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a b s t r a c t

A variety of methods have been proposed to assist the integration of microgrid in flow shop systems with
the goal of attaining eco-friendly operations. There is still a lack of integrated planning models in which
renewable portfolio, microgrid capacity and production plan are jointly optimized under power demand
and generation uncertainty. This paper aims to develop a two-stage, mixed-integer programming model
to minimize the levelized cost of energy of a flow shop powered by onsite renewables. The first stage
minimizes the annual energy use subject to a job throughput requirement. The second stage aims at
sizing wind turbine, solar panels and battery units to meet the hourly electricity needs during a year.
Climate analytics are employed to characterize the stochastic wind and solar capacity factor on an hourly
basis. The model is tested in four locations with a wide range of climate conditions. Three managerial
insights are derived from the numerical experiments. First, time-of-use tariff significantly stimulates the
wind penetration in locations with medium or low wind speed. Second, regardless of the climate con-
ditions, large-scale battery storage units are preferred under time-of-use rate but it is not the case under
a net metering policy. Third, wind- and solar-based microgrid is scalable and capable of meeting short-
term demand variation and long-term load growth with a stable energy cost rate.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

It is estimated that manufacturing industry world-wide is
responsible for over one-third of electricity consumption (EIA,
2017). This is mainly due to the adoption of energy-intensive pro-
duction equipment, and the use of heating, ventilation and air
conditioning systems. A typical semiconductor wafer fab that runs
in 24/7mode requires 400 to 700MWh of electricity per day, which
results in $15e25 million of annual utility cost (Hu and Chuah,
2003; ITRS, 2011). To generate this amount of electricity, every
day over 300 metric tons of carbon have to be released if burning
fossil fuels. To achieve the environmental sustainability, various
approaches have been proposed, ranging from energy conservation
(Liu et al., 2013, 2014; Mouzon et al., 2007), power efficiency (Aflaki
et al., 2013; Chen et al., 2013; Li and Sun, 2013), renewable energy
purchase (Jin et al., 2018), and onsite generation (Ghadimi et al.,
2013; Ruangpattana et al., 2011). The common feature of these
approaches is to reduce the conventional electricity use in
manufacturing processes. In addition, manufacturing plants opt to
participate in demand response programs and shift their loads from
peak hours to off-peak hours for cost savings (Bego et al., 2014;
Wang and Li, 2013; Zhang et al., 2017b). Time-of-use tariff, critical
peak pricing, and real-time pricing are among the common de-
mand response programs used in industrial facilities.

Biel and Clock (2016) point that most production planning
models focus either on long-term or on short-term scheduling
problems, but the decisions on renewable portfolio, microgrid ca-
pacity, and manufacturing schedule are rarely studied in a unified
framework. Such a joint planning realistically represents the op-
portunity a manufacturer can take when facing multiple energy
supply options. In fact, most papers make use of energy-related
objectives aiming to minimize the energy consumption or cost
with the implicit assumption that the energy source or the gener-
ation capacity is known. However, due to the intermittency of re-
newables and the lack of large-scale, cost-effective energy storage
technology, manufacturers have to consider the unique character-
istics of the local wind and weather profiles in order to harvest
onsite energy at a minimum cost. Thus, neither the renewable
portfolio nor its associated capacity can be treated as known pa-
rameters. Rather the planners should identify the best generation
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mix that leads to higher renewable throughput based on the spe-
cific wind and weather condition of that area.

This paper attempts to address two research questions: First,
how to model and design an integrated microgrid and flow shop
production system given multiple renewable resources with un-
certain climate conditions? Second, is it economically viable to
install wind, solar and storage systems to attain eco-friendly
operation considering demand response and load growth? To
address both questions, an integrated planning model is proposed
to jointly size a renewable microgrid and to schedule the flow shop
production by minimizing the levelized cost of energy (LCOE) over
one year horizon. LCOE is the cost of generating one MWh or kWh
electricity, and is widely used to measure the market competi-
tiveness of different generation technologies with different
lifetime.

The contribution of this study can be elaborated in three aspects.
First, the paper makes an early attempt to concurrently allocate
microgrid capacity and production schedule subject to power de-
mand and supply uncertainty. Particularly the model includes in-
vestment decisions on a portfolio of wind, solar and energy storage
to match the uncertain demand with variable supply during the
course of a year. Second, the model takes into account cost savings
and revenue from selling surplus energy to the utility grid under
demand responses. It combines the operational (short-term) deci-
sion with the strategic (long-term) planning by matching, on an
hourly basis, the uncertain load with the variable generation. Third,
the paper employs a climate analytics approach to characterizing
the hourly capacity factor of wind turbine (WT) and photovoltaics
(PV) systems based on 11-year meteorological data. This data an-
alytics approach factors the operational and strategic decisions in
the LCOE metric through the aggregation and minimization of
annualized energy costs. This allows the manufacturers to realis-
tically evaluate the economic viability of adopting and integrating
onsite renewables in flow shop manufacturing.

The remainder of the paper is organized as follows. Section 2
provides the literature review. In Section 3, a two-stage, mixed-
integer optimization model is formulated to minimize the LCOE.
Section 4 presents the climate analytics approach based on 11-year,
hourly meteorological data. In Section 5, the proposed model is
tested in four locations with a wide range of climate profile. Section
6 performs the sensitive analysis with respect to capacity cost,
operating mode and microgrid scalability. Section 7 concludes the
paper.

2. Literature review

Flow shop scheduling is a special case of job shop planning
where there is a strict order for all jobs to be performed on a set of
machines in an appropriate sequence. Flow shop scheduling
problems with single and multiple objectives under different
design criteria have been extensively studied. The majority of flow
shop scheduling problems are formulated to minimize the make-
span (Benavides and Ritt, 2018; Marichelvam et al., 2014), flowtime
(Dong et al., 2013), tardiness (Liu et al., 2014), and release date (Bai
et al., 2017). Interested readers are referred to the survey papers by
May el al. (2015), Ruiz and V�azquez-Rodríguez (2010), and Yenisey
and Yagmahan (2014).

