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Abstract. Over the past decade, deep convolutional neural networks
have been widely adopted for medical image segmentation and shown to
achieve adequate performance. However, due to inherent inductive biases
present in convolutional architectures, they lack understanding of long-
range dependencies in the image. Recently proposed transformer-based
architectures that leverage self-attention mechanism encode long-range
dependencies and learn representations that are highly expressive. This
motivates us to explore transformer-based solutions and study the feasi-
bility of using transformer-based network architectures for medical image
segmentation tasks. Majority of existing transformer-based network ar-
chitectures proposed for vision applications require large-scale datasets
to train properly. However, compared to the datasets for vision applica-
tions, in medical imaging the number of data samples is relatively low,
making it difficult to efficiently train transformers for medical imaging
applications. To this end, we propose a gated axial-attention model which
extends the existing architectures by introducing an additional control
mechanism in the self-attention module. Furthermore, to train the model
effectively on medical images, we propose a Local-Global training strat-
egy (LoGo) which further improves the performance. Specifically, we op-
erate on the whole image and patches to learn global and local features,
respectively. The proposed Medical Transformer (MedT) is evaluated on
three different medical image segmentation datasets and it is shown that
it achieves better performance than the convolutional and other related
transformer-based architectures. Code: https://github.com/jeya-maria-
jose/Medical-Transformer
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1 Introduction

Developing automatic, accurate, and robust medical image segmentation meth-
ods have been one of the principal problems in medical imaging as it is essential
for computer-aided diagnosis and image-guided surgery systems. Segmentation
of organs or lesion from a medical scan helps clinicians make an accurate diagno-
sis, plan the surgical procedure, and propose treatment strategies. Following the
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popularity of deep convolutional neural networks (ConvNets) in computer vi-
sion, ConvNets were quickly adopted for medical image segmentation. Networks
like U-Net [17], V-Net [15], 3D U-Net [4], Res-UNet [27], Dense-UNet [13], Y-
Net [14], U-Net++ [31], KiU-Net [22,21] and U-Net3+ [8] have been proposed
specifically for performing image and volumetric segmentation for various medi-
cal imaging modalities. These methods achieve impressive performance on many
difficult datasets, proving the effectiveness of ConvNets in learning discrimina-
tive features to segment the organ or lesion from a medical scan.

ConvNets are currently the basic building blocks of most methods proposed
for image segmentation. However, they lack the ability to model long-range de-
pendencies present in an image. More precisely, in ConvNets each convolutional
kernel attends to only a local-subset of pixels in the whole image and forces the
network to focus on local patterns rather than the global context. There have
been works that have focused on modeling long-range dependencies for ConvNets
using image pyramids [29], atrous convolutions [3] and attention mechanisms [9].
However, it can be noted that there is still a scope of improvement for modeling
long-range dependencies as the majority of previous methods do not focus on
this aspect for medical image segmentation tasks.

(a) (b) (c) (d) (e)
Fig. 1. (a) Input Ultrasound of in vivo preterm neonatal brain ventricle. Predictions
by (b) U-Net, (c) Res-UNet, (d) MedT, and (e) Ground Truth. The red box highlights
the region which are miss-classified by ConvNet based methods due to lack of learned
long-range dependencies. The ground truth here was segmented by an expert clinician.
Although it shows some bleeding inside the ventricle area, it does not correspond to the
segmented area. This information is correctly captured by transformer-based models.

