G. Tarboton, David R. Maidment, and Ilya Zaslavsky. 2008. “A Relational 
Model for Environmental and Water Resources Data.” Water Resources Research 44 (5). 

Jones, Norm, Jim Nelson, Nathan Swain, Scott Christensen, David Tarboton, and Pabitra Dash. 2014. 
“Tethys: A Software Framework for Web-Based Modeling and Decision Support Applications.” 

Khare, R., and R. N. Taylor. 2004. “Extending the Representational State Transfer (REST) Architectural 
Style for Decentralized Systems.” In Proceedings. 26th International Conference on Software Engineering, 
428–37. https://doi.org/10.1109/ICSE.2004.1317465. 

Khattar, Rohit, and Daniel P. Ames. 2020. “A Web Services Based Water Data Sharing Approach Using 
Open Geospatial Consortium Standards.” Open Water Journal 6 (1): 2. 

Michaelis, Christopher D., and Daniel P. Ames. 2012. “Considerations for Implementing OGC WMS and 
WFS Specifications in a Desktop GIS” 2012 (April). https://doi.org/10.4236/jgis.2012.42021. 

Ofoeda, Joshua, Richard Boateng, and John Effah. 2019. “Application Programming Interface (API) 
Research: A Review of the Past to Inform the Future.” International Journal of Enterprise Information 
Systems (IJEIS) 15 (3): 76–95. 



Open Water Journal – Volume 7, Issue 1, Article 3 27 

© Copyright owned by the authors unless otherwise noted.  OpenWaterJournal.org 

Ong, Shyue Ping, Shreyas Cholia, Anubhav Jain, Miriam Brafman, Dan Gunter, Gerbrand Ceder, and 
Kristin A. Persson. 2015. “The Materials Application Programming Interface (API): A Simple, Flexible and 
Efficient API for Materials Data Based on REpresentational State Transfer (REST) Principles.” 
Computational Materials Science 97 (February): 209–15. https://doi.org/10.1016/j.commatsci.2014.10.037. 

Rajasekar, Arcot, Reagan Moore, Chien-Yi Hou, Christopher A. Lee, Richard Marciano, Antoine de Torcy, 
Michael Wan, et al. 2010. “IRODS Primer: Integrated Rule-Oriented Data System.” Synthesis Lectures on 
Information Concepts, Retrieval, and Services 2 (1): 1–143. 
https://doi.org/10.2200/S00233ED1V01Y200912ICR012. 

Ramsey, Paul, and Victoria-British Columbia. 2005. “Introduction to Postgis.” Refractions Research Inc, 
34–35. 

Roberts, Wade, Gustavious P. Williams, Elise Jackson, E. James Nelson, and Daniel P. Ames. 2018. 
“Hydrostats: A Python Package for Characterizing Errors between Observed and Predicted Time Series.” 
Hydrology 5 (4): 66. https://doi.org/10.3390/hydrology5040066. 

Sadler, Jeffrey M., Daniel P. Ames, and Shaun J. Livingston. 2016. “Extending HydroShare to Enable 
Hydrologic Time Series Data as Social Media.” Journal of Hydroinformatics 18 (2): 198–209. 
https://doi.org/10.2166/hydro.2015.331. 

Swain, Nathan R., Scott D. Christensen, Alan D. Snow, Herman Dolder, Gonzalo Espinoza-Dávalos, Erfan 
Goharian, Norman L. Jones, E. James Nelson, Daniel P. Ames, and Steven J. Burian. 2016. “A New Open 
Source Platform for Lowering the Barrier for Environmental Web App Development.” Environmental 
Modelling & Software 85 (November): 11–26. https://doi.org/10.1016/j.envsoft.2016.08.003. 

Youngblood, Brian. 2013. GeoServer Beginner’s Guide. Packt Publishing Ltd. 

Zhou, Wei, Li Li, Min Luo, and Wu Chou. 2014. “REST API Design Patterns for SDN Northbound API.” 
In 2014 28th International Conference on Advanced Information Networking and Applications Workshops, 
358–65. https://doi.org/10.1109/WAINA.2014.153. 

 