Recently a growing number of flow shop scheduling models
focus on minimizing energy costs through load shifting, production
adjustment, and buffer building under various demand response
programs. Wan and Qi (2010) attempt to schedule a single machine
under a variable electricity price with the goal of minimizing total
energy cost. More general and complex manufacturing systems,
such as multi-stage and multi-machine shops, have been investi-
gated for lowering energy cost subject to time-varying electricity
rate. For instance, Shrouf et al. (2014) extend the single-machine
model and use the genetic algorithm to find the near optimal so-
lution that is applicable to large-scale manufacturing scheduling
problems. Zhang et al. (2014) propose a scheduling optimization
model to minimize the electricity cost and the carbon emissions in
a three-stage flow shop under time-of-use (TOU) tariff. An unlim-
ited buffer size between stages is assumed in their model. Wang
and Li (2013) consider limited buffer sizes and solve a TOU-based
flow shop scheduling problem to minimize the electricity cost
subject to a fixed throughput requirement. Research efforts are also
directed to other electricity pricing schemes such as critical peak
pricing. Bego et al. (2014) investigate the scheduling problem for a
multi-stage production system where machines and buffers are
under critical peak pricing. More recently, Liu et al. (2018) deign a
flexible flow shop for recycling reinforced composite materials by
minimizing both time and energy, and the optimal schedule is
found by using non-dominated sorting genetic algorithm. These
studies have shown that demand response is an effective way to
reduce the energy cost if the schedules or capacities of a production
system can be adjusted in a real-time manner.

The second research stream focuses on integrating distributed
or onsite renewable power in flow shop production scheduling
systems. The purpose is to reduce the energy cost or grid electricity
use subject to variable power and time-dependent utility price. For
example, Moon and Park (2014) make an early attempt to minimize
the total production cost of a flexible job shop scheduling problem
by combining time-dependent electricity price, energy storage and
distributed wind- and solar power. Zhang et al. (2017a) minimize
the electricity cost of a flow shop powered by grid-tied microgrid
comprised of photovoltaics and energy storage. Biel et al. (2018)
propose a decision support model for flow shop scheduling prob-
lem with a grid-tied wind turbine using a stochastic mixed integer
linear programming. They show that onsite wind generation can
significantly mitigate the influence of time-varying utility prices in
the peak period. More recently Golpîra et al. (2018) introduce the
smart energy-efficient production-planning concept for a job shop
manufacturing system that is co-powered by the main grid and the
microgrid. The latter is comprised of WT, storage device, and
combined heat and power. A risk-based robust mixed integer linear
program is formulated to minimize the day-ahead energy cost
considering peak demand charge. The aforementioned studies
show that a microgrid creates multiple benefits, including meeting
demand responses, lowering carbon emissions, and improving
energy security. The assumption of these studies is that the
renewable portfolio or the microgrid capacity is known.

The third research stream also aims to integrate distributed
wind and solar power into manufacturing facilities with minimum
cost, but the main focus is on the sizing and siting of renewable
resources by considering climate diversity and variability. At the
plant level, Taboada et al. (2012) take an early step to optimize the
capacity of a grid-tied, PV-basedmicrogrid with the goal of meeting
the hourly load of a wafer fab during the course of a year. The
objective is to minimize the annualized energy cost of the micro-
grid, and the model is tested in five US cities with a wide range of
weather profile. Villarreal et al. (2013) further expand the renew-
able portfolio and use WT as an alternative source to compensate
the solar generation shortage in night time. Simulation-based
optimization is used to find the optimal sizing of WT and PV that
minimizes the system cost. At the machine level, Zhang et al. (2018)
investigate a microgrid sizing problem for a diesel generator in a
flow shop manufacturing setting subject to critical peak pricing
rate. Amixed-integer non-linear programmingmodel is formulated
to optimize the generator capacity and themachine on-off policy by
minimizing the sum of the utility and onsite generation cost. These
studies indicate that it is of importance to determine the generation
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portfolio and power capacity so as to maximize the throughput of
onsite renewable or fuel-based generators in the presence of power
demand and supply uncertainty.

The literature review shows that the majority of studies have
focused on the coordination of production and power scheduling to
lower the energy cost or to ensure the job throughput rate under
various electricity tariffs. Efforts are also made to integrate wind
and solar power in production models for reducing grid energy use
with given renewable portfolio or capacity. However, there is a lack
of an integrated framework in which renewable portfolio, genera-
tion capacity and flow shop scheduling are jointly considered under
load and generation uncertainty. This paper proposes an integrated
planning model to simultaneously size renewable capacity and
allocate production schedule for minimizing the levelized cost of
energy. The benefit of the joint planning model is to avoid or
mitigate the under- or over-generation capacity investment by
considering the unique wind and weather profiles of a particular
location.
3. Joint allocation of microgrid and production schedule

3.1. Flow shop system with microgrid generation

As shown in Fig. 1, the microgrid under study consists of WT,
solar PV, battery storage (BS) units, and the flow shop facility acting
as the load. This paper investigates a grid-tied microgrid system by
considering two operational scenarios. In scenario one, if the wind
blows hard or the sunshine is strong, the microgrid is able to
energize the flow shop with no reliance on the main grid. If surplus
power is generated, it can be stored in the BS unit or fed in themain
grid if the battery is full. In scenario two, if the aggregate wind and
solar power is less than the load, the BS behaves as complementary
energy source to co-power the flow shop. Situations may also occur
when the main grid power must be purchased if the BS energy is
depleted.

A machine flow shop system refers to the process in which all
jobs, also known as work-in-process (WIP), have a unidirectional
and fixed processing route. Without loss of generality, the three-
stage, parallel machine shop system in Fig. 1 is used to illustrate
the working principle. After the initial jobs enter Stage 1, they are
processed on machine 1 or 2. Upon completion, they are stored
temporally in buffer 1. Once machine 3 or 4 is available, these WIP
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Fig. 1. A flow shop system in
will be fed to Stage 2 for further processing. Buffer 2 is used to store
the finished WIP from Stage 2. Finally the jobs are processed on
machine 5 or 6 at Stage 3, and the finished goods are stored in
buffer 3. This paper seeks an optimal schedule for a multi-product,
multi-period flow shop system to minimize the annual energy
consumption while satisfying the required throughput rate.
3.2. Flow shop scheduling for energy minimization

Let us consider a hybrid flow shopwith n jobs being processed at
stage s2 S for S¼ {1, 2,…, d} where d is the total number of stages.
A buffer with a capacity of Cs is placed at the end of stage s. Each
stage consists Ms parallel machines. Also, the set of time periods
T f ¼ ft0; t0 þ1; ::; t0 þTpg has specific time instances, where t0 is
the initial time at which a machine begins to operate and Tp is the
planning horizon or the total available production time. The
essential throughput for job j2J is notated as hj0 for the given time
period T f . The flow of jobs is done in feed-forward control from
the first to the last stage. Table 1 summarizes the notation for the
multi-stage, parallel machine scheduling model.

