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ABSTRACT

Predicting student problem-solving strategies is a complex
problem but one that can significantly impact automated
instruction systems since they can adapt or personalize the
system to suit the learner. While for small datasets, learn-
ing experts may be able to manually analyze data to infer
student strategies, for large datasets, this approach is in-
feasible. We develop a Machine Learning model to predict
strategies from student data with discrete interaction steps.
Deep Neural Network (DNN) based methods such as LSTMs
are a natural fit for this task since the goal is to model se-
quential data. However, purely LSTM-based methods often
have long convergence times for large datasets and like sev-
eral other DNN-based methods have the inherent problem
of overfitting the data. To address these issues, we develop a
Neuro-symbolic approach for strategy prediction, namely a
model that combines strengths of symbolic Al (that can en-
code domain knowledge) with DNNs. Specifically, we encode
relationships in the data using Markov Logic and use sym-
metries among these relationships to train an LSTM more
efficiently. In particular, we use an importance sampling
approach where we sample the training data such that for
clusters/groups of symmetrical instances (instances where
the strategies are likely to be symmetric), we only pick rep-
resentative samples for training the model instead of using
the whole group. Further, since some groups may contain
more diverse strategies than the others, we adapt the im-
portance weights based on previously observed samples. We
run a detailed empirical evaluation on the publicly available
KDD EDM challenge datasets from Mathia where we show
that by exploiting symmetries, we can learn a model that is
both scalable and accurate.

1. INTRODUCTION

Intelligent Tutoring Systems (ITSs) [31] and more broadly
adaptive instructional systems (AISS)1 help a diverse pop-

The main difference between Intelligent Tutoring Systems
and Adaptive Instructional Systems at least in our view is
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ulation of students by adapting instruction to each learner
thus accounting for different learning abilities, learning styles
and education goals. Such adaptation leads to more engag-
ing and effective learning. However, in order to build effec-
tive I'TSs, it is important to understand how students learn
and what learning and instructional strategies are most ef-
fective for whom and under what conditions. Specifically,
students can follow several different strategies to learn the
same content. For example, consider a simple math problem
about solving a linear system of equations where z+y+z = 9
x =y and y = z. One strategy is to perform systematic sub-
stitutions till there is an equation in terms of one variable
and simply solve for that variable. However, another strat-
egy could be to use transitivity to see that all three variables
have the same value and use this to solve the problem. De-
pending upon the way a student thinks, one strategy could
be easier or harder to grasp compared to the other. Thus,
understanding the various ways in which students approach
an instructional task will not only further our understanding
of how learners learn, e.g., it may help identify the most ef-
fective learning strategies employed by top performers, but
it will also enable I'TSs to incorporate knowledge about these
strategies in order to adapt appropriately and help students
maximize their learning gains.

A student’s choice of strategy is a complex function depen-
dent on many factors such as experience with similar prob-
lems, general expertise in the topic, other cognitive abili-
ties, etc. Human experts are exploring all these factors and
how they are related to strategy use and learning. However,
human experts are expensive and limited in the ability to
analyze large data from thousands, tens of thousands, or
millions of students. Advanced data science methods and
access to large computing infrastructure such as the cloud
offer new possibilities to analyze in-depth and at scale such
large learner datasets with the promise of helping us dis-
cover, document, and benefit from the diversity of learning.

Indeed, with the growth of both data and advanced Machine
Learning methods such as Deep Neural Networks (DNNs),
we are able to successfully solve several challenging prob-
lems in domains such as natural language understanding [25]
and visual processing [8]. However, the ability of DNNs
to learn complex functions and representations comes at a
cost. Specifically, DNNs require significant computational

that the former offer full-adaptivity, i.e., both micro- and
macro-adaptivity, whereas the latter can offer any type, e.g.,
just macro-adaptivity.



resources to scale up to large datasets and at the same time,
as data increases, they may not always yield expected re-
sults since they have a tendency to owverfit the data. That
is, they work well on the data on which they were trained
but their generalization performance on unseen data severely
degrades. A paradigm that is gaining significant attention
in the AI/Machine Learning research community is Neuro-
symbolic Al [7] where we augment DNNs with symbolic
models to regularize the DNN. This helps in improving both
scalability and generalization by allowing DNNs to learn
from smaller datasets with higher accuracy. In this paper,
we apply a Neuro-symbolic model to predict student strate-
gies from structured student-interaction data.

Our model works on student data where the student inter-
acts with an ITS in discrete steps. The strategy prediction
task in this case can be formulated as a sequence learning
problem where we want to learn to predict the sequence of
steps a student is likely to follow for a given problem. Know-
ing this sequence will provide the ITS prior information that
it can use to adapt, e.g., by better tailoring the available
hints and feedback. Sequence learning is applicable to many
tasks in general with one of the most popular applications
being machine translation where the goal is to translate a
sequence of words from one language to another language.
A widely used traditional approach that has been applied
in sequence learning is Hidden Markov Models (HMMs).
However, this assumes a one-step dependency where each
step depends only upon the prior step. Student strategies
in problem solving though are much more complex where a
student action in one step can influence several downstream
steps. Long Short-Term Memory (LSTMs) [11] are DNNs
that can model such long-term dependencies in sequences.
However, LSTMs are known to take an extremely long time
to train for large datasets [39]. To address this, we propose
a Neuro-symbolic model where we combine the semantics of
a symbolic AT model called Markov Logic [9] with LSTMs.
Markov Logic encodes domain-knowledge using first-order
logic formulas. The formulas establish relationships in the
data that can be described in the form of a graph structure.
Our approach learns symmetries between instances based
on the graph structure and then uses these symmetries to
train an LSTM more efficiently. Specifically, we use impor-
tance sampling to choose a subset of training instances to
make learning more efficient. While importance sampling-
based learning in DNNs has been used previously to scale
up training [1, 13, 14], most existing approaches determine
the importance of a training instance by estimating the gra-
dient norm which is computationally expensive [14]. In our
case, we determine importance of a training data instance
based on symmetries in the MLN graph. Specifically, the
idea is that if several strategies are likely to be symmetrical
then we can learn more efficiently from a smaller subset of
strategies instead of the whole training set. To do this, we
learn an embedding such that problem instances which have
symmetries in the graph have similar vector representations
in the embedding. We then cluster the embedding vectors
and sample instances from each cluster to train the model.
The idea is to sample a subset with same overall distribution
of strategies as the original dataset. That is, we end up with
a smaller dataset the preserves much if not all the informa-
tion in the original dataset. However, since the clustering is
approximate, we may end up with some clusters where the

