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Abstract

Fast and accurate reconstruction of magnetic resonance

(MR) images from under-sampled data is important in many

clinical applications. In recent years, deep learning-based

methods have been shown to produce superior performance

on MR image reconstruction. However, these methods re-

quire large amounts of data which is difficult to collect and

share due to the high cost of acquisition and medical data

privacy regulations. In order to overcome this challenge, we

propose a federated learning (FL) based solution in which

we take advantage of the MR data available at different

institutions while preserving patients’ privacy. However,

the generalizability of models trained with the FL setting

can still be suboptimal due to domain shift, which results

from the data collected at multiple institutions with differ-

ent sensors, disease types, and acquisition protocols, etc.

With the motivation of circumventing this challenge, we pro-

pose a cross-site modeling for MR image reconstruction in

which the learned intermediate latent features among dif-

ferent source sites are aligned with the distribution of the

latent features at the target site. Extensive experiments are

conducted to provide various insights about FL for MR im-

age reconstruction. Experimental results demonstrate that

the proposed framework is a promising direction to uti-

lize multi-institutional data without compromising patients’

privacy for achieving improved MR image reconstruction.

Our code is available at https://github.com/guopengf/FL-

MRCM.

1. Introduction

Magnetic resonance imaging (MRI) is one of the most

widely used imaging techniques in clinical applications. It

is non-invasive and can be customized with different pulse

sequences to capture different kinds of tissues. For instance,

fat tissues are bright in T1-weighted images, which can

clearly show gray and white matter tissues in the brain. The

radiofrequency pulse sequences used to make T2-weighted

Figure 1. Top row: (a) ground truth, (b) zero-filled images, and (c)

reconstructed images from the fastMRI [13], HPKS [10], IXI [3],

and BraTS [26] datasets from left to right, respectively. Bottom

row: t-SNE plots. The distribution of (d) latent features without

cross-site modeling, and (e) latent features corresponding to the

proposed cross-site modeling. In each plot, green, blue, yellow,

and red dots represent data from fastMRI [13], HPKS [10], IXI [3],

and BraTS [26] datasets, respectively.

images can delineate fluid from cortical tissue [11]. How-

ever, to increase the signal-to-noise ratio (SNR), clinical

scanning usually involves the usage of multiple saturation

frequencies and repeating acquisitions, which results in rel-

atively long scan time. Various compressed sensing (CS)

based methods have been proposed in the literature for ac-

celerating the MRI sampling process by undersampling in

the k-space during acquisition [4, 21, 22]. In recent years,

data driven deep learning-based methods have been shown
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to produce superior performance on MR image reconstruc-

tion from partial k-space observations [20, 38, 39].

However, deep networks usually require large amounts

of diversity-rich paired data which can be labor-intensive

and prohibitively expensive to collect. In addition, one has

to deal with patient privacy issues when storing them, mak-

ing it difficult to share data with other institutions. Although

deidentification [33] might provide a solution, building a

large scale centralized dataset at a particular institution is

still a challenging task.

The recently introduced federated learning (FL) frame-

work [25, 36, 15] addresses this issue by allowing collab-

orative and decentralized training of deep learning-based

methods. In particular, there is a server that periodically

communicates with each institution to aggregate a global

model and then shares it with all institutions. Each insti-

tution utilizes and stores its own private data. It is worth

noting that instead of directly transferring data for training,

the communication in FL algorithms only involves model

parameters or update gradients, which resolves the privacy

concerns. Hence, FL methods intrinsically facilitate multi-

institutional collaborations between data centers (e.g., hos-

pitals in the context of medical images).

However, the generalizability of models trained with

the FL setting can still be suboptimal due to domain

shift, which results from the data collected at multiple

institutions with different sensors, disease types, and ac-

quisition protocols, etc. This can be clearly seen from

Fig. 1 where we show fully-sampled (Fig. 1(a)) and under-

sampled (Fig. 1(b)) images from four different datasets.