Each machine is either in on- or off-mode depending on the
maintenance status. The time and electric power required for
processing job j on machine m in stage s are Tsmj and Psmj, respec-
tively. Since the machines within a stage are identical, their pro-
cessing speeds are the same for the same job type. Nevertheless the
model formulated below can also be extended to machines with
different processing speeds. This paper also considers the machine
maintenance action, and vsm is the maintenance time for machine
m in stage s. Based on the previous works (Zhang et al. 2017a;
Zhang and Chiong, 2016), a flow shop scheduling model, denoted
as Model 1, is presented to minimize the annual energy use under
the throughput requirement.

Model 1 (Stage 1 Decision):
Minimize:

f1ðxÞ¼
XTp

t¼1

Xd

s¼1

XMs

m¼1

Xn

j¼1
Psmjxsmjt (1)

Subject to:

Nsjt ¼ 0 for j2J; s2S; t ¼ t0;…; t0 þwsmj � 1; (2)
Substation
r Main Grid)

TOU or Net Metering Sw
itc

h
A

tegrated with microgrid.



Table 1
Notation for machine flow shop scheduling problem.

Indexes and Parameters
k : index to represent the cumulative production hours, for k ¼ 1, 2, …, Tp t:: index to represent time
d : number of stages
s : stage index, for s ¼ 1, 2, …, d
m : machine index
n : number of jobs
j : job type index for j ¼ 1; 2; …; n
Ms : number of parallel machines in stage s, for m ¼ 1, 2, …, Ms

T f : set of time instances in machine operational interval; T f ¼ f t0; t0 þ 1; …; t0 þ Τp g where t0 is the start time and Τp is the end operating time
hj0 : required throughput rate for job j

wsmj : time required for processing job j on mahcine m in stage s

Psmj : power consumed for processing job j on machine m in stage s

vsm : time required for maintenance of machine m in stage s
Cs : buffers capacity in stage s

Decision Variables:
xsmjt : 1; if machine m at stage s is processing job j at time t; and 0 otherwise
ysmjt : 1; if machine m in stage s starts processing job j at time t; and 0 otherwise
Nsjt : amount of products of type j being processed in stage s by time t

xsmt : 1; if machine m in stage s at time t is under maintenance ; and 0 otherwise
ysmt : 1; if machine m in stage s at time t starts the maintenance ; and 0 otherwise
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Nsjt ¼
Xt�wsmjþ1

k¼0

ysmjk for j2J; s2S; t ¼ t0 þwsmj;…; t0 þ Τp;

(3)

Nsjt � Nsþ1;jt þ xsþ1;mjt for j2J; s2S\fdg; t2T f ; (4)

Nsjt �Nsþ1;jt þ Cs for j2J; s2S\fdg; t2T f ; (5)

NdjΤp
� hj0 for j2J; (6)

xsmjt ¼
Xt
k¼0

ysmjk for j2J;s2S;m2Ms;t¼ t0…;t0þwsmj�1;

(7)
xsmjt ¼
Xt

k¼t�wsmjþ1

ysmjk for j2J; s2S;m2Ms; t ¼ t0 þwsmj;…; t0 þ Τp; (8)

Xtþwsmj�1

k¼t

xsmjk � ysmjtwsmj for j2J; s2S;m2Ms; t ¼ t0;…; t0 þ Τp �wsmj þ 1; (9)
X
j2J

xsmjt � 1 for s2S;m2Ms; t2T f ; (10)

X
j2J

ysmjt � 1 for s2S;m2Ms; t2T f ; (11)
xsmt ¼
Xt
k¼0

ysmk for m2Ms; t ¼ t0…; t0 þ vsm � 1; (12)

xsmt ¼
Xt

k¼t�vsmþ1

ysmk for s2S;m2Ms; t ¼ t0þ vsm;…; t0þΤp;

(13)

Xtþvsm�1

k¼t

xsmk � ysmtvsm for s2S;m2Ms;t¼ t0;…; t0þΤp� vmþ1;

(14)
xsmt þ
X
j2J

xsmjt � 1 for s2S;m2Ms; t2T f ; (15)

xsmjt ; ysmjt 2f0;1g for j2J; s2S;m2Ms; t2T f ; (16)

xsmt ; ysmt 2f0;1g for s2S;m2Ms; t2T f ; (17)

Nsjt 2 Z for j2J; s2S; t2T f ; (18)



Table 2
Notation for microgrid capacity allocation model.

Parameters Comments
PtD : Power demand of the flow shop at time t

Rtg : the TOU rate at time t

PmaxCS : the maximum power that the battery can be charged
PmaxDS : the maximum power that the battery can discharge
hCS : charging efficiency of battery system
hDS : discharging efficiency of battery system
fPV : capital recovery factor of PV system
fWT : capital recovery factor of WT system
fB : capital recovery factor of battery system
aPV : capicity cost for PV system
aWT : capicity cost for WT system
aB : capicity cost for battery system
Pti : power charged to the battery at time t