To first understand why long-range dependencies matter for medical images,
we visualize an example ultrasound scan of a preterm neonate and segmentation
predictions of brain ventricles from the scan in Fig 1. For a network to provide an
efficient segmentation, it should be able to understand which pixels correspond
to the mask and which to the background. As the background of the image is
scattered, learning long-range dependencies between the pixels corresponding to
the background can help in the network to prevent miss-classifying a pixel as the
mask leading to reduction of false positives (considering 0 as background and
1 as segmentation mask). Similarly, whenever the segmentation mask is large,
learning long-range dependencies between the pixels corresponding to the mask
is also helpful in making efficient predictions. In Fig 1 (b) and (c), we can see
that the convolutional networks miss-classify the background as a brain ventricle
while the proposed transformer-based method does not make that mistake. This
happens as our proposed method learns long-range dependencies of the pixel
regions with that of the background.
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In many natural language processing (NLP) applications, transformers [5]
have shown to be able to encode long-range dependencies. This is due to the
self-attention mechanism which finds the dependency between given sequential
input. Following their popularity in NLP applications, transformers have been
adopted to computer vision applications very recently [6,20]. With regard to
transformers for segmentation tasks, Axial-Deeplab [24] utilized the axial at-
tention module [7], which factorizes 2D self-attention into two 1D self-attentions
and introduced position-sensitive axial attention design for segmentation. In Seg-
mentation Transformer (SETR) [30], a transformer was used as encoder which
inputs a sequence of image patches and a ConvNet was used as decoder resulting
in a powerful segmentation model. In medical image segmentation, transformer-
based models have not been explored much. The closest works are the ones that
use attention mechanisms to boost the performance [16,26]. However, the en-
coder and decoder of these networks still have convolutional layers as the main
building blocks.

It was observed that that the transformer-based models work well only when
they are trained on large-scale datasets [6]. This becomes problematic while
adopting transformers for medical imaging tasks as the number of images, with
corresponding labels, available for training in any medical dataset is relatively
scarce. Labeling process is also expensive and requires expert knowledge. Specifi-
cally, training with fewer images causes difficulty in learning positional encoding
for the images. To this end, we propose a gated position-sensitive axial attention
mechanism where we introduce four gates that control the amount of informa-
tion the positional embedding supply to key, query, and value. These gates are
learnable parameters which make the proposed mechanism to be applied to any
dataset of any size. Depending on the size of the dataset, these gates would
learn whether the number of images would be sufficient enough to learn proper
position embedding. Based on whether the information learned by the positional
embedding is useful or not, the gate parameters either converge to 0 or to some
higher value. Furthermore, we propose a Local-Global (LoGo) training strategy,
where we use a shallow global branch and a deep local branch that operates
on the patches of the medical image. This strategy improves the segmentation
performance as we do not only operate on the entire image but focus on finer
details present in the local patches. Finally, we propose Medical Transformer
(MedT), which uses our gated position-sensitive axial attention as the building
blocks and adopts our LoGo training strategy.

In summary, this paper (1) proposes a gated position-sensitive axial attention
mechanism that works well even on smaller datasets, (2) introduces Local-Global
(LoGo) training methodology for transformers which is effective, (3) proposes
Medical-Transformer (MedT) which is built upon the above two concepts pro-
posed specifically for medical image segmentation, and (4) successfully improves
the performance for medical image segmentation tasks over convolutional net-
works and fully attention architectures on three different datasets.



4 JMJ Valanarasu et al.

2 Medical Transformer (MedT)

2.1 Self-Attention Overview

Let us consider an input feature map x ∈ RCin×H×W with height H, weight
W and channels Cin. The output y ∈ RCout×H×W of a self-attention layer is
computed with the help of projected input using the following equation:

yij =
H∑

h=1

W∑
w=1

softmax
(
qTijkhw

)
vhw, (1)

where queries q = WQx, keys k = WKx and values v = WV x are all projections
computed from the input x. Here, qij , kij , vij denote query, key and value at
any arbitrary location i ∈ {1, . . . ,H} and j ∈ {1, . . . ,W}, respectively. The
projection matrices WQ,WK ,WV ∈ RCin×Cout are learnable. As shown in Eq. 1,
the values v are pooled based on global affinities calculated using softmax(qT k).
Hence, unlike convolutions the self-attention mechanism is able to capture non-
local information from the entire feature map. However, computing such affinities
are computationally very expensive and with increased feature map size it often
becomes infeasible to use self-attention for vision model architectures. Moreover,
unlike convolutional layer, self-attention layer does not utilize any positional
information while computing the non-local context. Positional information is
often useful in vision models to capture structure of an object.
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Fig. 2. (a) The main architecture diagram of MedT which uses LoGo strategy for
training. (b) The gated axial transformer layer which is used in MedT. (c) Gated
Axial Attention layer which is the basic building block of both height and width gated
multi-head attention blocks found in the gated axial transformer layer.
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Axial-Attention To overcome the computational complexity of calculating the
affinities, self-attention is decomposed into two self-attention modules. The first
module performs self-attention on the feature map height axis and the second
one operates on the width axis. This is referred to as axial attention [7]. The
axial attention consequently applied on height and width axis effectively model
original self-attention mechanism with much better computational efficacy. To
add positional bias while computing affinities through self-attention mechanism,
a position bias term is added to make the affinities sensitive to the positional
information [18]. This bias term is often referred to as relative positional en-
codings. These positional encodings are typically learnable through training and
have been shown to have the capacity to encode spatial structure of the image.
Wang et al. [24] combined both the axial-attention mechanism and positional
encodings to propose an attention-based model for image segmentation. Addi-
tionally, unlike previous attention model which utilizes relative positional en-
codings only for queries, Wang et al. [24] proposed to use it for all queries, keys
and values. This additional position bias in query, key and value is shown to
capture long-range interaction with precise positional information [24]. For any
given input feature map x, the updated self-attention mechanism with positional
encodings along with width axis can be written as:

yij =

W∑
w=1

softmax
(
qTijkiw + qTijr

q
iw + kTiwr

k
iw

)
(viw + rviw), (2)

where the formulation in Eq. 2 follows the attention model proposed in [24]
and rq, rk, rv ∈ RW×W for the width-wise axial attention model. Note that
Eq. 2 describes the axial attention applied along the width axis of the tensor. A
similar formulation is also used to apply axial attention along the height axis and
together they form a single self-attention model that is computationally efficient.

2.2 Gated Axial-Attention

We discussed the benefits of using the axial-attention mechanism proposed in
[24] for visual recognition. Specifically, the axial-attention proposed in [24] is able
to compute non-local context with good computational efficiency, able to encode
positional bias into the mechanism and enables the ability to encode long-range
interaction within an input feature map. However, their model is evaluated on
large-scale segmentation datasets and hence it is easier for the axial-attention
to learn positional bias at key, query and value. We argue that for experiments
with small-scale datasets, which is often the case in medical image segmentation,
the positional bias is difficult to learn and hence will not always be accurate in
encoding long-range interactions. In the case where the learned relative positional
encodings are not accurate enough, adding them to the respective key, query and
value tensor would result in reduced performance. Hence, we propose a modified
axial-attention block that can control the influence positional bias can exert
in the encoding of non-local context. With the proposed modification the self-
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attention mechanism applied on the width axis can be formally written as:

yij =
W∑

w=1

softmax
(
qTijkiw + GQq

T
ijr

q
iw + GKkTiwr

k
iw

)
(GV 1viw + GV 2r

v
iw), (3)

where the self-attention formula closely follows Eq. 2 with added gating mecha-
nism. Also, GQ, GK , GV 1, GV 2 ∈ R are learnable parameters and together they
create gating mechanism which control influence of the learned relative positional
encodings have on encoding non-local context. Typically, if a relative positional
encoding is learned accurately, the gating mechanism will assign it high weight
compared to the ones which are not learned accurately. Fig 2 (c) illustrates the
feed-forward in a typical gated axial attention layer.

2.3 Local-Global Training

It is evident that a transformer on patches is faster but patch-wise training
alone is not sufficient for the tasks like medical image segmentation. Patch-wise
training restricts the network in learning any information or dependencies for
inter-patch pixels. To improve the overall understanding of the image, we propose
to use two branches in the network, i.e., a global branch which works on the
original resolution of the image, and a local branch which operates on patches of
the image. In the global branch, we reduce the number of gated axial transformer
layers as we observe that the first few blocks of the proposed transformer model
is sufficient to model long range dependencies. In the local branch, we create
16 patches of size I/4 × I/4 of the image where I is the dimensions of the
original image. In the local branches, each patch is feed forwarded through the
network and the output feature maps are re-sampled based on their location to
get the output feature maps. The output feature maps of both of the branches are
then added and passed through a 1× 1 convolution layer to produce the output
segmentation mask. This strategy improves the performance as the global branch
focuses on high-level information and the local branch can focus on finer details.
The proposed Medical Transformer (MedT) uses gated axial attention layer as
the basic building block and uses LoGo strategy for training. It is illustrated in
Fig 2 (a). More details on the architecture and an ablation study with regard to
the architecture can be found in the supplementary file.