In Fig. 1(d), we visualize latent features corresponding to

images from these datasets using t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) plot [23]. As can be

seen from Fig. 1(d), features from a particular dataset are

grouped together in a cluster indicating that each dataset

has its own bias. As a result, we can see four different clus-

ters of latent features. In order to make use of these datasets

in the FL framework, one needs to align these features and

remove the domain shift among the datasets. To circumvent

this challenge, we propose a cross-site model for MR im-

age reconstruction in which the learned intermediate latent

features among different source sites are aligned with the

distribution of the latent features at the target site. Specifi-

cally, the proposed method involves two optimization steps.

In the first step, local reconstruction networks are trained

on private data. In the second step, the intermediate latent

features of the target domain data are transferred to other

local source entities. An adversarial domain identifier is

then trained to align the latent space distribution between

the source domain and the target domain. Hence, minimiz-

ing the loss of adversarial domain identifier results in the re-

construction network weights being automatically adapted

to the target domain. Fig. 1(e) and (c) show the distribu-

tion of aligned features and the corresponding reconstructed

images in four datasets. The proposed cross-site modeling

allows us to leverage datasets from various institutions for

obtaining improved reconstructions.

To summarize, this paper makes the following contribu-

tions:

• A method called Federated Learning-based Magnetic

Resonance Imaging Reconstruction (FL-MR) is pro-

posed which enables multi-institutional collaborations

for MRI reconstruction in a privacy-preserving man-

ner.

• To address the domain shift issue among different

sites, FL-MR with Cross-site Modeling (FL-MRCM)

is proposed to align the latent space distribution be-

tween the source domain and the target domain.

• Extensive experiments are conducted to provide vari-

ous insights about FL for MR image reconstruction.

2. Related Work

Reconstruction of MR images from under-sampled k-

space data is an ill-posed inverse problem. In order to ob-

tain a regularized solution, some priors are often used. CS-

based methods make use of sparsity priors for recovering

the image [21, 22] from partial k-space observations. In re-

cent years, deep learning-based methods have been shown

to produce superior performance on MR image reconstruc-

tion [12, 18, 31, 24, 40]. Some deep learning-based meth-

ods approach the problem by directly learning a mapping

from the under-sampled data to the fully-sampled data in

the image domain [38, 39, 14, 30]. Methods that learn a

mapping in the k-space domain have also been proposed in

the literature [1, 8].

Federated learning is a decentralized learning framework

which allows multiple institutions to collaboratively learn a

shared machine learning model without sharing their local

training data [2, 25, 27]. The FL training process consists

of the following steps: (1) All institutions locally compute

gradients and send locally trained network parameters to

the server. (2) The server performs aggregation over the

uploaded parameters from K institutions. (3) The server

broadcasts the aggregated parameters to K institutions. (4)

All institutions update their respective models with aggre-

gated parameters and test the performance of the updated

models. The institutions collaboratively learn a machine

learning model with the help of a central cloud server [42].

After a sufficient number of local training and update ex-

changes between the institutions and the server, a global

optimal learned model can be obtained.

McMahan et al. [25] proposed FedAvg, which learns a

global model by averaging model parameters from local

entities. FedAvg [25] is one of the most commonly used
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Figure 2. An overview of the proposed FL-MR framework. Through several rounds of communication between data centers and server, the

collaboratively trained global model parameterized by Θ
q

G can be obtained in a data privacy-preserving manner.

frameworks for FL. FedProx [34] and Agnostic Federated

Learning (AFL) [28] are extensions of FedAvg which at-

tempt to address the learning bias issue of the global mod-

els for local entities. Recently, Sheller et al. [28] and Li

et al. [16] proposed medical image segmentation models

based on the FL framework. Peng et al. [29] proposed the

federated adversarial alignment to mitigate the domain shift

problem in image classification. In [17], Li et al. formu-

lated a privacy-preserving pipeline for multi-institutional

functional MRI classification and investigated different as-

pects of the communication frequency in federated models

and privacy-preserving mechanisms. Although these meth-

ods [29, 17] achieved promising results to overcome domain

shift in classification, due to the differences in network ar-

chitectures, one cannot directly utilize them for MR image

reconstruction. It is worth noting that the multi-institutional

collaborative approach based on FL for MR image recon-

struction has not been well studied in the literature.