strategies are likely to be more diverse than others. There-
fore, we adaptively train the model by updating importance
weights for the clusters in iteration ¢+ 1 based on the trained
model in iteration t. Specifically, we sample more data in-
stances from a cluster in ¢ + 1 when the model trained in
iteration ¢ has smaller accuracy for instances sampled from
that cluster.

We evaluate our approach on the publicly available KDD
EDM challenge datasets [34]. We compare our approach
with HMMs and pure LSTM methods that do not use sym-
metries in training the data and show that our proposed
Neuro-symbolic model is more accurate and scalable, where
we obtain high prediction accuracy by focusing on a small
fraction of the training data.

2. RELATED WORK

Ritter et al. [30] provide a comprehensive survey on different
approaches used to identify student strategies. Model trac-
ing based tutors [4] have been previously used to identify
strategies. In such cases, strategies may be pre-specified
and the tutor can recognize correct and incorrect strate-
gies. Model-tracing based methods have also been adapted
to recognize new strategies [29]. Sequence learning has been
widely used for strategy identification. Specifically, in Open
Ended Learning Environments such as Betty’s brain [23],
student activities were captured in logs and sequence pat-
tern mining methods was used on these logs to extract ac-
tion sequences which in principle are similar to sequences
that we consider in this paper. Different types of strategies
based on these sequences were analyzed in multiple stud-
ies [16, 17, 18] which also mapped these sequences to perfor-
mances to compare and analyze strategies followed by high
performers to those followed by low performers. Sequence
learning has also been used to extract strategies for self-
regulated learning [3]. More recently, a study performed
large-scale sequence pattern mining in MOOCs platform to
analyze activity sequences of learners [37]. Further, in the
context of conversational tutors, tutorial dialogues can be
treated as sequence of actions based on language-as-action
theory [2, 33]. These sequences which are akin to strategies
are mapped into a taxonomy by education experts [26]. Ap-
proaches have been developed to recognize these sequences
from natural language interactions to help automated tutors
understand successful strategies to guide a student. In par-
ticular, sequence learning methods have been used for this
task as well [32, 24]. Symbolic models such as Markov Logic
have also been applied for recognizing these sequences us-
ing joint inference [36]. In general, Neuro-symbolic models
have gained prominence recently and have found applica-
tions in problems that have graph structure. In [22], the
authors provide a detailed survey of Neuro-symbolic mod-
els using graph neural networks. In complex problems such
as visual question answering that require connections be-
tween language and image processing, Neuro-symbolic mod-
els have performed better than pure neural network based
methods [38]. Our proposed application in this paper is
further validation that Neuro-symbolic Al is a promising di-
rection to solve complex problems.

3. SEQUENCE LEARNING MODELS

Student strategies can be defined in different ways. In par-
ticular, the definition of what constitutes a strategy also



depends upon the type of interaction the student has with
the AIS. In our case, we only consider structured interac-
tions with discrete steps. Therefore, we define the student
strategy as a function of the sequence of steps in the in-
teraction. Each step is characterized by the central concept
that is utilized to solve that specific step, i.e., the knowledge
component [20] (KC) used in that step. Therefore, we define
strategy in our case as a sequence of KCs used by a student
in a problem solving session. Note that, this formulation of
strategy as a sequence of discrete components is similar to
the definitions used in prior work [30]. Formally,

DEFINITION 1. Given a student s and a problem p, we
define the strategy as Xs,p = Kél,z e Kg;), where Kéz,)) is the
knowledge-component that s uses to solve the i-th discrete
step in p.

We can now formulate a learning problem as follows. Given
training data, {Xs, p, };2 j—1, where n is the number of stu-
dents and m; is the number of problems solved by the i-th
student, we learn a model P such that for a student s’ and
problem p’, P generates a sequence of knowledge compo-
nents Ki,l) P ng ,. Note that students sometimes use
more than one KC per step, in this case, we just unroll these
multiple KCs by repeating the step with each of the KCs.
Therefore, for the rest of this paper, we treat both multiple
KCs in a step and single KC steps without distinguishing
them. Also, to keep notation simpler, instead of adding the
subscripts s;, p; each time, we denote the training input and
output pairs as {X;,yi} ;.