3 Experiments and Results

3.1 Dataset details

We use Brain anatomy segmentation (ultrasound) [25,23], Gland segmentation
(microscopic) [19] and MoNuSeg (microscopic) [11,12] datasets for evaluating our
method. More details about the datasets can be found in the supplementary.
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3.2 Implementation details

We use binary cross-entropy (CE) loss between the prediction and the ground
truth to train our network and can be written as:

LCE(p,p̂) = −

(
1

wh

w−1∑
x=0

h−1∑
y=0

(p(x, y) log(p̂(x, y))) + (1− p(x, y)) log(1− p̂(x, y))

)

where w and h are the dimensions of the image, p(x, y) corresponds to the pixel
in the image and p̂(x, y) denotes the output prediction at a specific location
(x, y). The training details are provided in the supplementary document.

For baseline comparisons, we first run experiments on both convolutional and
transformer-based methods. For convolutional baselines, we compare with fully
convolutional network (FCN) [1], U-Net [17], U-Net++ [31] and Res-Unet [27].
For transformer-based baselines, we use Axial-Attention U-Net with residual
connections inspired from [24]. For our proposed method, we experiment with
all the individual contributions. In gated axial attention network, we use axial
attention U-Net with all its axial attention layers replaced with the proposed
gated axial attention layers. In LoGo, we perform local global training for axial
attention U-Net without using the gated axial attention layers. In MedT, we
use gated axial attention as the basic building block for global branch and axial
attention without positional encoding for local branch.

3.3 Results
Table 1. Quantitative comparison of the proposed methods with convolutional and
transformer based baselines in terms of F1 and IoU scores.

Type Network Brain US GlaS MoNuSeg

F1 IoU F1 IoU F1 IoU
FCN [1] 82.79 75.02 66.61 50.84 28.84 28.71

Convolutional
Baselines

U-Net [17] 85.37 79.31 77.78 65.34 79.43 65.99

U-Net++ [31] 86.59 79.95 78.03 65.55 79.49 66.04
Res-UNet [27] 87.50 79.61 78.83 65.95 79.49 66.07

Fully Attention
Baseline

Axial Attention
U-Net [24]

87.92 80.14 76.26 63.03 76.83 62.49

Gated Axial Attn. 88.39 80.7 79.91 67.85 76.44 62.01
Proposed LoGo 88.54 80.84 79.68 67.69 79.56 66.17

MedT 88.84 81.34 81.02 69.61 79.55 66.17

For quantitative analysis, we use F1 and IoU scores for comparison. The
quantitative results are tabulated in Table 1. It can be noted that for datasets
with relatively more images like Brain US, fully attention (transformer) based
baseline performs better than convolutional baselines. For GlaS and MoNuSeg
datasets, convolutional baselines perform better than fully attention baselines
as it is difficult to train fully attention models with less data [6]. The proposed
method is able to overcome such issue with the help of gated axial attention
and LoGo both individually perform better than the other methods. Our final
architecture MedT performs better than Gated axial attention, LoGo and all
the previous methods. The improvements over fully attention baselines are 0.92
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%, 4.76 % and 2.72 % for Brain US, GlaS and MoNuSeg datasets, respectively.
Improvements over the best convolutional baseline are 1.32 %, 2.19 % and 0.06
%. All of these values are in terms of F1 scores. For the ablation study, we use
the Brain US data for all our experiments. The results for the same has been
tabulated in Table 2.

Furthermore, we visualize the predictions from U-Net [17], Res-UNet [27],
Axial Attention U-Net [24] and our proposed method MedT in Fig 3. It can be
seen that the predictions of MedT captures the long range dependencies really
well. For example, in the second row of Fig 3, we can observe that the small seg-
mentation mask highlighted on red box goes undetected in all the convolutional
baselines. However, as fully attention model encodes long range dependencies,
it learns to segment well thanks to the encoded global context. In the first and
fourth row, other methods make false predictions at the highlighted regions as
those pixels are in close proximity to the segmentation mask. As our method
takes into account pixel-wise dependencies that are encoded with gating mecha-
nism, it is able to learn those dependencies better than the axial attention U-Net.
This makes our predictions more precise as they do not miss-classify pixels near
the segmentation mask.