Pto : power discharged from the battery at time t

Ptg : power drawn from the main grid at time t

PtPV : power output of the PV at time t

PtWT : power output of the WT at time t

PtS : enegry stored in the battery at the end of the interval of t
CSt : charging status at time t: CSt ¼ 1 if the battery is charging; and 0 otherwise
DSt : discharging status at time t: DSt ¼ 1 if the battery is discharging ; and 0 otherwise

ltPV : capacty factor of PV at time t

ltWT : capacty factor of WT at time t
Decision Variables:
PcPV : capacity of the PV system
PcWT : capacity of the WT system
PcB : capacity of the batterysystem
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The objective function (1) aims to minimize the total energy use
of the flow shop during the entire production period. Particularly,
the objective function aggregates the energy demand of n jobs
being processed across all the machines in each stage over period
T f . Constraints (2) and (3) ensure the number of jobs being
processed by time t does not exceed the machine capacity in each
stage. Constraints (4) represents the job balance equation, that is,
the number of processed jobs in stage s should not be less than the
sum of the processed jobs in stage sþ1 and those are under pro-
cessing at stage sþ1. Constraints (5) indicates that at any time t, the
number of processed jobs at stages s should be less than the sum of
processed jobs in stage sþ1 and the buffer capacity at stage s, or the
overflow occurs. Constraint (6) is the throughput requirement,
stating that the total finished job j should not be less than the target
value hj0 by the end of period t0 þ Τp. Constraints (7) and (8)
together ensure that job j under processing on machine m cannot
be interrupted in duration wsmj. Constraint (9) stipulates that job j
under processing on machine m must be completed in the same
f2
�
PcPV ; P

c
WT ; P

c
B
�¼ 1

f1ðxÞ

 XTp
t¼1

RtgP
t
g þfPVaPVP

c
PV þfWTaWTP

c
WT þfBaBP

c
B

!
(19)
machine. Constraints (10) prescribes that at any time t, machine m
can process at most one job. Constraints (11) prescribes that at any
time t, machine m can start to process at most one job. Constraints
(12) to (14) ensure the continuity of maintenance action with no
interruption until completed. Constraint (15) stipulates that job
processing and maintenance cannot be concurrently performed on
the samemachine. Constraint (16) simply states that at time t, there
is at most one job being processed on machine m in stage s.
Constraint (17) defines the fact that at time t, at most one main-
tenance task is applied to machine m in stage s. Finally, constraint
(18) states that the job throughput should be a non-negative
integer.

3.3. Optimal sizing of renewable microgrid

The next task is to determine the renewable portfolio and
microgrid capacity to meet the power demand of the flow shop
during the production period. The decision variables and model
parameters for the second stage optimization are listed in Table 2
below.

Without loss of generality, the production planning horizon is
taken as one year with Tp ¼ 8640 h. Denoted as Model 2, the
following optimization model is formulated to minimize the LCOE
of the microgrid.

Model 2 (Stage 2 Decision):
Minimize:
Subject to:

Ptg þ PtPV þ PtWT � Pti
hCS

þ PtohDS ¼ PtD for t2T f ; (20)

PtD ¼
Xd

s¼1

XMs

m¼1

Xn

j¼1
Psmjxsmjt for t2T f (21)



Table 3
Average wind speed at 80m height and weather condition (2006e2016).

Cities Wellington Aswan Yuma San Francisco

Latitude (Degree) 41.29 24.09 32.69 37.77
Average Wind Speed (m/s) 13.61 5.93 6.02 8.21
Clear Sky 6 356 165 28
Scattered Cloud (SC) 68 5 109 95
Partially Cloudy (PC) 109 3 65 136
Mostly Cloudy (MC) 5 0 0 13
Overcast 1 0 0 2
Rain 170 0 13 65
Fog 2 0 1 24
Strom/T-storms 3 0 11 3
Snow 0 0 0 0
Wind Speed Profile High Low Low Medium
Sunshine Low High High Medium
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PtPV ¼ ltPV PcPV for t2T f ; (22)

PtWT ¼ ltWT PcWT for t2T f ; (23)

0� PtS � PcB for t2T f ; (24)

Pti � PmaxCS � CSt for t2T f ; (25)

Pto � PmaxDS � DSt for t2T f ; (26)

Pt�1
S � PtS ¼ Pto � Pti for t2T f ; (27)

CSt þ DSt � 1 for t2T f ; (28)

CSt ; DSt 2 f0; 1g for t2T f ; (29)

Ptg � 0; (30)

PcPV ; PcWT ; P
c
B � 0: (31)

The objective function (19) aims to minimize the LCOE where
f1(x) is the total energy use of the flow shop in period Tp, which is
the result of Model 1. The numerator represents the annual elec-
tricity cost of the flow shop. Particularly the first summation is the
utility bill, and the last three summations in (19) represent the
annualized equipment cost including operations and maintenance
expense. Note that fPV, fWT and fB are the capital recovery factor of
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shop facility
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Constraint (21) where xsmjt is resulted from Model 1. Constraints
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on the hourly capacity factor. Constraint (24) states that the amount
of energy stored in BS at time t should not exceed its capacity limit.
Constraints (25) and (26) define the maximum amount of power
charged or discharged at time t from the battery. Constraint (27) is
the BS energy balance equation showing that the net energy be-
tween time t-1 and t equals the difference between the discharged
and charged energy in that period. Constraint (28) ensures that
battery charge and discharge cannot take place simultaneously.
Constraints (29) and (30) simply stipulate the non-negativity of all
the decision variables.
ed
t
eed

Solve Model 1 to obtain the
optimal power demand per
period by assigning job
process time and machine

Two-Stage Planning

ntegrated Microgrid
Scheduling Model

Stage 1

Solve Model 2 to allocate
the optimal capacity of WT,
PV and BS to minimize the

LCOE

Stage 2
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3.4. Solution algorithm

Models 1 and 2 are mutually correlated in terms of the power
demand and utility pricing policy. The power demand derived from
Model 1 for each period becomes an input parameter of Model 2
decision. Both models are coded with the AMPL mathematical
programming language and solved with the CPLEX search engine
that has mixed integer linear programming solution algorithms.
Similar to the production-logistics planning model by Pham et al.
(2019), Fig. 2 describes the procedure for solving the two-stage,
flow shop scheduling and microgrid sizing problem.
4. Climate analytics for capacity factor estimation

4.1. Climate data of testing cities

Four cities with diversewind andweather conditions are chosen
to test the proposed models in Section 3. They are Wellington in
New Zealand, Aswan in Egypt, Yuma in Arizona, and San Francisco
in California. For each city, wind speed data between 2006 and 2016
are retrieved from the Weather Underground portal (WU, 2018),
and used to estimate the WT capacity factor. In particular, 96,360
hourly wind speed readings are collected for each city, and a total of
385,440 data points are used for the hourly capacity factor esti-
mation. Similarly, the hourly weather states from 2006 to 2016 are
also obtained from the portal with 96,260 readings per city and a
total of 384,440 records are used for PV capacity factor estimation.
By aggregating all the wind and weather records, the size of the
dataset for the climate analytics reaches 770,880.

