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Abstract 

 
This paper investigates the optimal design for a distributed generation (DG) system adopting wind turbines. The paper 
contribution is to formulate and solve a non-linear stochastic programming model to minimize the system lifecycle 
cost considering the loss-of-load probability and the thermal constraints using climate data from real settings.  The 
model is solved in three cities representing high to medium to low wind speed profiles. Data analytics on 9-years 
hourly wind speed records permits to estimate the probability distribution for the power generation. The model is 
tested in a 9-node DG system with random loads. For a total mean load of 50.1MW, New York requires the largest 
number of turbines at the highest annual cost (6 2MW, 2 3MW, $3,071,149), then Rio Gallegos (3 1MW, 4 2MW, 
$2,689,590) and Wellington (6 1MW, 1 2MW, $2,509,897). If the total load increases by 6%, the system is still 
capable to meet the reliability criteria but installed wind capacity and annual costs in New York and Rio Gallegos end 
higher than in Wellington. Results from decreasing the loss-of-load probability from 0.1% to 0.01% show that the 
system designed using stochastic programming can be highly reliable. 
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1. Introduction  
Distributed generation (DG) systems, also known as onsite generation, produce electricity from many distributed 
energy resources (DER). DER are small modular units installed in proximity to the end consumers. Hence, DG systems 
can reduce energy delivery loss and lower the number of transmission lines needed for long distance hauls [1]. Wind 
turbines (WT) have emerged as a clean and cost-effective DG technology in the past decade.  The main obstacles for 
implementing wind-based DG systems are the relatively high lifecycle cost and the intermittency of output power. In 
addition, the integration of multiple DER units also complicates the system design and management. Therefore, there 
is a need for optimizing the design of DG systems to ensure reliable and cost-effective operations [2]. 
 
This paper presents a stochastic programming model to find the siting (i.e. placement) and sizing (i.e. capacity) of WT 
unit in a DG system considering the power volatility and its effect in the system reliability and capability.  The model 
aims to minimize the expected cost of adopting the wind-based DG system. The design criteria are the satisfaction of 
a pre-determined power loss condition and the limit on the electric power carried in the distribution lines (i.e. thermal 
constraint). Researchers in [3] have minimized the life cycle cost using heuristic methods. To the best of our 
knowledge, this research contributes to the very scarce literature on stochastic programming models for the optimal 
design of DG systems in the climate data analytic framework. The paper is organized as follows. Section 2 presents a 
literature review on modeling wind speed. Section 3 gives the problem definition. Section 4 presents the methodology. 
Section 5 describes the numerical experiment and its results. Section 6 states the conclusions. 
 
2. Modeling Wind Speed  
Authors in [4] collected hourly data for wind speed in regions of Iran and concluded that it can be approximated by the 
normal distribution. In [5], the normal distribution was also used to model wind speed in three Canadian regions using 
a 15-year meteorological database. In [6], authors analyze data obtained from the North Sea between 2003 and 2005 
and conclude that the data fits a Weibull distribution. Equation (1) has been used to estimate the wind speed (yh) as a 
function of the ground wind speed yg at height hg (typically 10m), usually measured in meters per second (m/s), the 
height above the ground (h) and the Hellman exponent (𝜅).  The exponent represents a friction coefficient based on the 
costal location, shape of the terrain, and stability of the air and its value is often assumed in the range 0.27-0.34 [7]. 
Equation (1) indicates that taller turbine towers encounter higher wind speeds. Modern WT systems are typically 
installed on the 80-m tower or above to reap larger wind profile. 
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2.1 Wind Turbine (WT) Power Curve 
The WT power curve defined in equation (2) below is based on [8]. It computes the generated power (P) against the 
wind speed (y) across the turbine blades. The parameters in equation (2) are: a factor to convert from wind power to 
electrical power (𝜂𝑚𝑎𝑥) the air density (𝜌), the area covered by the turbine blades (A), and the WT power capacity or 
rated power(𝑃𝑚 ).The equation shows that power curve has four operating phases: standby (0 < y <𝑣𝑐), nonlinear 
production ( 𝑣𝑐≤ y ≤𝑣𝑟), rated power region (𝑣𝑟≤ y ≤𝑣𝑠) and cut-off (y > 𝑣𝑠). In the standby phase, no power is generated 
due to low wind speed. In the nonlinear production phase, P is directly proportional to air density, blade area, and the 
cube of wind speed. In the rated power region, the power output is constant. In the last phase (i.e. cut-off phase), the 
generator is shut down for protection and no power is produced. 
 