Table 2. Ablation Study

Network U-Net [17] Res-UNet [27] Axial UNet [24] Gated Axial UNet
Global
only

Local
only

LoGo MedT

F1 Score 85.37 87.5 87.92 88.39 87.67 77.55 88.54 88.84

Input U-Net Res U-Net Axial Attn. U-Net MedT GT

Fig. 3. Qualitative results on sample test images from Brain US, Glas and MoNuSeg
datasets. The red box highlights regions where exactly MedT performs better than the
other methods in comparison making better use of long range dependencies.

4 Conclusion

In this work, we explored the use of transformer-based architectures for med-
ical image segmentation. Specifically, we propose a gated axial attention layer
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which is used as the building block for multi-head attention models. We also pro-
posed a LoGo training strategy to train the image in both full resolution as well
in patches. The global branch helps learn global context features by modeling
long-range dependencies, where as the local branch focus on finer features by op-
erating on patches. Using these, we propose MedT (Medical Transformer) which
has gated axial attention as its main building block for the encoder and uses
LoGo strategy for training. Unlike other transformer-based model the proposed
method does not require pre-training on large-scale datasets. Finally, we conduct
extensive experiments on three datasets where we achieve a good performance
for MedT over ConvNets and other related transformer-based architectures.
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In this supplementary material, we describe more details about the datasets
that we used; provide more intricate details on our proposed architecture and
training strategy; conduct an ablation study for our proposed methods; conduct
an analysis on the number of parameters and present some more results.

1 Dataset details

In this section, we describe the datasets that we use in this paper in detail.

1.1 Brain US Dataset

Intraventricular hemorrhage (IVH) which results in the enlargement of brain
ventricles is one of the main causes of preterm brain injury. The main imaging
modality used for diagnosis of brain disorders in preterm neonates is cranial US
because of its safety and cost-effectiveness. Also, absence of septum pellucidum
is an important biomarker for septo-optic dysplasia diagnosis. Automatic seg-
mentation of brain ventricles and septum pellucidum from these US scans is
essential for accurate diagnosis and prognosis of these ailments. After obtaining
institutional review board (IRB) approval, US scans were collected from 20 dif-
ferent premature neonates (age < 1 year). The total number of images collected
were 1629 with annotations out of which 1300 were allocated for training and
329 for testing. We resize the images to 128 × 128 for all our experiments.

1.2 GLAS Dataset

GLAnd Segmentation (GLAS) datatset [19] contains microscopic images of Hema-
toxylin and Eosin (H&E) stained slides and the corresponding ground truth an-
notations by expert pathologists. It contains a total of 165 images which are split
into 85 images for training and 80 for testing. Since the images in the dataset
are of different sizes, we resize every image to a resolution of 128 × 128 for all
our experiments.
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1.3 MoNuSeg Dataset

MoNuSeg dataset [11,12] was created using H&E stained tissue images captured
at 40x magnification. This dataset is diverse as it contains images across multiple
organs and patients. The training data contains 30 images with around 22000
nuclear boundary annotations. The test data contains 14 images which have over
7000 nuclear boundary annotations. We resize the images to 512 × 512 for all
our experiments.

2 MedT details

Medical Transformer (MedT) uses gated axial attention layer as the basic build-
ing block and uses LoGo strategy for training. MedT has two branches - a global
branch and local branch. The input to both of these branches are the feature
maps extracted from an initial conv block. This block has 3 conv layers, each
followed by a batch normalization and ReLU activation. In the encoder of both
branches, we use our proposed transformer layer while in the decoder, we use
a conv block. The encoder bottleneck contains a 1 × 1 conv layer followed by
normalization and two layers of multi-head attention layers where one operates
along height axis and the other along width axis. Each multi-head attention block
is made up of the proposed gated axial attention layer. Note that each multi-
head attention block has 8 gated axial attention heads. The output from the
multi-head attention blocks are concatenated and passed through another 1× 1
conv which are added to residual input maps to produce the output attention
maps. In each decoder block, we have a conv layer followed by an upsampling
layer and ReLU activation. We also have skip connections between each encoder
and decoder blocks in both the branches.

In the global branch of MedT, we have 2 blocks of encoder and 2 blocks of
decoder. In the local branch, we have 5 blocks of encoder and 5 blocks of decoder.