3. Methodology

Similar to [38, 39, 14, 30], the proposed method ad-

dresses the MR image reconstruction problem by directly

learning a mapping from the under-sampled data to the

fully-sampled data in the image domain. The MR image

reconstruction process can be formulated as follows

x = F−1(Fdy + ǫ),

x, y ∈ C
N ,

(1)

where x denotes the observed under-sampled image, y is the

fully-sampled image, and ǫ denotes noise. Here, F and F−1

denote the Fourier transform matrix and its inverse, respec-

tively. Fd represents the undersampling Fourier encoding

matrix that is defined as the multiplication of the Fourier

transform matrix F with a binary undersampling mask ma-

trix. The acceleration factor (AF) controls the ratio of the

amount of k-space data required for a fully-sampled image

to the amount collected in an accelerated acquisition. The

goal is to estimate y from the observed under-sampled im-

age x.

3.1. FL­based MRI Reconstruction

The proposed FL-MR framework is presented in Fig. 2

and Algorithm 1. Let D1,D2, . . . ,DK denote the MR im-

age reconstruction datasets from K different institutions.

Each local dataset Dk contains pairs of under-sampled and

fully-sampled images. At each institution, a local model

is trained using its own data by iteratively minimizing the

following loss

Lrecon =
∑

(x,y)∼Dk

‖Gk(x)− y‖1, (2)
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Algorithm 1: FL-based MRI Reconstruction

Input: D = {D1,D2, . . . ,DK}, datasets from K

institution; P, the number of local epoches; Q, the

number of global epoches; γ, learning rate;

G1, G2, . . . , GK , local models parameterized by

ΘG1 ,ΘG2 , . . . ,ΘGK ; G, the global model

parameterized by ΘG.

Output: well-trained global model G

⊲ parameters initialization;

for q = 1 to Q do

for k = 1 to K in parallel do

⊲ deploy weights to local model;

for p = 1 to P do
⊲ compute reconstruction loss Lrecon

with Eq. 2 and update parameters ΘGk ;

end

⊲ upload weights to server;
end

⊲ update global model with Eq. 4;
end

return ΘQ
G

where Gk corresponds to the local model at site k and is

parameterized by ΘGk . Gk(x) corresponds to the recon-

structed image ŷ. After optimization with several local

epochs (i.e. P epochs) via

Θ
(p+1)

Gk ← Θ
(p)

Gk − γ∇Lrecon, (3)

each institution can obtain the trained FL-MR reconstruc-

tion model with the updated model parameters. Since each

institution has its own data which may be collected by a par-

ticular sensor, disease type, and acquisition protocol, each

Dk has a certain characteristic. Thus, when a local model is

trained using its own data, it introduces a bias and does not

generalize well to MR images from another institutions (see

Fig. 1). One way to overcome this issue would be to train

the network on a diverse multi-domain dataset by combin-

ing data from K institutions as D = {D1∪D2∪ · · ·∪DK}
[7, 6, 5, 35, 41]. However, as discussed earlier, due to

privacy concerns, this solution is not feasible and impedes

multi-institutional collaborations in practice.

To tackle this limitation and allow various sites to collab-

oratively train a MR image reconstruction model, we pro-

pose the FL-MR framework based on FedAVG [25]. With-

out accessing private data in each site, the proposed FL-MR

method leverages a central server to utilize the information

from other institutions by aggregating local model updates.

The central server performs the aggregation of model up-

dates by averaging the updated parameters from all local

Figure 3. An overview of the proposed FL-MR framework with

cross-site modeling in a source site.

models as follows

Θq
G =

1

K

K∑

k=1

Θq

Gk , (4)

where q represents the q-th global epoch. After Q rounds

of communication between local sites and central server,

the trained global model parameterized by ΘQ
G, can lever-

age multi-domain information without directly accessing

the private data in each institution.