𝑃(𝑦) = {

  0                                0 < 𝑦 < 𝑣𝑐 , 𝑦 > 𝑣𝑠

0.5𝜂𝑚𝑎𝑥𝜌𝐴𝑦3                   𝑣𝑐 ≤ 𝑦 ≤ 𝑣𝑟

𝑃𝑚                                                          𝑣𝑟 ≤ 𝑦 ≤ 𝑣𝑠

                                                       (2) 

                
3. Problem Definition  
Figure 1 shows the interconnected DG system under study. The central node of the system (labeled as 1) has a 
substation that may occasionally bring electricity from the central power plant to cover marginal energy needs of the 
system. The remaining nodes (i.e. labeled with 2 to 9) represent small cities, companies, stores, or farms adopting 
onsite wind generation where L2, L3, …, L9 represent the power demands at each node. The eight arrows correspond 
to the power distribution lines. The goal is to find the optimal system design by determining the siting and sizing of 
WT units at nodes 2-9. The trade-off is to lower the system lifecycle costs and increase its reliability because wind 
speed fluctuation significantly affects the power output of the WT. The design requires that the total power generated 
satisfies the total load (i.e. electricity demand) a high percentage of the time. For instance, it is desirable that the 
system shortages must be as low as one day every 365 days (i.e. a loss-of-load probability of 0.003). The proposed 
model will determine the capacity of the WT to install at each node and the size of the substation to satisfy the 
electricity demands with a high probability while abiding to the line thermal limits on the electrical power transmitted 
to the system nodes (i.e. thermal constraints) under all possible wind speed scenarios.     
 

L2L3

L6L7

L4 L5

L8 L9

3 2 4 5

1

7 6 8 9  

Figure 1:  A renewable DG system integrated with wind technology  
 
4. Methodology 
The DG planning problem described in the previous section is modeled as a stochastic program that includes: (1) a 
probabilistic constraint to satisfy the system total reliability requirements; and (2) different wind speed scenarios to 
guarantee that the thermal constraints are not violated under any circumstance. Tables 1-3 present the notation used 
in the model. The model and its discussion are immediately below the tables. 

1756



Runsewe, Novoa, Jin 

Table 1: Sets 
Notation Definition 

𝐼 Types of distributed energy resources (DER), (i.e. WT and substations of varying capacity)   
𝐽 Nodes in the DG system  
𝐹 Upper nodes in the DG system excluding the central node. Distribution lines that originate at these 

nodes carry power to lower nodes (i.e. terminal nodes). 
𝐸 Lower nodes in the DG system  
𝐸𝑓 Lower nodes connected to upper node F  
𝐾 Capacity types feasible to adopt for the substation located at the central node 
S Wind speed scenarios. Each element of S is a vector of realizations for the wind speed at each node 

 
Table 2: Decision variables and functions of the decision variables 

Notation Definition 
xij Binary decision variable. It becomes1 if DER type i is installed in node j and 0 otherwise 
𝑃 Total power generated in the DG system, 𝑃 = ∑ ∑ 𝑥𝑖𝑗𝑃𝑖𝑗  𝑗∈𝐽𝑖∈𝐼 .  Using the central limit theorem, 

P~𝑁(∑ ∑ 𝑥𝑖𝑗𝐸[𝑃𝑖𝑗] 𝑗∈𝐽𝑖∈𝐼 ,  ∑ ∑ 𝑥𝑖𝑗
2 𝜎2(𝑃𝑖𝑗))𝑗∈𝐽𝑖∈𝐼  where 𝐸[𝑃𝑖𝑗] and 𝜎2(𝑃𝑖𝑗) are defined in the first 

two entries in Table 3. Here 𝑃 is a function of 𝑥𝑖𝑗  and the wind speed 𝑦ℎ because 𝑃𝑖𝑗, the power 
output of DER i at node j, is also a function of 𝑦ℎ. Function arguments dropped to simplify notation 