3 Training details

We use a batch size of 4, Adam optimizer [10] and a learning rate of 0.001 for our
experiments. The network is trained for 400 epochs. While training the gated
axial attention layer, we do not activate the training of the gates for the first 10
epochs. We use a Nvidia Quadro 8000 GPU for all our experiments.

4 Analysis

In this section, we present an analysis over some of the parameters and methods
we used for our proposed method.
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4.1 Ablation Study

For the ablation study, we use the Brain US data for all our experiments. We first
start with a standard U-Net. Then, we add residual connections to the U-Net
making it a Res-UNet. Now, we replace all the convolutional layers in the encoder
of Res-UNet with axial attention layers. This configuration is Axial Attention
UNet inspired from [24]. Note that in this configuration we have an additional
conv block at the front for feature extraction. Next, we replace all the axial
attention layers from the previous configuration with gated axial attention layers.
This configuration is denoted as Gated Axial attention. We then experiment
using only the global branch and local branch individually from LoGo strategy.
This shows that using just 2 layers in the global branch is enough to get a decent
performance. The local branch in this configuration is tested on the patches
extracted from the image. Then, we combine both the branches to train the
network in an end-to-end fashion which is denoted as LoGo. Note that in this
configuration the attention layers used are just axial attention layers [24]. Finally,
we replace the axial attention layers in LoGo with gated axial attention layers
which leads to MedT. The ablation study shows that each individual components
of MedT provides useful contribution to improve the performance.

Table 1. Ablation Study

Network U-Net [17]
Res-

UNet [27]
Axial

UNet [24]

Gated
Axial
UNet

Global
only

Local
only

LoGo MedT

F1 Score 85.37 87.5 87.92 88.39 87.67 77.55 88.54 88.84

4.2 Number of Parameters

Table 2. Comparison in terms of number of parameters between the proposed method
with the existing methods.

Network FCN [1] U-Net [17]
U-Net [17]

(mod)
Res-

UNet [27]

Res
UNet [27]

(mod)

Axial
UNet [24]

Gated
Axial
UNet

MedT

Parameters 12.5 M 3.13 M 1.3 M 5.32 M 1.34 M 1.3 M 1.3 M 1.4 M

F1 Score 82.79 87.71 85.37 87.73 87.5 87.92 88.39 88.84

Although MedT is a multi-branch network, we reduce the number of param-
eters by using only 2 layers of encoder and decoder in the global branch and
making the local branch operate on only patches of image. Also, the proposed
gated axial attention block adds only 4 more learnable parameters to the layer.
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In Table 2, we compare the number of parameters with other methods. U-Net
corresponds to the original implementation according to [17]. U-Net (mod) cor-
responds to the U-Net configuration with reduced number of filters so as to
match the number of parameters in MedT. Similarly, Res-UNet and Res-UNet
(mod) corresponds to configurations with more and less number of parameters
by adjusting the number of filters. We do this to show that even with more num-
ber of parameters, the baselines do not exceed MedT in terms of performance
indicating that the improvement is not due to slight change in the number of
parameters.

5 Results

Fig. 1. Qualitative Results. The red box highlights the regions where our proposed
method outperforms the convolutional baselines.

We present some additional qualitative results on top of the qualitative re-
sults presented in the main paper. In Fig 1, we visualize the predictions for our
proposed method MedT along with the predictions for baselines UNet and Res-
UNet for a couple of US scans. In both the samples, it can be seen that the
regions that are highlighted in the red box are miss-classified to be brain ven-
tricles for the convolutional baselines. However, our proposed attention based
MedT does not make the same mistake.

6 Concurrent works

Very recently, TransUNet [2] was proposed which uses a transformer-based en-
coder operating on sequences of image patches and a convolutional decoder with
skip connections for medical image segmentation. As TransUNet is inspired by
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ViT, it is still dependent on pretrained weights obtained by training on a large
image corpus. TransFuse [28] was recently proposed for polyp segmentation tasks
using a parallel CNN branch and transformer branch fused using a BiFusion
module. Unlike these works, we explore the feasibility of applying transform-
ers working on only self-attention mechanisms as an encoder for medical image
segmentation and without any need for pre-training.
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