3.2. FL­MR with Cross­site Modeling

Domain shift among datasets inevitably degrades the

performance of machine learning models [19]. Existing

works [9, 37] achieve superior performance by leveraging

adversarial training. However, such methods require direct

access to the source and target data, which is not allowed

in FL-MR. Since we have multiple source domains and the

data are stored in local institutions, training a single model

that has access to source domains and target domain simul-

taneously is not feasible. Inspired by federated adversarial

alignment [29] in classification tasks, we propose FL-MR

with Cross-site Modeling (FL-MRCM) to address the do-

2426



main shift problem in FL-based MRI reconstruction. As

shown in Fig. 3, for a source site Dk
s , we leverage the en-

coder part of the reconstruction networks (Ek
s ) to project

input onto the latent space zks . Similarly, we can obtain zt
for the target site Dt. For each (Dk

s , Dt) source-target do-

main pair, we introduce an adversarial domain identifier Ck

to align the latent space distribution between the source do-

main and the target domain. Ck is trained in an adversarial

manner. Specifically, we first train Ck to identify which site

the latent features come from. We then train the encoder

part of the reconstruction networks to confuse Ck. It should

be noted that Ck only has access to the output latent fea-

tures from Ek
s and Et, to maintain data sharing regulations.

Given the k-th source site data Dk
s and the target site data

Dt, the loss function for Ck can be defined as follows

LadvCk =− Exk
s
∼Dk

s
[log Ck(zks )]

− Ext∼Dt
[log(1− Ck(zt))],

(5)

where zks = Ek
s (x

k
s) and zt = Et(xt). The loss function

for encoders can be defined as follows

LadvEk =− Exk
s
∼Dk

s
[log Ck(zks )]− Ext∼Dt

[log Ck(zt)].
(6)

The overall loss function used for training the k-th source

site with data Dk
s consists of the reconstruction and adver-

sarial losses. It is defined as follows

L
D

k

s

= Lrecon + λadv(LadvCk + LadvEk), (7)

where λadv is a constant which controls the contribution of

the adversarial loss. The detailed training procedure of FL-

MRCM in a source site is presented in Algorithm 2. In

supplementary material, we also provide the schematics of

training FL-MRCM in a global view.

3.3. Training and Implementation Details

We use U-Net [32] style encoder-decoder architecture

for the reconstruction networks. Details of the network ar-

chitecture are provided in supplementary material. λadv is

set equal to 1. Acceleration factor (AF) is set equal to 4. The

network is trained using the Adam optimizer with the fol-

lowing hyperparameters: constant learning rate of 1×10−4

for the first 40 global epochs then 1 × 10−5 for the last

global 10 epochs; 50 maximum global epochs; 2 maximum

local epochs; batch size of 16. Hyperparameter selection is

performed on the IXI validation dataset [3]. During train-

ing, the cross-sectional images are zero-padded or cropped

to the size of 256 × 256.

4. Experiments and Results

In this section, we present the details of the datasets and

various experiments conducted to demonstrate the effective-

ness of the proposed framework. Specifically, we conduct

Algorithm 2: FL-MR with Cross-site Modeling

Input: Ds = {D1
s ,D

2
s , . . . ,D

K
s }, data from the K

source institutions; Dt, data from the target

institution; P , the number of local epoches; Q, the

number of global epoches; γ, learning rate;

ΘG1
s
, ...,ΘGK

s
, parameters of the local models in

the source sites; ΘC1 , ...,ΘCK , domain identifiers;

ΘG, the global model; ΘEt
, the encoder part of G

in the target site.

⊲ parameters initialization

for q = 0 to Q do

for k = 0 to K in parallel do
⊲ deploy weights to local model

for p = 0 to P do
Reconstruction:

⊲ compute reconstruction loss Lrecon

using Eq. 2

Cross-site Modeling:

⊲ compute adverisal loss LadvCk and

LadvEk
s

using Eq. 5 and Eq. 6

⊲ compute the total loss using Eq. 7 and

update ΘGk
s
, ΘCk , and ΘEt

end

⊲ upload weights to the central server
end

⊲ update the global model using Eq. 4
end

return ΘQ
G

experiments under two scenarios. Fig. 4 gives an overview

of different training and evaluation strategies involved in

the two scenarios. In Scenario 1, we analyze the effective-

ness of improving the generalizability of the trained mod-

els using the proposed methods and other alternative strate-

gies. Thus, the performance of a trained model is evaluated

against a dataset that is not directly observed during train-

ing. In particular, we choose one dataset at a time to emu-

late the role of the user institution and consider data from

other sites for training. This scenario is common in clinical

practice. MRI scanners are usually equipped with acceler-

ated acquisition techniques, so the user institution might not

have access to fully-sampled data for training. In Scenario

2, we evaluate the proposed method by training it on the

data from all available institutions to demonstrate the bene-

fits of collaboration under the setting of federated learning.