3.1 HMM Model

A popular model that is often used to learn from sequential
data is the Hidden Markov Model (HMM), where we assume
that every time-step is dependent on the previous time-step.
HMMs are generative models represented using a dynamic
Bayesian network. Each step in the time series is encoded by
a hidden-state variable in the Bayesian network. We connect
the hidden node corresponding to time-step j to the hidden
node j+1 in the network and the observed feature at step j is
also connected to the hidden node at step j. In our case, we
encode the HMM as follows. Let O; be the random variable
representing the knowledge component at step ¢t. We encode
the knowledge component at step t as a vector Oy (the value
of the random variable O;) using a one-hot encoding. Let
Z; be the hidden-state variable corresponding to step t. The
emission probability is given by P(O¢|Z;) and the transition
probability is given by P(Z:|Z¢—1), i.e., the hidden state at
time ¢ depends only upon the hidden state at time ¢t —1. The
transition matrix is a k X k matrix that specifies transition
probabilities to a state at time t given any other state at
time ¢ — 1. Here, k£ which specifies the number of hidden
states is pre-defined in the model.

The learning task in the HMM is to estimate the parameters
of the HMM, namely, the transition matrix and the param-
eters of the emission probability distributions. Note that we
need to estimate conditional probability conditioned on each
possible state of the latent variable. To do this, we assume a
Gaussian distribution represents the probability of each hid-
den state and the emission probabilities are also Gaussian
distributions. Using the EM (Expectation Maximization)

algorithm, we compute the parameters of the distributions
using Max-likelihood estimation which has guarantees on
convergence to a local optima. For predicting the strategy,
we sample a KC at the first time step. Then, given a KC
at any time step ¢, we generate the KC at time step ¢ + 1
as follows. Based on the observation, i.e., KC at step t, we
predict an equivalent hidden state representation at step ¢
and using the transition probability matrix, we sample the
hidden state at time step ¢t + 1. We then predict the KC at
time step ¢ 4+ 1 using the emission probability.

3.2 LSTM Model

One of the problems with HMMs is that they have restric-
tive assumptions, i.e., each step depends only on the pre-
vious step. Ideally we would like to consider the student’s
activity across several steps to determine what his/her next
step in the strategy is likely to be. For instance, suppose
we have a student who works out a problem using a divide-
and-conquer strategy, then there may be several small sub-
problems that the student solves before combining them to-
gether. In this case, a HMM model that simply looks at the
previous step performed by a student may be able to capture
the local strategy but will typically be unable to infer the
global strategy since the dependencies may run across sev-
eral steps. Therefore, to infer such advanced strategies, we
need a more sophisticated model that captures longer-term
dependencies. Long Short Term Memory (LSTMs) [11] are
a variant of recurrent neural networks that have been used
successfully for several problems like modeling text data.
In particular, LSTMs can exploit longer range dependen-
cies across words/sentences to learn a latent representation
of sentences/documents. In our case, we apply LSTMs to
learn a latent representation of the strategy.

Unlike HMMs, LSTMs are discriminative models that pre-
dict an output for step t based on the features observed
in step t as well as a hidden state vector that summarizes
the information up to step t — 1. Note that a bi-directional
LSTM can also consider information in steps succeeding t.
To learn an LSTM for our task, we construct a tensor T
€ R™*™*k where m is the number of training instances, n
is the number of steps and k is the dimensionality of fea-
tures representing each training instance (s, p). Note that
we can represent variable-length strategies using a special
Start and Stop symbol in the LSTM to denote the start and
end of strategies. The output of the LSTM for the ¢-th step
is a vector representing the KC at step ¢. The final hidden
state vector summarizes information for the full strategy for
an input instance.

4. NEURO-SYMBOLIC MODEL

Though an LSTM can be directly used to learn a model
for strategy prediction, it has certain limitations. LSTMs
are known to converge very slowly for large datasets [39].
Further, LSTMs treat each instance in the training data
as i.i.d (independent and identically distributed) which is
limiting when there are underlying relationships among the
instances. For example, problems are related to each other if
solved by the same student, KCs used by the same student in
similar problems are related to each other, etc. We address
these limitations combining LSTMs with a symbolic model.

Neuro-symbolic Al [7], namely, combining symbolic Al mod-



els with DNNs has gained significant attention in tasks such
as Visual Question Answering [38]. Neuro-symbolic models
augment deep learning with knowledge from symbolic mod-
els. This can help learn deep models more efficiently even
with limited labeled data [35]. Further, augmenting DNNs
with symbolic models also controls overfitting. Specifically,
since DNNs are highly expressive models, they are known to
sometimes overfit the training data, particularly when the
training data is non-diverse and in many problems such as
image classification, data augmentation methods [5] seek to
increase data diversity. In our Neuro-symbolic approach, we
represent relationships in our dataset using the language of
Markov Logic [9]. Based on symmetries in the relationships,
we sample a smaller, more diverse training dataset to train

the LSTM efficiently.

4.1 Markov Logic

Markov Logic [9] is a symbolic AI model designed as a
representation and reasoning language for relational data.
Markov Logic specifies relationships using the language of
first-order logic. Each formula in Markov logic specifies a
logical relationship using variables which can be substituted
by symbols (also called constants or objects) from the data.

For example, we can model the fact that if two problems are
similar then they require the same KC as a formula such as
KC(p1,k) A Similar(pi,p2) = KC(p2,k). We can substitute
this general formula using symbols in the data, say two prob-
lems P; and P, and KC K to obtain the formula, KC(Py, K)
A Similar(Pi, P») = KC(P2, K). The formula that is sub-
stituted with the symbols is called a ground-formula us-
ing terminology from first-order logic. The predicates that
are substituted with symbols are called ground-atoms, e.g.,
KC(P1, K) is a ground atom of predicate KC.