Table 3 summarizes the climate statistics of four cities between
2006 and 2016. Since the wind speed data from the weather portal
are measured at 10m above the ground, they are extrapolated at
80m as this is the typical tower height of modern WT system. The
weather conditions are classified into nine states, namely, clear sky,
scattered cloud, partially cloudy, mostly cloudy, overcast, rain, fog,
storm (including T-storm) and snow. Wellington has a strong wind
profile with average wind speed (AWS) of 13.61 m/s at the height of
80m tower, but only 6 clear days per annum on average. Aswan has
an extremely strong sunshine with 356 clear days, but the AWS is
only 5.93 m/s. Yuma has a low wind profile of 6.02 m/s on average,
but the number of the clear and scatter cloudy days reaches 274
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days. San Francisco has a mediumwind profile of 8.21 m/s, and the
number of clear and scattered cloudy days reaches 123 per annum.
The climates of these cities are relatively diverse, representing the
areas where the human beings choose to live.
4.2. Capacity factor of WT and PV

Constraints (22) and (23) of Model 2 contain random capacity
factors ltPVand ltWT resulted from stochastic climate conditions. To
make the optimization tractable, both constraints are converted
into deterministic forms by substituting the random capacity fac-
tors with their expected values derived from the climate analytics.
The detailed procedure to estimate ltPV and ltWT is given in
Appendix A. Figs. 3 and 4 depict the expected value of ltPVand ltWT ,
respectively, in Wellington, Aswan, Yuma and San Francisco. Since
there is no PV generation in the night, Fig. 3 only shows the PV
capacity factors in the day time of a year.
5. Numerical experiments

5.1. Background of the flow shop system

A three-stage hybrid flow shop systemwith parallel machines is
adopted to demonstrate the application of Models 1 and 2. The
experiment is built upon the flow shop system for semiconductor
manufacturing. Table 4 presents a sample case for power demand
and processing time of individual jobs which are related to wafer
fabrication. The power demand in wafer processing is typically at
the MW level (Hu and Chuah, 2003). For the job processing time, a
fab takes 1e2 days or sometimes longer to process a complex layer
on a particular machine or tool (ITRS, 2011; Mitra et al., 2012).
Buffers with a reasonable size are placed between two adjacent
stages. The flow shop produces two types of products (or jobs), and
runs in three shifts in 24 h and seven days a week. The job pro-
cessing time and the power used by each machine are listed in
Table 4. For instance, {1, 2, 2} means if job 1 is processed on ma-
chine 2 at the second stage, the power demand is 3MWand it takes
60 h to complete Job 1. The time-period is T f ¼ f0; 1;…; 8640g
assuming 30 days/month for twelve months. When maintenance is
taken, the duration is assumed to be 2 h per machine, but it could
be a different duration. According to the analysis by Hu and Chuah
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Table 4
Job processing power and time at different stages.

{Job, Stage, Machines} Power Use (MW) Processing Time (hour/Job)

{1, 1, 1} 3 40
{1, 1, 2} 4 40
{1, 1, 3} 4 40
{1, 2, 1} 3 60
{1, 2, 2} 3 60
{1, 2, 3} 4 60
{1, 3, 1} 3 40
{1, 3, 2} 4 40
{1, 3, 3} 4 40
{2, 1, 1} 4 40
{2, 1, 2} 3 40
{2, 1, 3} 4 40
{2, 2, 1} 4 60
{2, 2, 2} 5 60
{2, 2, 3} 4 60
{2, 3, 1} 3 40
{2, 3, 2} 4 40
{2, 3, 3} 4 40

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

P
ow

er
(M

W
)

Time-Period (Hours)

Power Demand in Scenario 1

Fig. 5. Results of model 1 in scenario 1 production.
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(2003), the baseload typically is 3e5% of the mean load of a facility.
Without loss of generality, the baseload of the flow shop is assumed
to be 1 MW for keeping the lights on, and running air ventilation
and other basic functions in the facility.

The flow shop model is solved in two production scenarios as
shown in Table 5. Scenario 1 serves as the benchmark in which the
monthly throughput of both jobs is at the regular level. Model 1
allocates the production schedule of Jobs 1 and 2 to meet the
required throughput with minimum energy consumed over twelve
months. In scenario 2, the throughput of each job doubles, and
Model 1 is solved again to obtain the optimal production schedule
at the high throughput level. In Scenario 1, there are two parallel
machines in each stage, and in Scenario 2, three parallel machines
Table 5
Required throughput for each month.

Production Scenario Jobs/WIP Month

1 2 3 4

1 Job 1, Job 2 4 4 5 5
2 Job 1, Job 2 8 8 10 10
are used in each stage because of the high throughput requirement.
In both scenarios, the buffer size of stages 1 and 2 is five, and the
buffer size in the last stage is unlimited.

5.2. Results of flow shop scheduling

Model 1 is coded in AMPLmathematical programming language
using the CPLEX solver running in an Intel(R) Core (TM) i7-8550U
processor, which runs at 1.8 GHz and 24 GB DRAM. The current
optimization model has approximately 674,000 integer decision
variables and over 952,000 constraints during Tp ¼ 8640 h. It takes
about 38 min for the CPLEX solver to find the optimal solution for
Model 1.

Scenario 1 is solved on an hourly basis, and the results of power
demand are plotted in Fig. 5. By summing the hourly demand, the
annual energy use reaches 75,928.5 MWh. It is also observed that
5 6 7 8 9 10 11 12

5 6 6 7 7 6 5 4
10 12 12 14 14 12 10 8
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Table 6
Baseline parameters of WT, PV and BS for model 2.

Notation Value Comment

aPV $3.0M/MW PV capacity cost
aWT $1.5M/MW WT capacity cost
aBS $0.5M/MWh BS capacity cost
fPV 0.0802 PV with 20-year lifetime, and 5% discount rate
fWT 0.0802 WT with 20-year lifetime, and 5% discount rate
fBS 0.1295 BS with 10-year life, and 5% discount rate
Rg $70/MWh Net-metering with flat rate
Rg $70/MWh Off-peak price from 10pm to 6am in TOU tariff
Rg $140/MWh Peak price from 7am to 9pm in TOU tariff
hCS 0.9 Battery charging efficiency
hDS 0.9 Battery discharging efficiency

Table 7
Eight different cases for model 2 in scenario 1 production.

