




where Rb
a
∈ SO(3) denotes the 3 × 3 rotation between the175

frames a and b, T is the collective thrust produced by the176

rotors, g is the acceleration due to gravity and êd denotes177

a unit vector along the vertical (down) axis of the inertial178

frame. The matrix Rb

M
is obtained from the Euler roll (φ),179

pitch (θ) and yaw (ψ) angles of the UAS body in the Z-180

Y-X rotation order. Thus, by assuming that desired values181

of these angles and a collective thrust can be maintained by182

an autopilot’s “inner loop”, we can affect a desired linear183

acceleration, ~a ∈ R
3, of the body in the inertial frame. We184

therefore define the control command sent to the autopilot as185

uap = [φd, θd, ψd, Td]
⊤ composed of the desired values of186

these quantities.187

The non-linear system defined by Eqn (1) lets us model a

linear system with second-order dynamics with accelerations,

~a, as its inputs. For this system, we define a state vector,

x ≡ [PM, ṖM, ψ]⊤

= [pn, pe, pd, vn, ve, vd, ψ]
⊤, (2)

composed of the translational position, velocity and the188

heading of the UAS, all expressed in the inertial frame. The189

dynamics can then be expressed in the traditional form,190

ẋ = Ax+Bu, and, y = Cx, (3)

with,191

A =





03x3 I3x3 03x1
03x3 03x3 03x1
01x3 01x3 0



 , B =





03x3 03x1
I3x3 03x1
01x3 1



 , C = I.

The control input to this feedback-linearized system is a192

4-vector composed of the translational accelerations from193

Eqn (1) and a body-frame rotational rate, ψ̇, such that,194

u ≡ [~a, ψ̇]⊤. (4)

Thus, if appropriate acceleration control inputs, u, are known195

for the linearized system, we can decompose them into uap196

by a non-linear inversion of Eqn (1).197

B. State Estimation198

We generally require a robust and reliable source of state199

information to perform accurate and high-speed maneuvers.200

To prevent erroneous feedback control, we further require201

this information to be updated faster than the control cycle.202

Typical GPS systems offer update rates that are too low203

(≈10Hz) and are often too inaccurate. For instance, a high-204

end GPS accuracy of 0.8m can be almost twice the diameter205

of medium-sized multirotors. For localized operations (within206

a radius of 1–2 km), we therefore switch to ground-based207

augmentation systems (GBAS) to achieve significantly higher208

accuracy in measurements. This is realized in the form of real209

time kinematic (RTK) GPS systems that can produce position210

measurements with more than 5 cm of accuracy at a similar211

rate. The accuracy also remains fairly consistent within the212

operational range of RTK systems.213

We split the state estimation into two separate “processes”214

– one that estimates the controllable system states defined in215

model, and another that estimates a state model with biases.216

An optimal state estimator for both allows a controller to 217

optimally regulate the state by certainty equivalence. By the 218

separation principle, we also know the combined system will 219

retain its stability guarantees. This also lets us design these 220

modules independently. 221

Controller States. For agile maneuvering, RTK-GPS data is

fused with inertial measurements from an onboard IMU (in

the autopilot). We adopt an Extended Kalman filter (EKF)

formulation, and rewrite the non-linear system as

ẋ = f(x,u, u),

zpos = h1(x, v), zimu = h2(xb, w) (5)

where f, h1 and h2 represent the state transition and mea- 222

surement maps, xb is a new state variable containing only 223

the attitude angles in the body frame, and u, v, w are the 224

corresponding zero-mean additive noises over a Gaussian 225

distribution. The filter then estimates x̂ at a sufficiently high 226

rate for the controller. The product of this block, eventually, 227

is the best estimate of the state, x̂, as defined above and 228

expressed in M. Several other fusion methods, such as 229

visual-inertial odometry (VIO), and visual pose estimation 230

from onboard cameras [22], [23] or motion-capture systems 231

could provide the state information at a sufficiently high rate. 232

Observer States. To design the state observer in LQG, we

augment the state vector in Eqn (2) to include extrinsic

time-varying forces. We represent these in the form of

accelerations acting upon the system, so that for the bias

observer, the augmented system model is represented by

xB ≡ [x⊤, ~B
⊤

]⊤ (6)

ẋB = ABxB +BBu, and, yB = CxB (7)

with, AB =

(

A I3x3

03x7 03x3

)

and BB =

(

B

03x4

)

such that, ~B = [bn, be, bd]
⊤ denotes the 3-axis external 233

disturbances that act as biases on the system. 234

In aggressive maneuvering, aerodynamic drag plays a 235

significant role in the dynamics [15], [20]. Instead of ex- 236

plicitly modeling it, we let the bias estimator measure it as 237

an external force, which a controller can then compensate 238

for. By appropriate pole-placement of the estimator, the 239

dynamics of the estimator can be fast enough to measure 240

other deviations from the system model such as an incorrect 241

mass (m) variable, an off-center loading, or a changing thrust 242

due to battery voltage. 243

C. Control 244

The control input, u, from Eqn (4) applied to the system 245

is designed with three components, such that, 246

u ≡ ufb + ubc + uff , (8)

where the subscripts fb, bc and ff denote the feedback, bias 247

compensation, and the feed-forward elements of the signal. 248

Similar feedforward designs based on differential flatness of 249

the multirotor system have been employed previously [17]. 250

For outdoor flights where external disturbances can manifest 251

in several time-varying forms, the bias compensation term 252
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