𝑓𝑃   Probability density function for the total generated power (P) generated by the system 
𝑓𝐿 Probability density function for the total system load (L). In this paper, the term load (L) is used to 

refer to the system power demand  
 

Table 3: Parameters 
Notation Definition 
 𝐸[𝑃𝑖𝑗] Mean of the power output for DER i at node j for iI and jJ 

 𝜎2(𝑃𝑖𝑗) Variance of the power output for DER i at node j  
𝑝𝑠𝑗  Probability for wind speed scenario s at node j 
𝑃𝑖𝑗𝑠 Power output when DER type i is installed at node j and the wind speed scenario is sS 
𝑃𝑖

(𝑐)
 Capacity of DER type i 

aij Present cost per MW for installing DER type i at node j 
∅ Factor to convert a present value to annuity. It is a function of the annual interest rate and the number 

of years to pay off the amount 
𝑏𝑖  Annual operation and maintenance cost per MW for DER type i 
ci Tax penalty or subsidy per MW for installing DER type i  
𝐿𝑓 Mean load (i.e. demand) at an upper node f. To simplify the notation, Lf  is used instead of E[Lf]) 
𝐿𝑒 Mean load (i.e. demand) at lower node e 
𝐿 System total load (i.e. demand). Using the central limit theorem, 𝐿~𝑁(∑ 𝐸[𝐿𝑖]𝑖𝜖𝐼  , ∑ 𝜎2(𝐿𝑖)𝑖∈𝐼  

where 𝐸[𝐿𝑖] and 𝜎2(𝐿𝑖) represent the mean load and its variance at node i 
𝐼𝑓 Maximum allowed current flow at the distribution line running from substation to an upper node f  
𝐼𝑒  Maximum allowed current flow at the distribution line reaching lower node e 

𝑉𝐷𝐺 Normal voltage of the DG system 
𝛼 loss-of-load probability 

 
Stochastic DG Planning Model: 
Minimize: 

𝑔(𝑥) = ∑ ∑(𝑎𝑖∅𝑃𝑖
(𝑐)

)

𝑗∈𝐽

𝑥𝑖𝑗

𝑖∈𝐼

+ ∑ ∑ ∑ 𝑝𝑠𝑗𝑃𝑖𝑗𝑠

𝑠∈𝑆

(𝑏𝑖 + 𝑐𝑖)

𝑗∈𝐽𝑖∈𝐼

 𝑥𝑖𝑗  (3) 

Subject to: 

∫ (∫ 𝑓𝑝(𝑧)𝑑𝑧
∞

𝑦

) 𝑓𝐿(𝑦)𝑑𝑦 ≥ 1 − 𝛼
∞

0

 
(4) 
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∑ (𝐿𝑒 −

𝑒 ∈ 𝐸𝑓

∑ 𝑥𝑖𝑒𝑃𝑖𝑒𝑠)

𝑖∈𝐼

+ 𝐿𝑓 − ∑ 𝑥𝑖𝑓𝑃𝑖𝑓𝑠 ≤ 𝑉𝐷𝐺𝐼𝑓

𝑖∈𝐼

              𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆 (5) 

𝐿𝑒 − ∑ 𝑥𝑖𝑒𝑃𝑖𝑒𝑠

𝑖∈𝐼

≤ 𝑉𝐷𝐺𝐼𝑒                 ∀ 𝑒 ∈ 𝐸, s ∈ 𝑆 (6) 

∑ 𝑥𝑖𝑗

𝑖∈𝐼

≤ 1                             ∀ 𝑗 ∈ 𝐽 (7) 

∑ 𝑥𝑘1

𝑘∈𝐾

≤ 1                                            (8) 

 
Objective function (3) minimizes the expected total annual cost of adopting the DG system. It is assumed that the 
annualized installation cost (∅𝑎𝑖𝑗)  and the annual operations and maintenance costs per MW (𝑏𝑖) for DER equipment 
of the same size are independent from the place where it is installed.  The term ci represents a tax incentive or subsidy 
if a WT is installed or a penalty cost due to emissions of greenhouse gases primarily associated with generation 
equipment using fossil fuels.  
 