City Case No. Pricing Policy Production

Wellington 1 Net-Metering 1
Wellington 2 TOU 1
Aswan 3 Net-Metering 1
Aswan 4 TOU 1
Yuma 5 Net-Metering 1
Yuma 6 TOU 1
San Francisco 7 Net-Metering 1
San Francisco 8 TOU 1
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the flow shop system experiences two peak demands that occur in
hours 2074 and 6,268, requiring as much as 23.5 MW.

Similarly, Model 1 is solved in Scenario 2 under high throughput
rate. The resulting power demand is presented in Fig. 6. It shows
that the annual energy use reaches 153,720.5 MWh, which is twice
of the use in Scenario 1. This result is expected because of the
doubled throughput rate. However, in Scenario 2, the peak demand
occurs in hours 7032 and 7382 with 41.5 MW, which differs from
the occurrence time in Scenario 1. In Scenario 2, the minimum
power demand of the facility is the same as in Scenario 1, but the
frequency of machines in off state is smaller than in Scenario 1. This
is also expected because in Scenario 2 machines are expected to
stay on line longer to meet the high throughput rate.

5.3. Input data for microgrid sizing

Table 6 lists the values of the input parameters for Model 2. The
baseline capacity cost for PV and WT is $3M/MW and 1.5M/MW,
respectively. The capital recovery factor for PV andWT is computed
by assuming 20 years lifetime with 5% annual discount rate (Fu
et al. 2018a; Stehly et al., 2018). The baseline BS capacity cost is
0.5M/MWh. The BS capital recovery factor is estimated based on
ten years lifetime with 5% discount rate, and the efficiency of bat-
tery charge hCS and discharge hDS is taken as 90% (Fu et al. 2018b).
The nominal grid price is $70/MWh in net-metering. The TOU rate
is $70/MWh in the off-peak period and $140/MWh in the peak
period (Anderson et al., 2017). Fees associated with maintenance
and land lease for equipment placement are factored into the ca-
pacity cost.

Model 2 is solved in four different cities: Wellington, Aswan,
Yuma and San Francisco. For each city, both net-metering and TOU
Scenario Battery Cost

varies from $0.01M/MWh to $0.5M/MWh for all eight cases
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rates are considered, which results in a total of eight cases in
Table 7. In all eight cases, the flow shop operates subject to Scenario
1 throughput, hence the power demand curve in Fig. 5 is taken as
the input forModel 2. For each case, Model 2 is solved repeatedly by
reducing the BS cost from $0.5M/MWh to $0.01M/MWh, while the
capacity costs for PV andWT remain the same. The optimal sizing of
PV, WT and BS are found to minimize the LCOE.
5.4. Optimal microgrid sizing

AMPL mathematical programming language and the CPLEX
solver are used to solveModel 2 which runs in an Intel(R) Core (TM)
i7-8550U processor. The model contains three continuous decision
variables and over 77,762 constraints. It takes about 13.4 min for
the CPLEX solver to find an optimal solution for an instance of
Model 2.

First, Model 2 is solved for Wellington based on the parameters
in Tables 6 and 7 The optimal sizing for WT, PV, BS systems and
LCOE under net metering and TOU rates are depicted in Fig. 7. The
microgrid opts to install 18.05 MW wind capacity under net-
metering, and 21.6 MW wind capacity in TOU rate. There is no PV
installation in both pricing policies. The BS is chosen only when its
cost drops below $0.05M/MWh in net-metering, and $0.1M/MWh
in TOU. It is also found that the capacity of WT and BS in net-
metering is smaller than that in TOU. LCOE in net metering is also
smaller than that in TOU rate, and they are far below $70/MWh in
both cases, indicating that wind power is very competitive in
Wellington with 13.61 m/s at the 80-m turbine height.

Next Model 2 is solved for Aswan corresponding to Cases 3 and
4. Fig. 8 presents the optimal sizing of WT, PV and BS and the LCOE
in net metering and TOU, respectively. In net metering neither WT
nor PV is chosen, rather all the electric power is supplied from the
main grid. As a result, there is no necessity to install the BS as well.
In TOU, wind generation is preferred over PV, and wind capacity of
23.9MWe26MW turns out to be optimal depending on the BS cost.
BS is chosen only if the cost drops below $0.25M/MWh in TOU.
LCOE in net metering equals $70/MWh because of no installation of
WT and PV. The LCOE in TOU varies between $105/MWh and $110/
MWh, smaller than the peak rate of $140/MWh.

NowModel 2 is solved for Yuma corresponding to Cases 5 and 6,
and the results are depicted in Fig. 9. With the capacity cost of
$1.5M/MW for WT and $3M/MW for PV, it is more economical to
use grid power in net-metering. Hence there is no installation of
WT, PV and BS units. In TOU, however, wind generation becomes
competitive, and the optimal WT size varies from 18MW to 21 MW
depending on the BS cost. Meanwhile, BS becomes competitive
when its cost drops below $0.25M/MWh. LCOE in net metering is
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equal to the grid price of $70/MWh because no WT, PV and BS are
installed. LCOE in TOU tariff varies between $107/MWh and $112/
MWh, yet smaller than the peak price of $140/MWh.

Finally, Model 2 is solved for San Francisco corresponding to
Cases 7 and 8, and the results are shown in Fig. 10. In net metering,
the wind generation is preferred with an installed capacity of
19.8 MW. The BS is chosen if its cost drops below $0.05M/MWh.
Under TOU rate the installed wind capacity varies between
25.2 MW and 26.5 MW depending on the BS cost. The BS is chosen
only if its cost drops below $0.25M/MWh. There is no PV installa-
tion in both cases. LCOE in net metering is also smaller than that in
TOU. In net metering the LCOE is $55.0e55.8/MWh, and in TOU it is
within $64.5e68.0/MWh, all below the nominal rate of $70/MWh,
indicating that wind generation is very competitive in San Fran-
cisco given average wind speed of 8.21 m/s.
6. Sensitivity analysis

6.1. The impact of PV cost

Sensitivity analysis is performed by reducing the PV cost from
$3M/MW to $1.5M/MW while keeping other parameters un-
changed. Model 2 is solved again in four cities under net metering
and TOU rates, respectively. Table 8 summarizes the new results in
comparison with the outcomes of Cases 1e8. In the table the unit
for WT and PV is $M/MW, and for LCOE is $/MWh.