A Markov Logic Network (MLN) can be represented as a
graph where the relationship encoded in each ground for-
mula is represented by a clique in the graph. A clique is
activated if the logical relationship specified by the ground-
formula corresponding to that clique is evaluated to True in
the data. For instance, in the above example, the clique cor-
responding to KC (P1, K), Similar (Pi, P») and KC (P2, K)
is activated if the data asserts the logical relation that prob-
lems P and P> use KC K and problem P; is similar to
P>. In MLN semantics, each activated clique represents a
function parameterized by a weight attached to the ground
formula. The full graph represents an undirected probabilis-
tic graphical model [21]. For large datasets in real-world
applications such as ours, the number of ground-formulas
become very large resulting in an extremely large graph.
In the standard use of MLNs, we learn parameters for the
MLN based on Max-Likelihood Estimation (MLE). How-
ever, computing the gradient for MLE is infeasible when the
graph is constructed from large datasets such as ours. Note
that though, parameters for the MLN are required only if
we want to use the MLN directly for probabilistic inference,
i.e., when we want to answer queries using the MLN. While
this is certainly desirable, it is well-known that MLN infer-
ence/learning algorithms cannot scale up to large datasets
and perform extremely poorly in such cases [15]. Therefore,
in our case, we make a simplifying assumption in the MLN
that all the parameters for the graphical model have uniform
weights. Thus, in our Neuro-symbolic model, Markov Logic

Figure 1: Illustrating symmetries in the MLN object graph.
The graph represents symbols/objects in the MLN and the
edges represent connection between variables, i.e., if objects
appear together in a formula, they are connected in the
graph. In (a) student S; can be exchanged with student
S2 and problem P; with P to get an isomorphic graph. In
(b) if the KCs K; and K> are similar, then the exchange is
approximate.

is only used as a language for knowledge representation (KR)
and not for inference/learning. That is, formulas specify re-
lationships/connections in the MLN graph between differ-
ent entities in our dataset (e.g. problems, students, etc.)
while the actual learning and predictions are performed by
an LSTM model. Note that in theory, other forms of KR
such as Bayesian networks, arithmetic circuits or probabilis-
tic programs can be used. However, the benefit of MLNs
is that they specify relationships over large data using com-
pact first-order formulas. Next, we describe the formulas in
our MLN followed by how we learn symmetries in the graph
to train the LSTM more efficiently.

4.1.1 MLN Structure
Our first set of MLN formulas relates the KCs to the problem
and the student solving the problem.

Student(s) A Problem(p) A PHierarchy(p, h) = KC(s,p, t, k)

where s is a variable that denotes a student, p denotes a
problem, t is a step, k denotes a knowledge component and h
denotes the problem hierarchy which is the hierarchy of cur-
riculum levels containing the problem, and PHierarchy(p,h)
relates to the problem p in the hierarchy h where the hi-
erarchy contains the curriculum unit name and the section
name that the problem belongs to (e.g. Unit LCM, Section
LCM-2).

Next, we encode the homophily property where the same

KC is likely to be reused by a student for problems that are

related to each other through a common problem hierarchy.
Student(s) A Problem(pi) A Problem(p2)A
PHierarchy(pi, h) A PHierarchy(ps, h) AKC(s,p1,t1,k)
= KC(S,pQ, ta, k)



Next, we encode transitive dependencies between KCs by
relating KCs that occur close to each other. Specifically, this
encodes local dependencies across KCs (similar to a HMM
model).

KC(s,p,t — 1,k1) ANKC(s,p,t, k2)
= KC(s,p,t + 1,k3)

4.2 Embeddings

Given the formulas, we can define the MLN object graph
by connecting objects that appear in the same ground for-
mula. For instance, consider an example MLN object graph
shown in Fig. 1 (a) with two students (S1, S2), two prob-
lems (Pi, P») and three knowledge components (K1, Ko,
K3). The edges indicate that in the graph corresponding
to the MLN, there is a connection that relates the corre-
sponding symbols. Note that S; works on P; and Sz works
on P, where P; and P, are related since they correspond
to the same topic. Suppose both S1 and S2 use the same
strategy, K1, K2, K3, then, we can exchange S1 with S2 and
P, with P» to get an isomorphic graph structure. Now, sup-
pose S2 uses a strategy K1, K53, K3 that is slightly different
from the strategy of Si, say, K1, K5, K3, then we obtain a
graph structure shown in Fig. 1 (b), where the new connec-
tions are shown by dotted lines. Now, exchanging S; with
Sy and P; with P, will not give us a graph structure that
is isomorphic to the original graph. However, suppose that
the knowledge components K5 and K4 are similar to each
other, i.e., there are many other problem instances where
students use the KCs K5 and K% interchangeably, then ex-
changing Si, P with Sz, P» will yield an approximation
that is still quite similar to the original graph. This means
that using (S1, P1), it is reasonable to obtain a model that
can predict the strategy for (S2, P») and vice-versa. The
set {(S1, P1), (S2, P2)} is therefore an equivalence class con-
sisting of approximately symmetrical instances. In general,
if we group together approximately symmetrical instances
in our training data, then we can train our LSTM model
with diverse instances by sampling these groups since each
group represents data that is likely to have a similar effect
in training the model. We do this by learning embeddings
for nodes in the graph structure.