Constraint (4) ensures that the system power quality is guaranteed for a high percentage of the time in a year.  It can 
be written as Pr{𝑃 > 𝐿} ≥ 1 − 𝛼. Systems operating with small 𝛼 values are very reliable. For example, if the system 
is allowed for one day power shortage in a year,  𝛼 should be less than 0.003 (i.e. 1/365).  In practice, when uncertainty 
in the wind generation increases, extra capacities from substations may be used to compensate the renewable power 
shortage, but it is not recommended for long time periods. Given a solution, xij, the left-side of constraint (4) can be 
computed by a solver assuming the total power (P) and the total load (L) are normally distributed according to the 
central limit theorem (CLT). Parameters for the distributions of P and L are given in Tables 2 and 3, respectively.  
 
Thermal constraints (5) are for nodes that may provide power to other nodes (i.e. upper nodes) excluding the central 
node. The constraints ensure that the power carried by the distribution line (DL) serving an upper node and all its 
lower nodes does not exceed the maximal power limits for such DL and consider that WT installed on the nodes will 
mitigate some of the requirements. Thermal constraints (6) have the same purpose as the ones in (5) but are for the 
lower nodes. In (6), the loads (Le) can be mitigated only by WT installed at those nodes. Thermal constraints (5) and 
(6) must be satisfied for each wind speed scenario.  Constraint (7) specifies that at most one DER is installed at each 
node. This condition can be relaxed if needed in real applications. Equation (8) requires that the substation be installed 
at the central node to facilitate the bulk power supply. This constraint is reasonable as most of the electricity is provided 
by the substation [4].  It is impossible to have a perfect forecast of random wind speed behavior. The stochastic 
program solved in this paper provides a more realistic solution than the one in [9] where the number of scenarios was 
reduced to one and the power at the nodes (𝑃𝑖𝑗) was assumed equal to its mean value 𝐸[𝑃𝑖𝑗].  
 
5. Numerical Experiment and Results 
 
5.1 System Topology and DG System Costs  
The model is tested on a 9-node DG system as shown in Figure 1. This network topology was originally given in [10]. 
A substation with capacity of 40MW or 50MW can be sited only at the central node. A WT with capacity 1MW, 2MW 
or 3MW may be installed at each of the remaining nodes. Table 4 presents the related DER costs. 

 
Table 4: Costs for the DER units (Note: O&M=Operations and Maintenance) 

 i  DER Unit  DER Capacity  
(MW) 𝑃𝑖

(𝑐) 
Equipment Cost 

($/MW) ai 
Annual O&M Cost 

($/MW) bi 
Annual Penalty 
Cost ($/MW) ci 

1 WT 1 1 1,400,000 15,000 0 
2 WT 2 2 1,250,000 12,750 0 
3 WT 3 3 1,100,000 10,500 0 
4 Substation 40 273,000 22,500 5,000 
5 Substation 50 227,500 18,750 7,500 
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5.2 Probability Distribution for the Power Output by DER type i at node j (𝑷𝒊𝒋) 
The numerical experiment solves the model in three cities: Wellington, New Zealand, Rio Gallegos, Argentina, and 
New York, USA. Wellington has high winds as well as Rio Gallegos while New York is not as windy. Climate data 
analytics is done on large samples (about 8,760 observations per year) of wind speed collected hourly for 9 years 
(2006-2014). The data allows to characterize the probability distribution of the wind speed at each city and compute 
the power output of each WT unit considered to install at each node. The computational procedure is shown in Figure 
2. The defined wind speed (m/s) scenarios are in Table 5. They reflect very well the operational values for a WT with 
vc=2m/s, vr=12m/s and vs = 25m/s. For the substation the power output is fixed at its capacity (40 or 50MW). 

 

Collect large samples of wind 
speed at ground level (yg) from  
Weather Underground for the 
cities studied and perform data 
analytics to extract samples of 
hourly wind speed over 9 years

Calculate wind speed (yh) at h=80m 
using equation (1), yh = yg(h/hg)ƙ 

where hg=10m and ƙ = 0.27.  Wind 
speed data is fitted to probability 

distributions.  A given year data set 
is assigned to a particular node   

For each system node j, define a 
total of TS scenarios (s=1,…,TS) 

for yh and estimate their associated 
probabilities (psj) by performing 
data analytics on the collected 
hourly data sets for all cities  