Rather than assuming that user institution does not have ac-

cess to fully-sampled data, the training data split of user

institution is also involved as a part of collaborations.

4.1. Datasets

fastMRI [13] (F for short): T1-weighted images corre-

sponding to 3443 subjects are used for conducting exper-
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Table 1. Quantitative comparison with models trained by different strategies in Scenario 1.

Methods
Data Centers (Institutions) T1-weighted T2-weighted

Train Test SSIM PSNR
Average

SSIM PSNR
Average

SSIM PSNR SSIM PSNR

Cross

F B 0.9016 34.65

0.7907 30.02

0.9003 33.09

0.8296 29.51

H B 0.6670 29.12 0.8222 31.06
I B 0.8795 33.76 0.8610 31.36
B F 0.7694 28.61 0.7851 27.63
H F 0.8571 31.82 0.8682 29.04
I F 0.8417 31.18 0.8921 30.08
B H 0.5188 25.07 0.5898 26.28
F H 0.8402 28.52 0.8842 30.09
I H 0.6281 27.09 0.8583 29.45
B I 0.8785 30.10 0.7423 27.75
F I 0.9102 31.16 0.8917 29.57
H I 0.7968 29.16 0.8598 28.74

Fused

F, H, I B 0.8672 33.98

0.8223 31.27

0.8696 32.73

0.8264 30.17
B, H, I F 0.8557 32.03 0.8524 29.19
B, F, I H 0.6615 27.87 0.7394 29.28
B, F, H I 0.9047 31.22 0.8441 29.47

FL-MR

F, H, I B 0.9452 35.59

0.8976 32.09

0.916 33.76

0.8997 31.49
B, H, I F 0.9099 33.15 0.8991 30.86
B, F, I H 0.8249 28.49 0.8874 31.02
B, F, H I 0.9103 31.11 0.8962 30.32

FL-MRCM

F, H, I B 0.9504 35.93

0.9108 32.51

0.9275 33.96

0.9113 31.77
B, H, I F 0.9149 33.31 0.9139 31.31

B, F, I H 0.8581 29.24 0.8978 31.35

B, F, H I 0.9197 31.54 0.9058 30.47

F, H, I B 0.9589 36.68

0.9182 32.96

0.9464 34.58

0.9260 32.44
Mix B, H, I F 0.9222 33.79 0.9239 31.89

(Upper Bound) B, F, I H 0.8630 29.19 0.9168 32.14
B, F, H I 0.9286 32.19 0.9169 31.14

Figure 4. The schematic of different training strategies in (a) Sce-

nario 1, and (b) Scenario 2. Note that for FL-MRCM, the source

sites are the institutions that provide training data and the target

site is the institution that provides testing data.

iments. In particular, data from 2583 subjects are used for

training and remaining data from 860 subjects are used for

testing. In addition, T2-weighted images from 3832 sub-

jects are also used, where data from 2874 subjects are used

for training and data from 958 subjects are used for testing.

For each subject, approximately 15 axial cross-sectional im-

ages that contain brain tissues are provided in this dataset.

HPKS [10] (H for short): This dataset is collected from

post-treatment patients with malignant glioma. T1 and T2-

weighted images from 144 subjects are analyzed, where

116 subjects’ data are used for training and 28 subjects’

data are used for testing. For each subject, 15 axial cross-

sectional images that contain brain tissues are provided in

this dataset.

IXI [3] (I for short): T1-weighted images from 581 sub-

jects are used, where 436 subjects’ data are used for train-

ing, 55 subjects’ data are used for validation, and 90 sub-

jects’ data are used for testing. T2-weighted images from

578 subjects are also analyzed, where 434 subjects’ data

are used for training, 55 subjects’ data are used for valida-

tion and the remaining 89 subjects’ data are used for testing.

For each subject, there are approximately 150 and 130 axial

cross-sectional images that contain brain tissues for T1 and

T2-weighted MR sequences, respectively.