It is observed that in net metering, the renewable portfolio of
the microgrid remains the same in Wellington, San Francisco, and
Yuma even if the PV cost is down by 50%, but the solar generation
becomes competitive in Aswan where 7e9 MW PV is installed
along with 22.9 MWh BS capacity. Under TOU rate with the PV cost
of $1.5M/MW, it is found that Aswan and Yuma becomes favorable
to PV generation. In particular, Aswan chooses to install
19.8e21.4 MW PV by displacing the wind generation. Yuma also
gives up wind generation, and opts to install 17.2e20.3 MW PV
depending on the BS cost. Under TOU rate, wind power in
Wellington and San Francisco remains competitive even if the PV
cost is down to $1.5M/MW.
Table 8
Sensitivity analysis for PV cost in four locations.

City BS Cost ($M/MWh) PV Cost ($M/MW) Net Meetin

WT

Wellington 0.50 3 18.1
1.5 18.1

0.10 3 18.1
1.5 18.1

0.01 3 17.4
1.5 17.4

Aswan 0.50 3 0
1.5 0

0.10 3 0
1.5 0

0.01 3 0
1.5 0

Yuma 0.50 3 0
1.5 0

0.10 3 0
1.5 0

0.01 3 0
1.5 0

San Francisco 0.50 3 19.8
1.5 19.8

0.10 3 19.8
1.5 19.8

0.01 3 19.9
1.5 19.9
6.2. The impact of demand response program

This section analyzes the impact of electricity pricing policy on
the sizing of WT, PV and BS units. Assume the net meeting rate is
increased from $70/MWh to $140/MWh. Model 2 is solved for four
cities with WT cost of $1.5M/MW and PV cost of $3M/MW. The
results are summarized in Fig.11 alongwith those from Cases 1, 3, 5,
and 7. A common observation is that the capacity of WT, PV ad BS
increases in all cities with the growth of utility price. For instance,
given $0.01MW/MWh cost of BS system in San Francisco, the WT
size goes up from 19.9 to 27.8 MW, and the BS goes up from 59.9 to
94.MWh. Both Aswan and Yuma do not choose wind and solar
power if the utility price is $70/MWh. However, wind generation is
preferred in both cities if the utility price reaches $140/MWh. The
conclusion is that a higher utility price stimulates the adoption of
onsite renewable generation, which is in alignment with the
intuition.

Model 2 is also solved for four cities under the TOU rate inwhich
the off-peak price increases to $140/MWh between 10pm and 6am,
and the peak price is $210/MWhbetween 7am and 9pm. The results
are shown in Fig.12 in comparison to Cases 2, 4, 6, and 8. A common
observation is that the WT and BS capacity increases with the
escalated TOU rate across four cities. In fact theWTcapacity is more
than doubled in Aswan and Yuma. This experiment clearly in-
dicates that a higher TOU rate in peak hours significantly stimulates
the adoption and use of WT in areas with medium or low wind
speed.
6.3. Microgrid scalability

To examinewhether the microgrid system is scalable, Model 2 is
solved under a higher power demand condition using Scenario 2
production data. The results for four cities are listed in Table 9 in
comparision with those from Scenario 1. Two observations can be
made. First, LCOE in Scenario 2 is equal to or less than the LCOE in
Scenario 1 regardless the BS capacity cost. Second, the WT capacity
in Scenario 2 is less than the twice of the WT size in Scenario 1,
while the BS capacity in both scenarios remain almost the same. In
g with Flat Rate Time-of-Use Rate

PV BS LCOE WT PV BS LCOE

0 0 37 21.6 0.0 0 41
0 0 37 21.6 0.0 0 41
0 0 37 21.6 0.0 0 41
0 0 37 21.6 0.0 0 41
0 66.0 36 20.5 0.0 53.4 39
0 66.0 36 20.5 0.0 53.4 39
0 0 70 23.9 0 0 110
7 0 69 0 19.8 0 99
0 0 70 23.8 0 18 109
7 0 69 0 21 18 96
0 0 70 26 0 82 105
9 22.9 69 0 21.4 51.4 92
0 0 70 18 0 0 112
0 0 70 2.2 17.2 0 108
0 0 70 18 0 18 111
0 0 70 0 19.3 18 106
0 0 70 20.8 0 67.3 108
0 0 70 0 20.3 51.9 102
0 0 56 26.5 0 0 68
0 0 56 26.5 0 0 68
0 0 56 26.3 0 4 68
0 0 56 26.3 0 4 68
0 59.9 55 25.2 0 79.8 65
0 59.9 55 25.2 0 79.8 65
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Wellington, for example, given the BS cost is $0.01M/MWh, the WT
size in Scenario 1 is 17.4 MW and it is 32.7 MW in Scenario 2. The
latter is less than the twice of the former. The BS capacity in
Scenarios 1 and 2 is 66.1 MWh and 68 MWh, respectively, and both
are very similar. Table 10 presents the optimal size of WT, PV and
BS, and the LCOE value for Scenarios 1 and 2 under TOU tariff.



Table 10
Microgrid scalability under TOU tariff.

City BS Cost $0.5M/MWh $0.1M/MWh $0.01M/MWh

Scenario WT PV BS LCOE WT PV BS LCOE WT PV BS LCOE

Welling-ton 1 21.6 0 0 41 21.6 0 0 41 20.5 0 53.4 39
2 37.7 0 0 35 37.4 0 1.67 35 36.1 0 59.7 34

Aswan 1 23.9 0 0 110 23.8 0 18 109 26.0 0 82.0 105
2 70.8 0 0 104 71.9 0 18 103 74.8 0 76.5 101

Yuma 1 18.0 0 0 112 18.0 0 18 111 20.8 0 67.3 108
2 60.3 0 0 108 62.2 0 18 107 64.1 0 57.5 106

San Francisco 1 26.5 0 0 68 26.3 0 4 68 25.2 0 79.8 65
2 48.9 0 0 63 48.3 0 7.18 63 46.1 0 69.5 61

Table 9
Microgrid scalability under net metering program.