Unfortunately, the size of the graph becomes very large as
we increase dataset size and it is practically infeasible to
construct the graph structure explicitly. Though several ap-
proaches have been developed that identify symmetries in
MLNs using graph automorphism groups [27] using tools
such as saucy [6], these approaches generally work directly
on the graph structure. Further, it is possible to infer sym-
metries in graphs using other neural-network based methods
such as Node2Vec [10] and Graph Convolutional Networks
(GCNs) [19]. However, all these approaches work on general
graphs and considering an MLN graph as a general graph
is problematic since the graph becomes very large even for
smallish datasets. This makes it hard to apply such ap-
proaches to our strategy identification problem since we ex-
pect to have an extremely large graph. Therefore, we instead
use a recent, much more scalable Markov Logic graph spe-
cific approach called Obj2vec [12] that detects symmetries
without explicitly constructing the graph. This approach
is based on identifying approximate symmetries based on
neighborhoods of a node using a neural network without

constructing the actual graph.

4.2.1 Obj2Vec

Obj2Vec is inspired by skip-gram models [25] which are
widely used to learn word embeddings. In skip-gram models,
we learn an embedding for a word based on its context, i.e.,
the neighboring words that it typically appears with in text
documents. For words which have similar contexts, we learn
similar vector representations. Word2vec [25] is arguably
the most popular skip-gram model, where we train a neural
network for learning the embedding. Specifically, for each
word w as input, the neural network learns to predict the
context of w. Typically, The inputs and context words are
encoded as one-hot vectors. The hidden layer in the neural
network typically has a much smaller number of dimensions
as compared to the input/output layers. The hidden-layer
learns a dense, low-dimensional embedding, where similar
words have similar vector representations. This is because,
words that are similar typically have similar contexts in text
documents and therefore the neural network learns a similar
representation in the hidden layer for such words.

Obj2Vec extends the idea of word embeddings to MLNs.
Specifically, recall that each ground formula of an MLN
represents a clique in the MLN graph. For each activated
ground formula, i.e., formula that represents a relationship
that is supported by the data, we predict a symbol/object
in the formula from other symbols/objects in that same for-
mula. For example, suppose our data shows that Alice and
Bob use the knowledge component Slope-Intercept across
several problems. Then, all ground formulas that contain
either Alice or Bob and the KC Slope-Intercept are acti-
vated. In this case, both Alice and Bob are said to share a
common context. Therefore, we predict the symbol Slope-
Intercept from both Alice and Bob. That is, we have an
autoencoder neural network where the input is a one-hot en-
coding of Alice (or Bob) and the output is a one-hot encod-
ing of Slope-Intercept. The neural network must therefore
learn a common representation for both Alice and Bob since
it needs to make similar predictions for both. Thus, suppose
the hidden-vector representation (or embedding) for Alice is
VAtice and that for Bob is vpob, then vajice = vBop. Note that
the embedding defines a continuous approximation of sym-
metries in relationships specified in the MLN graph. That is,
the distance between the vectors vajice and vpe, quantifies
the symmetry between Alice and Bob based on relationships
specified in the data.

4.3 Scalable Learning using Symmetries

The embedding vectors from Obj2Vec encodes relational
knowledge from the MLN graph. Given the embedding vec-
tors, we now train an LSTM to predict the student’s strat-
egy. Specifically, let our input instances be x; ... xn, where
each x; consists of embeddings for a specific student s solv-
ing problem p, and the outputs are y1 ... y~, where y; is a
sequence of KCs used by the student s to solve the problem
p. The LSTM training objective is given by,

6 = argn%nN;E(d)(Xi’e)’yi) (1)

where 0" and 0 represent the parameters of the LSTM, L is
a loss function and ¥(x;,0) is the sequence of KCs output



by the LSTM parameterized by 6 for input x;. In general, a
stochastic gradient descent (SGD) procedure can be used to
minimize the objective in Eq. (1). In SGD, we sample the
training instances to approximate the gradient. Typically,
SGD assumes that all training instances are equally impor-
tant, and therefore samples them uniformly. That is, the
probability of sampling a specific instance in the training
data is equal to p :%. However, this approach is expen-
sive particularly if we repeatedly choose training instances
that are similar to each other. For example, suppose all the
training instances that we sample are likely to encode similar
strategies, then our model may take a long time to under-
stand diverse strategies. Further, since the underlying data
encodes symmetries (from the MLN graph), the information
in one training instance may be very similar to the informa-
tion in another symmetrical instance. Therefore, we force
the model to learn from instances with diverse relationships
by imposing an importance distribution over the training
data. Specifically, training instances with larger importance
are more likely to be chosen as compared to training in-
stances with smaller importance.

In general, to focus the training on more important data in-
stances, we can modify the sampling distribution such that
each instance is sampled with a non-uniform probability.
This approach has been explored in prior work, where we
scale up training by replacing the uniform distribution over
the training instances with an importance distribution that
quantifies how important a specific example is for the train-
ing process [14]. Previous work such as [14, 1, 13], have
focused mainly on approximating importance as a function
of the gradient norm which is hard to compute exactly. In
[14], therefore, the authors propose an approximation to the
gradient norm and use this to target important training ex-
amples. The focus in these approaches is to target the train-
ing examples that are likely to induce changes when updat-
ing the model parameters during backpropagation which can
be shown to translate to a reduced variance in the gradient
estimates. However, in our case, we have more informa-
tion apriori in the embeddings to identify importance of a
training example in terms of their relationships. Specifically,
recall that the embeddings are based on symmetries in the
MLN-graph which encodes relational knowledge. Thus, if
two embeddings are similar, then it means that they share
similar relationships. For example, if two student embed-
dings are similar, then it is likely that for the problems both
students have solved, their strategies use similar KCs. Thus,
using embedding-similarities, our model focuses the training
effort on instances that encode diverse relationships.