BraTS [26] (B for short): T1 and T2-weighted images from

494 subjects are used, where 369 subjects’ data are used

for training and 125 subjects’ data are used for testing. For

each subject, approximately 120 axial cross-sectional im-

ages that contain brain tissues are provided for both MR

sequences.

4.2. Evaluation of the Generalizability

In the first set of experiments (Scenario 1), we analyze

the model’s generalizability to data from another site. In Ta-

ble 1, we compare the quality of reconstructed images from

different methods on four datasets using structural simi-

larity index measure (SSIM) and peak-signal-to-noise ratio

(PSNR). We first compare the performance of the proposed

framework with models trained with data from a single data
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Figure 5. Qualitative results of different methods that correspond to Scenario 1. For results of T1-weighted images on, (a) fastMRI [13], (b)

HPKS [10], (c) IXI [3], (d) BraTS [26]. For results of T2-weighted images on, (e) fastMRI [13], (f) HPKS [10], (g) IXI [3], (h) BraTS [26].

The second row of each sub-figure shows the absolute image difference between reconstructed images and the ground truth.

center. In this case, we obtain a trained model from one of

the institutions and evaluate its performance on another data

center in Table 1 under the label Cross. It is also possible

to obtain multiple trained models from several institutions

and fuse their outputs, which does not violate privacy reg-

ulations. In this case, we fuse the reconstructed images of

the trained model from various institutions by calculating

the average. The results corresponding to this strategy are

shown in Table 1 under the label Fused. In addition, we can

obtain a model that is trained with data from all available

data centers, which is denoted by Mix in Table 1. However,

this case compromises subjects’ privacy from other institu-

tions, so we treat it as an upper bound.

As it can be seen from Table 1, our proposed FL-MR

method exhibits better generalization and clearly outper-

forms other privacy-preserving alternative strategies. FL-

MRCM further improves the reconstruction quality in each

dataset by mitigating the domain shift. Fig. 5 shows the

qualitative performance of different methods on T1 and T2-

weighted images from four datasets. It can be observed that

the proposed FL-MRCM method yields reconstructed im-

ages with remarkable visual similarity to the reference im-

ages compared to the other alternatives (see the last column

of each sub-figure in Fig. 5) in four datasets with diverse

characteristics.

Table 2. Quantitative comparison with models trained by different

strategies in Scenario 2.

Methods

Data Centers
T1-weighted T2-weighted

(Institutions)

Tain Test SSIM PSRN
Average

SSIM PSNR
Average

SSIM PSNR SSIM PSNR

Single

B B 0.9660 37.30

0.9351 33.81

0.9558 34.90

0.9278 32.35
F F 0.9494 35.45 0.9404 32.43
H H 0.8855 29.67 0.9001 31.29
I I 0.9396 32.80 0.9151 30.79

FL-MR B, F, H, I

B 0.9662 37.37

0.9294 33.92

0.9482 35.34

0.9238 32.64
F 0.9404 35.25 0.9306 32.19
H 0.8732 30.03 0.9021 31.74
I 0.9379 33.03 0.9145 31.29

FL-MRCM B, F, H, I

B 0.9676 37.57

0.9381 34.14

0.9630 35.85

0.9373 33.13
F 0.9475 35.57 0.9385 32.69
H 0.8940 30.27 0.9232 32.44
I 0.9432 33.13 0.9244 31.54

B, F, H, I

B 0.9698 37.62

0.9440 34.35

0.9655 35.83

0.9398 33.14
Mix F 0.9558 36.15 0.9435 32.82

(Upper H 0.9047 30.57 0.9236 32.47
Bound) I 0.9454 33.08 0.9266 31.44
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Figure 6. Qualitative results and error maps corresponding to dif-

ferent methods in Scenario 2 on HPKS [10]. (a) T1- weighted, and

(b) T2-weighted images.