Calculate the mean, E[Pij], and 
variance, σ2(Pij), of Pij , the power 

generated with DER type i and node j  

Estimate power in each scenario as 
Pijs(ys)=Pm(ys/vr)3 where ys = mid 

point wind speed at scenario s, vr =12 
m/s (i.e.  starting point ot the rated 

power region in a WT power curve)  
and Pm is the rated power 

 
 

Figure 2: Procedure to compute the probability distribution for the power of each type of WT unit at each node   
 

Table 5: Wind speed scenarios for the numerical experiment based on the wind turbine power curve 
Scenario No. 1 2 3 4 5 6 7 8 9 10 11 12 13 
Range (m/s) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 >12 
Midpoint (ys) 0 0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 18.5 

 
5.3 System Loads, Maximum Current at the Distribution Lines and other Parameter Values 
Table 6 presents the mean values for the load at the nodes (MW) and their variances (MW2) and the mean and variance 
for the total load, 𝐸(𝐿), and 𝜎2(𝐿), respectively. Table 6 also shows the maximum allowed current flowing towards 
each node Ii. The voltage of the distribution lines (VDG) is 33KV and the loss-of-load probability (𝛼) is 0.01. 
 

Table 6: Mean and variances for the loads and maximum current flowing toward each node (N/A=not applicable) 
Node 1 2 3 4 5 6 7 8 9 Total 

Li 0.00 7.64 7.72 4.58 4.00 7.64 7.27 6.11 5.14 50.1 
𝜎2(𝐿𝑖) 0.000 0.146 0.210 0.052 0.04 0.146 0.132 0.093 0.066 0.886 

Ii N/A 500 250 450 210 500 250 450 210 N/A 
 
5.4 Numerical Results 
The model is coded in AMPL, solved with Knitro and further validated with Analytic Solver Platform. It solves for 
all the cities with the parameters given in Section 4. Due to the variation of wind speeds, for a total load (L) of 50.1MW 
(base load), New York requires the largest number of WT at the highest total annual cost (6 2MW, 2 3MW, 
$3,071,149), then Rio Gallegos (3 1MW, 4 2MW, $2,689,590) and Wellington (6 1MW, 1 2MW, $2,509,897). The 
costs for the DG system are helpful to guide a decision maker on choosing the optimal place to install the system.  
 
Sensitivity analysis for the behavior of the total cost to increases in the total load (L) ranging from -6% to 6% of the 
base load, i.e. [47.10MW, 53.10MW], are in Figure 3.  In all cases and cities, the system meets the load by adopting 
WT units. This result is very satisfactory considering that in practice the power demands randomly fluctuate. At 
53.10MW, Wellington and Rio Gallegos install 8 WT but the 3MW capacity used in Wellington is much less. 
Wellington requires (7 2MW, 1 3MW, $3,071,573) and generates total power (P) of 61.49MW while Rio Gallegos 

1759



Runsewe, Novoa, Jin 

requires (1 2MW, 7 3MW, $3,323,156) and generates 64.22MW. New York uses all 3MW turbines at each node and 
generates 61.28MW with the highest cost of $3,329,629. Figure 4 presents how the total cost varies with loss-of-load 
probability (𝛼). If 𝛼  decreases to α=0.0001 (a value close to 0 in the x-axis), the system is feasible but costly because 
all cities need 3MW turbines except Wellington that requires (1 2MW, 7 3MW). This result gives confidence to the 
decision maker because it shows that the system designed using stochastic programming is highly reliable.  

 
 

Figure 3: System cost vs. total load 

 
 

 Figure 4: System cost vs. loss-of-load probability (α)  
 
6. Conclusions  
This paper demonstrates the benefits of using a non-linear stochastic programming model to find the optimal sizing 
and siting of variable generators in a DG system. The problem is formulated to keep the system’s loss-of-load 
probability below a pre-specified threshold and to satisfy the thermal constraints under all wind speed scenarios. By 
leveraging climate data analytics, this research contributes to the very scarce literature on stochastic programming 
models for the optimal design of DG systems and shows that the proposed model is suitable to renewable integration 
for a wide range of wind profiles. In addition, the wind-based DG system is able to achieve a loss-of-load probability 
as low as 0.0001 with affordable cost. Further research is to contrast the results with the ones from a simulation-
optimization model, integrate other DER units such as solar photovoltaics and develop operational models subject to 
uncertain load growth over a multi-year horizon. 
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