4.3.1 Adaptive Importance Weighting

Given the instances {x;, yi}lNzl, we cluster the instances us-
ing K-Means clustering. Each instance internally has two
components, the student embedding as well as the problem
embedding. Since we want to exploit symmetries in both,
we cluster them along both dimensions. Let {Ci”};gl and
{C{?172 denote the clusters found by K-Means using the
student embeddings and the problem embeddings respec-
tively, where n; and ne are the number of clusters. We
now sample from each cluster to obtain a reduced set of
training examples. For each cluster, we assign an impor-
tance weight to quantify how often we need to sample that
cluster. Let ¢; represent the importance weight of the i-th
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Figure 2: Schematic illustration of our proposed approach.
We learn embeddings based on symmetries in the relational
data. We then learn a one-to-many LSTM to map an in-
put instance to a sequence that represents the strategy by
focusing the training on a sample of the data that reflects
symmetries in the data.

cluster. Ideally, we want to quantify ¢; based on the symme-
tries encoded within the cluster. Specifically, if the cluster
contains highly symmetric instances, then we require fewer
training examples from the cluster. On the other hand, if
the cluster contains diverse instances, we require more train-
ing samples from that cluster. One way to quantify this is
using traditional clustering metrics such as within-cluster
sum of squared errors (SSE) to measure cohesion within the
cluster. That is, if the embedding vectors are close to each
other within a cluster which implies a small SSE, then it is
indicative that we may need fewer samples from that clus-
ter. However, this approach may not necessarily yield the
best results since both the embeddings and the clustering are
simply approximations to true symmetries in strategies. For
example, suppose the embedding vector for Alice is close to
the vector for Bob, this means that considering all problems,
Alice and Bob are approximately symmetrical. Similarly, if
the vector for problem P; is close to problem Ps, this means
considering all students, P; and P> are approximately sim-
ilar. However, this may not always necessarily imply that
the strategy followed by Alice for problem P; is guaran-
teed to be symmetrical to the strategy followed by Bob for
P,. Therefore, we use an adaptive approach to progressively
learn these symmetries.

For training the model, from each cluster, we may require
varying number of samples. That is, from clusters represent-
ing less symmetrical instances, we may require more samples
while from other clusters that contain more symmetrical in-
stances, we may require fewer samples. To account for this,
we adapt the sampling as follows. We define the initial im-
portance weight for the i-th cluster as qgo) = %, where K is

the number of clusters. Let ) be the parameters learned
by the LSTM in iteration using samples from the clusters
in iteration j. In iteration j + 1, we update the importance



weight for the clusters as,
1 m
j+1 i j i
a7t = 3w, 00y, (2)
k=1

where xgj) is a training example that consists of a randomly
sampled instance from the i-th cluster. For example, if we
are updating the i-th student cluster, x](;) is a randomly sam-
pled student s from this cluster combined with a problem
p, where p is a problem that has been solved by s. Thus, if
the LSTM in iteration j effectively encodes the symmetries
in the i-th cluster, then the loss in Eq. (2) is likely to be
small. Thus, quH) is small. On the other hand, if qEHl) is
large, then we need more samples from the i-th cluster since
the LSTM trained using the samples collected until iteration
j does not effectively model the instances in the i-th clus-
ter. The importance weights for the i-th cluster adaptively
change from ngo) qil) .. ql(T). Note that each iteration adds
training data to the LSTM and thus effectively increases
training time. However, we do not begin the training from
scratch in each iteration. Specifically, for iteration j + 1, we
consider the LSTM learned until iteration j as the starting
point. This is similar to pre-training that is common in deep
network training. For iteration j + 1, the 89) represents the
pre-trained parameters of the LSTM. We stop adapting the
weights after a fixed number of iterations depending based
on a cutoff for the training time. Note that more advanced
convergence criteria can be explored here which is a part of
our future work. To summarize, Fig. 2 shows a schematic
representation of our overall model.

5. EXPERIMENTS

5.1 Setup

We evaluate our approach on the publicly available KDD
EDM challenge datasets, Algebra 2008, 2009 and Bridge
to Algebra 2008, 2009 [34] which consists of data collected
from the Mathia platform. Each instance consists of several
discrete steps and each step is mapped to a knowledge com-
ponent which is used to solve that step. The statistics for the
two datasets are shown in Table 1. As shown in the table,
these datasets are quite large with over 850K and 1.6M in-
stances respectively. All our experiments were performed on
a 64GB memory machine with a Nvidia GPU and an Intel
Core-19 processor. For computing accuracy, in each input
instance, we compute the percentage of total steps where
the true KC matches with the predicted KC. The overall
accuracy is computed as the average accuracy across all in-
stances. To measure variance of our estimates, for each of
the results shown, we run the experiments 10 times and com-
pute the mean accuracy and the standard deviation of the
accuracy. Next, we describe the implementation of different
approaches that we use in our experiments. The code and
data for our implementations are available here?.

5.1.1 Hidden Markov Model

We trained a Gaussian Hidden Markov Model (we refer to
this as HMM) using the sklearn package in python. We set the
number of hidden states to 100 and initialized the Gaussian
emission probabilities with a full covariance matrix so that
it has flexibility to generate varied sequences. We trained
the model using the EM algorithm.

https://github.com/anupshakya07/SSPM

Dataset Total Instances No. of Students No. of Problems No. of unique KCs|
algebra_2008_2009 838728 3310 188368 541
bridge_to_algebra_2008_2009 1624951 6043 52754 933

Table 1: Details of the dataset.

Tearning-rate Optimizer Batch-size Dropout-rate LSTM (hidden state) Obj2Vec embedding
0.001 Adam with CCE-Loss____100 0.3

200 dimensions 300 dimensions

Table 2: Parameters for training.