4.3. Evaluation of FL­based Collaborations

In the second set of experiments (Scenario 2), we analyze

the effectiveness of our method to leverage data from all

available institutions in a privacy-preserving manner. Since

the goal is to evaluate the benefit of multi-institution col-

laborations, we compare the performance of the proposed

framework with models trained with data from a single data

center and evaluate on its own testing data, which is de-

noted by Single in Table 2. Similar to Scenario 1, we

obtain a model that is directly trained with all available

data, which is denoted by Mix in Table 2 and we treat it

as an upper bound. It can be seen that the proposed FL-

MRCM method outperforms the other methods and reaches

the upper bound in term of SSIM and PSNR. It is worth

noting that the multi-institution collaborations by the pro-

posed FL-based method exhibits significant improvement

on the smaller dataset. Specifically, on the HPKS [10], FL-

MRCM improves SSIM from 0.9001 to 0.9232 and PSNR

from 31.29 to 32.44 in T2-weighted sequences. As shown

in Fig. 6, the proposed methods have a better ability of sup-

pressing errors around the skull and lesion regions, which is

consistent with the quantitative results.

4.4. Ablation Study

The individual contribution of proposed cross-site mod-

eling is demonstrated by a set of experiments (i.e. the com-

parison between FL-MR and FL-MRCM) in two scenarios

under the setting of FL. Furthermore, we conduct a detailed

ablation study to analyze the effectiveness of the proposed

cross-site modeling without the FL framework. In this case,

we obtain a trained model from one of the available sites

and evaluate its performance on the data from another insti-

tution to observe the gain purely contributed by the cross-

Figure 7. Qualitative comparisons and error maps on the T2-

weighted images using cross-site modeling (CM). I→H represents

the results from the model trained on I and tested on H, etc.

Table 3. Quantitative ablation study of the proposed cross-site

modeling on the T2-weighted images. For experiments with cross-

site modeling, the target site is the institution that provides the test

data.
Data Centers w/o Cross-site Modeling w/ Cross-site Modeling

(Institutions)
SSIM PSNR

Average
SSIM PSNR

Average

Train Test SSIM PSNR SSIM PSNR

B F 0.7851 27.63

0.7057 27.22

0.7914 27.85

0.7525 27.32B H 0.5898 26.28 0.6806 26.08

B I 0.7423 27.75 0.7856 28.03

F B 0.9003 33.09

0.8921 30.92

0.9139 33.84

0.9027 31.58F H 0.8842 30.09 0.8936 30.75

F I 0.8917 29.57 0.9004 30.14

H B 0.8222 31.06

0.8501 29.61

0.8391 31.54

0.8582 30.07H F 0.8682 29.04 0.8646 29.36

H I 0.8598 28.74 0.8709 29.31

I B 0.8610 31.36

0.8738 30.30

0.8946 32.11

0.8949 31.06I F 0.8921 30.08 0.9065 30.80

I H 0.8583 29.45 0.8837 30.26

site modeling in Table 3. Sample reconstructed images

are shown in Fig. 7. Experiments with cross-site model-

ing achieve smaller error. Due to space constraint, a simi-

lar ablation study on T1-weighted images, more experimen-

tal results, and visualizations are provided in supplementary

material.

5. Conclusion

We present a FL-based framework to leverage multi-

institutional data for the MR image reconstruction task in

a privacy-preserving manner. To address the domain shift

issue during collaborations, we introduce a cross-site mod-

eling approach that provides the supervision to align the la-

tent space distribution between the source domain and the

target domain in each local entity without directly sharing

the data. Through extensive experiments on four datasets

with diverse characteristics, it is demonstrated that the pro-

posed method is able to achieve better generalization. In

addition, we show the benefits of multi-institutional collab-

orations under the FL-based framework in MR image re-

construction task.
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[20] Alexander Selvikvåg Lundervold and Arvid Lundervold. An

overview of deep learning in medical imaging focusing on

mri. Zeitschrift für Medizinische Physik, 29(2):102–127,

2019. 2

[21] Michael Lustig, David Donoho, and John M Pauly. Sparse

mri: The application of compressed sensing for rapid mr

imaging. Magnetic Resonance in Medicine: An Official

Journal of the International Society for Magnetic Resonance

in Medicine, 58(6):1182–1195, 2007. 1, 2

[22] Shiqian Ma, Wotao Yin, Yin Zhang, and Amit Chakraborty.