City BS Cost $0.5M/MWh $0.1M/MWh $0.01M/MWh

Scenario WT PV BS LCOE WT PV BS LCOE WT PV BS LCOE

Wellington 1 18.1 0 0 37 18.1 0 0 37 17.4 0 66.1 36
2 32.7 0 0 32 32.7 0 0 32 32.5 0 68 32

Aswan 1 0 0 0 70 0 0 0 70 0 0 0 70
2 0 0 0 70 0 0 0 70 0 0 0 70

Yuma 1 0 0 0 70 0 0 0 70 0 0 0 70
2 0 0 0 70 0 0 0 70 0 0 0 70

San Francisco 1 19.8 0 0 56 19.8 0 0 56 19.9 0 59.9 55
2 37.1 0 0 52 37.1 0 0 52 37.4 0 47.2 51
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Similar observations can be made as those in Table 9. Hence the
microgrid is scalable and able to accommodate long-term demand
growth while maintaining a stable LCOE. Another observation is no
significant increase of battery capacity under higher throughput
rate.

6.4. The model limitations

The proposed model has several limitations that can be further
improved. For instance, a constant machine maintenance time is
assumed while in reality the downtime is uncertain depending on
the maintenance policy (i.e. preventive or corrective). Besides, in
the current model, wind, solar and battery units are the primary
energy sources. The microgrid could be expanded to incorporate
other energy forms such as small hydro, geothermal and combined
heat and power. Finally, the scheduling model is based on a flow
shop production with a fixed job sequence. More flexible produc-
tion schemes, such as job shop scheduling and manufacturing cells
are also desirable.

7. Conclusions

This study formulates and solves a two-stage, mixed-integer
programming model for jointly allocating microgrid capacity and
flow shop schedule over a year horizon. In stage 1, the job pro-
cessing time and machines are assigned such that the total energy
use over the year is minimized. In stage 2, a wind- and solar-based
microgrid is sized to meet the hourly load subject to demand re-
sponses. The uniqueness is that the model seamlessly integrates
the operational production plan with the strategic power capacity
decision to achieve the environmental sustainability based on
hourly climate analytics.The proposed model is tested in four lo-
cations with a wide range of climate conditions. To characterize the
intermittent generation, a set of 0.77 million meteorological data
across eleven years are used for estimating the hourly wind and
solar capacity factors. Three managerial insights are derived from
the numerical experiments. First, wind generation is cost-effective
if the wind speed at the tower height exceeds 8 m/s, which has
been demonstrated in Wellington and San Francisco. Second, the
flow shop under time-of-use tariff is more desirable to adopt onsite
wind and solar generation compared to the flat rate tariff. Third,
giving the battery capacity cost of $0.5M/MWh, it is not economi-
cally attractive to the large-scale use of this technology. However,
time-of-use tariff can stimulate the adoption of battery system if its
cost drops to $0.25M/MWh. For future research, the flow shop
scheduling model can be extended to a multi-facility production
network that involves prosumer energy trading market. Incorpo-
rating other demand response programs such as real-time pricing is
also an interesting direction.
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Appendix A. PV and WT Capacity Factor Estimation

A.1. PV Capacity Factor in Northern Hemisphere

The output power of PV system depends on multiple factors,
including weather condition, operating temperature, and PV effi-
ciency and size, among others. Let To, h, A, and It represent the
operating temperature, PV efficiency, panel size, and solar irradi-
ance incident on PV under the clear sky at time t. The actual output
of a PV system considering the weather uncertainty can be esti-
mated as

Pt ¼WthAIt ½1�0:005ðTo �25Þ� ; (A.1)

where Pt is the actual output power of the PV system (unit: Watt) at
time t, and Wt is the weather factor that varies between 0 and 1 to
mimic different weather states (Lave and Kleissl, 2011). The values
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of Wt associated with nine weather states are summarized in
Table A1 where SC is for scattered cloud, PC is for partially cloudy,
and MC is for mostly cloudy.
Table A1
Weather Factor in Different Weather States

No. 1 2 3 4 5 6 7 8 9

State Clear Sky SC PC MC Overcast Rain Fog Storm Snow

Wt 1 0.7 0.5 0.3 0.2 0.1 0.1 0.1 0
The PV capacity factor at time t can be estimated by

ltPV ¼ 1
PcPV � K

XK
k¼1

Pt ; for t ¼ 1;2;…; Tp (A.2)

Where PcPV is the maximum or rated capacity of a PV system, and K
is the number of years under study. In this study the value of K is 11
years.
A.2. Wind Turbine Capacity Factor

A WT system possess four operating phases depending on the
wind speed v against the turbine blades. Let Pw(v) be the instan-
taneous output of a WT at v. Then the cubic power curve is given as
(Thiringer and Linders, 1993).

PwðvÞ¼

8>><
>>:

0 v< vc; v> vs

PcWT ðv=vrÞ3 vc � v � vr

PcWT vr � v � vs

(A.3)

where vc, vr and vs stand for the cut-in, the rated, and the cut-off
speed, respectively. Though variations may exist, for modern WT
systems, vc ¼ 3 m/s, vr ¼ 12 m/s, and vs ¼ 25 m/s. Note PcWT is the
rated WT capacity. Wind speed at a particular time can be fit with
Weil distribution (Bilir et al., 2015). The probability density function
and the distribution function are given below

fwðvÞ¼ k
c

�v
c

�k�1
e�ðv=cÞk ; for v � 0 (A.4)

FwðvÞ¼ e�ðv=cÞk ; for v � 0 (A.5)

where c and k are the scale and shape parameters, respectively.
Then the WT capacity factor at time t can be estimated as (Novoa
and Jin, 2011)

ltWT ¼
E½PwðVÞ�
PcWT

¼ 1
v3r

ðvr
vc

v3fwðvÞdvþ ðFwðvsÞ� FwðvrÞÞ ; (A.6)

where V is the random wind speed and v is its realization. The
values of ltPV and ltWT always fall in the range of [0, 1].
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