5.1.2 LSTM and Neuro-symbolic Models

We implemented a one-to-many LSTM using TensorFlow
and Keras. For the pure (or vanilla) LSTM, we encode
inputs as one-hot-encoded vectors representing the studen-
tID, problemHierarchy and problemName. For the Neuro-
symbolic model, we vectorize each instance, using a publicly
available implementation of Obj2Vec [12] using the MLN
formulas as specified in the previous section. Obj2Vec in-
ternally uses Gensim [28] to compute the embeddings for
each symbol in the MLN. We use the embedding vectors of
studentID, problemHierarchy and problemName as input to
the LSTM encoder. Special Start and End tokens are used
in the decoder section of the LSTM to identify the start and
end of a prediction. The decoder unit predicts the KC at
each time step, until an End token is found. To train the
models in a feasible manner, we used a timeout of 3 hours.
Within this timeout period, it was infeasible to use the all
the instances since the training for the LSTM did not con-
verge. Therefore, we randomly sampled instances to train
our model within the specified limit. We refer to the trained
models using random sampling as LSTM-Random and LSTM-
NS-Random for the vanilla LSTM and the Neuro-symbolic
models respectively. We further implemented a stratified-
sampling/group based training on students and problems.
For sampling by student, we selected N students from the
student pool and for each selected student, we sampled M
problems solved by that student. For sampling by problems,
we selected N problems from the problem pool and sampled
M students who have solved those problems. By increasing
values of M and N, we progressively increased the instances
as we show later in the results section. We refer to this as
LSTM-NS-NaiveGroup.

5.1.3 Adaptive Training

We implemented K-Means clustering to cluster the data
based on the embeddings and sampled from these clusters.
We implemented a non-adaptive training model as follows.
We independently clustered the students and the problems
to generate C; student clusters and Cs problem clusters. We
then sampled one student from each student cluster and one
problem from each problem cluster nearest to the cluster
centers to create a training set of at most C1 * C'2 instances
that effectively covers all instances in our training data. We
increase the number of clusters progressively starting from
100 student clusters and 1000 problem clusters to increase
the number of instances in training as we show later in our
results. We refer to this approach as LSTM-NS-Clustered.
For our proposed adaptive weighting approach, we sample
each cluster according to an importance weight. In each it-
eration, we update the importance weight of a cluster based
on predictions made on a randomly sampled set of instances
that were not used in training from that cluster. Here, we
used 100 student clusters and 1000 problem clusters and
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Figure 3: Accuracy results, the shaded portions show the standard deviation and the mean accuracy is plotted in the graphs.
(a)-(d) corresponds to Bridge to Algebra 2008, 2009 results and (e)-(h) corresponds to Algebra 2008, 2009 results.



changed the importance weights of the clusters adaptively.
We refer to this approach as LSTM-NS-Adaptive. The pa-
rameters for training our models are shown in Table 2.

5.2 Results

Fig. 3 compares the accuracy for different approaches. Fig. 3
(a), (b) shows the training and test accuracy respectively as
we vary the number of instances used in training the models
for the Bridge to Algebra 2008, 2009 dataset. As we can
see from these plots, LSTM-NS-Adaptive obtains the highest
accuracy compared to the other methods. HMM (not shown
in figures) gave us an accuracy of less than 5%. This low
accuracy indicates that the strategy for diverse (or asymmet-
ric) groups of students (or problems) cannot be represented
by the same transition matrix. One possible approach that
we will explore in future is to integrate our approach with
HMDMs, i.e., we learn an ensemble of HMMs where a HMM
learns strategies for a symmetric group. A naive LSTM
without embedding vectors, i.e., where inputs are a simple
one-hot encoding of student and problems, also yields poor
accuracy (less than 10%). This illustrates the importance of
the latent features in the embedding vectors.

Note that we have only shown the results for the best per-
forming model with latent dimension as 200 (experiments
were carried out with different dimensions). As shown in
Fig. 3 (a), (b), LSTM-NS-Adaptive and LSTM-NS-Clustered
require a small fraction of the number of instances to obtain
accuracy that is higher than LSTM-NS-Random and LSTM-NS-
NaiveGroup. Further, the variance in accuracy of LSTM-NS-
Random and LSTM-NS-NaiveGroup is much higher as shown
by the shaded portion around the line plots compared to
the variance of LSTM-NS-Clustered and LSTM-NS-Adaptive.
LSTM-NS-Adaptive also obtains higher accuracy than LSTM-
NS-Clustered as we adapt the weighting. However, note
that the test accuracy starts to dip after the accuracy hits
a peak value for LSTM-NS-Adaptive. This is because the
adaptive cluster weights may focus too strongly on certain
clusters in the training data which causes the LSTM to over-
fit. Therefore, in practice, we can stop the adaptation based
on a validation set. Further, we can clearly see that exploit-
ing symmetries in training leads to better generalization in
Fig. 3 (b) where we see a significant difference between the
accuracy for LSTM-NS-Adaptive and LSTM-NS-Clustered as
compared to LSTM-NS-NaiveGroup and LSTM-NS-Random at
smaller training sizes. Fig. 3 (c) and (d) also show the us-
ing relational symmetries in training results in a significant
improvement in scalability since it shows that we can train
LSTM-NS-Adaptive and LSTM-NS-Clustered in around half
an hour to achieve an accuracy that is higher than the accu-
racy we obtain even after around 3 hours of training time in
approaches where we do not choose training examples based
on symmetries.