An efficient algorithm for compressed mr imaging using to-

tal variation and wavelets. In 2008 IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8. IEEE,

2008. 1, 2

[23] Laurens van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(Nov):2579–2605, 2008. 2

[24] Morteza Mardani, Enhao Gong, Joseph Y Cheng, Shreyas

Vasanawala, Greg Zaharchuk, Marcus Alley, Neil Thakur,

Song Han, William Dally, John M Pauly, et al. Deep genera-

tive adversarial networks for compressed sensing automates

mri. arXiv preprint arXiv:1706.00051, 2017. 2

2431



[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics, pages 1273–1282.

PMLR, 2017. 2, 4

[26] Bjoern H Menze et al. The multimodal brain tumor image

segmentation benchmark (brats). IEEE transactions on med-

ical imaging, 34(10):1993–2024, 2014. 1, 6, 7

[27] Payman Mohassel and Peter Rindal. Aby3: A mixed proto-

col framework for machine learning. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 35–52, 2018. 2

[28] Mehryar Mohri, Gary Sivek, and Ananda Theertha

Suresh. Agnostic federated learning. arXiv preprint

arXiv:1902.00146, 2019. 3

[29] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko.

Federated adversarial domain adaptation. arXiv preprint

arXiv:1911.02054, 2019. 3, 4

[30] Chen Qin, Jo Schlemper, Jose Caballero, Anthony N Price,

Joseph V Hajnal, and Daniel Rueckert. Convolutional re-

current neural networks for dynamic mr image reconstruc-

tion. IEEE transactions on medical imaging, 38(1):280–290,

2018. 2, 3

[31] Saiprasad Ravishankar, Jong Chul Ye, and Jeffrey A Fessler.

Image reconstruction: From sparsity to data-adaptive meth-

ods and machine learning. Proceedings of the IEEE,

108(1):86–109, 2019. 2

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 5

[33] Joachim Roski, George W Bo-Linn, and Timothy A An-

drews. Creating value in health care through big data: oppor-

tunities and policy implications. Health affairs, 33(7):1115–

1122, 2014. 2

[34] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,

Ameet Talwalkar, and Virginia Smith. On the convergence

of federated optimization in heterogeneous networks. arXiv

preprint arXiv:1812.06127, 3, 2018. 3

[35] Veit Sandfort, Ke Yan, Perry J Pickhardt, and Ronald M

Summers. Data augmentation using generative adversarial

networks (cyclegan) to improve generalizability in ct seg-

mentation tasks. Scientific reports, 9(1):1–9, 2019. 4

[36] Micah J Sheller, G Anthony Reina, Brandon Edwards, Ja-

son Martin, and Spyridon Bakas. Multi-institutional deep

learning modeling without sharing patient data: A feasibility

study on brain tumor segmentation. In International MIC-

CAI Brainlesion Workshop, pages 92–104. Springer, 2018.

2

[37] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 4068–4076, 2015. 4

[38] Puyang Wang, Eric Z Chen, Terrence Chen, Vishal M Patel,

and Shanhui Sun. Pyramid convolutional rnn for mri recon-

struction. arXiv preprint arXiv:1912.00543, 2019. 2, 3

[39] Puyang Wang, Pengfei Guo, Jianhua Lu, Jinyuan Zhou,

Shanshan Jiang, and Vishal M Patel. Improving amide pro-

ton transfer-weighted mri reconstruction using t2-weighted

images. In International Conference on Medical Image

Computing and Computer-Assisted Intervention, pages 3–

12. Springer, 2020. 2, 3

[40] Shanshan Wang, Ziwen Ke, Huitao Cheng, Sen Jia, Leslie

Ying, Hairong Zheng, and Dong Liang. Dimension: Dy-

namic mr imaging with both k-space and spatial prior knowl-

edge obtained via multi-supervised network training. NMR

in Biomedicine, page e4131, 2019. 2

[41] Wenjun Yan, Lu Huang, Liming Xia, Shengjia Gu, Fuhua

Yan, Yuanyuan Wang, and Qian Tao. Mri manufacturer shift

and adaptation: Increasing the generalizability of deep learn-

ing segmentation for mr images acquired with different scan-

ners. Radiology: Artificial Intelligence, 2(4):e190195, 2020.

4

[42] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.

Federated machine learning: Concept and applications. ACM

Transactions on Intelligent Systems and Technology (TIST),

10(2):1–19, 2019. 2

2432