The results for the Algebra 2008, 2009 dataset are similar
to the ones for Bridge to Algebra 2008, 2009. As seen
in Fig. 3 (e) and (f), the LSTM-NS-Adaptive model is the
best performing model in terms of accuracy and it uses a
small number of training instances to achieve this accuracy.
Similar to the previous results, the variance for LSTM-NS-
NaiveGroup and LSTM-NS-Random is much larger than that
for LSTM-NS-Adaptive and LSTM-NS-Clustered. The train-
ing time shown in Fig. 3 (g) and (h) follow a similar pat-
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Figure 4: T-SNE visualization of strategies. The hidden
layer of the final step in the LSTM is visualized for 100 test
problems over all students. T-SNE reduces the latent LSTM
vector to 2-D for visualization. Data points close together
correspond to approximately similar strategies.

tern where LSTM-NS-Adaptive and LSTM-NS-Clustered can
achieve high accuracy scores even with short training times
since they take advantage of relational structure in the data.

Table 3 shows the accuracy of predicting strategies for differ-
ent problem units. Specifically, each problem in the dataset
corresponds to a specific unit and we evaluate the models
by testing the trained model on problems specific to a unit.
For lack of space, we have not provided an exhaustive set
of results for all units since there were around 50 units in
the dataset. Instead, we provide accuracy results for the
10 units with largest number of data instances from the
Bridge to Algebra 2008, 2009 dataset. We see that on
majority of the units, LSTM-NS-Adaptive has the best accu-
racy score. LSTM-NS-Clustered is the next best performing
method. The difference in accuracy between units was sig-
nificant in some cases. For instance, LSTM-NS-Adaptive had
a very high accuracy for the unit PERCENT CONVERSION but
a much lower accuracy for ONE-STEP-EQUATIONS and TWO-
STEP-EQUATIONS. This may be due to higher complexity in-
volved in solving equations as compared to problems involv-
ing percent conversion which may add to uncertainty in pre-
dicting strategies.

5.2.1 Structure in Strategies.

Finally, Fig. 4 shows a visualization of the strategies through
a T-SNE plot. Specifically, we wanted to analyze if there are
true patterns in the strategies. To do this, we use the LSTM-
NS-Adaptive model to predict the strategy for 100 problems
across all students. We show the results for Bridge to Al-
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Unit (%) %) %) %)
PROBABILITY 67.7 53.48 77.45 70.73
FRACTION-
OPERATIONS-1 74.95 78.23 84.02 90.49
PERCENT-
CONVERSION 99.01 99.18 88.6 99.5
SCL-
NOTATION 66.67 69.39 69.9 70.16
PICTURE-
ALGEBRA-2 90.23 96.17 93.29 95.17
RATIONAL-
NUMBER- 30.76 41.85 40.28 66.13
OPERATIONS
INTEGERS 87.47 78.83 93.52 96.78
ORDER-OF-
OPERATIONS 60.03 50.35 45.53 69.43
ONE-STEP-
EQUATIONS 66.6 53.36 58.86 58.06
TWO-STEP-
EQUATIONS 63.13 63.03 59.42 615

Table 3: Comparing accuracy on test sets corresponding to different units in Bridge to Algebra 2008, 2009.
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Figure 5: Strategies for different problems that have similar
vector representations.

gebra 2008, 2009. We use the hidden-vector from the last
step of the LSTM as a representation of the strategy for a
specific input instance. That is, this vector encodes infor-
mation summarizing all the steps (or the full strategy) that
the student performs when solving the input instance. We
then plot this using the T-SNE plot that reduces the high-
dimensional representation to a 2-D representation. Fig. 4
shows that there is a separation of different groups of strate-
gies. The presence of such clusters of strategies indicates
that there are indeed structures in student strategies and
the representation learned by LSTM-NS-Adaptive discovers
these symmetric structures.

Fig. 5 and 6 show two examples where the vectors repre-
senting the strategies are close to each other. Fig. 5 shows
a case where the two strategies correspond to two different
problems, one of which is related to proper fractions and the
other to improper fractions. However, at a high level, these
strategies are similar which is reflected in their similar vec-
tor representations. Another example shown in Fig. 6 shows
a case where the two partial strategies shown correspond to
the same problem are inversions of each other. That is, some
of the steps in the two cases are performed in opposite or-
ders. However, at a high-level, the strategies have symmetry
which is reflected in their vector representations.

Find Y, FindY,any | Enteringa
positive siope  form given

Enter given, | Usingsmall  Using simple |Find Y,
reading numbers  numbers
words

Find Y, any

positive slope form

Using small  Using simple Find Y, FindY,any | Enteringa
numbers  numbers  positive slope | form given

Enter given, |Using small  Using simple
reading numbers  numbers
words

Figure 6: Strategies for the same problem that have similar
vector representations.

6. CONCLUSION

Predicting student strategies in problem solving can make
AISs more engaging to students since the system can adapt
itself to suit the student’s strategy. In this paper, we de-
scribed a Machine Learning approach to predict student
strategies from large scale, structured student interaction
data. Specifically, we adopted a Neuro-Symbolic approach,
i.e., we combined LSTMs with a relational symbolic model
to perform learning more efficiently. To do this, we encoded
relationships in the data in the language of Markov Logic
and based on relational symmetries in the data, we picked
training instances are diverse. Doing this allowed us to learn
our model to recognize diverse strategies at a smaller com-
putational cost. Our evaluation on the KDD EDM chal-
lenge datasets show that our approach generalizes better
and has significantly smaller training times as compared to
approaches that do not exploit relational symmetries during
learning. In future, we will extend our approach to datasets
with finer-grained learner information and also develop joint
inference models connecting mastery and strategies.
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