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Spurious power consumption data reported from compromised meters controlled by organized adversaries

in the Advanced Metering Infrastructure (AMI) may have drastic consequences on a smart grid’s operations.

While existing research on data falsification in smart grids mostly defends against isolated electricity theft,

we introduce a taxonomy of various data falsification attack types, when smart meters are compromised by

organized or strategic rivals. To counter these attacks, we first propose a coarse-grained and a fine-grained

anomaly-based security event detection technique that uses indicators such as deviation and directional change

in the time series of the proposed anomaly detection metrics to indicate: (i) occurrence, (ii) type of attack, and

(iii) attack strategy used, collectively known asattack context. Leveraging the attack context information, we

propose three attack response metrics to the inferred attack context: (a) an unbiased mean indicating a robust

location parameter; (b) a median absolute deviation indicating a robust scale parameter; and (c) an attack

probability time ratio metric indicating the active time horizon of attacks. Subsequently, we propose a trust

scoring model based on Kullback-Leibler (KL) divergence, that embeds the appropriate unbiased mean, the

median absolute deviation, and the attack probability ratio metric at runtime to produce trust scores for each

smart meter. These trust scores help classify compromised smart meters from the non-compromised ones.

The embedding of the attack context, into the trust scoring model, facilitates accurate and rapid classification

of compromised meters, even under large fractions of compromised meters, generalize across various attack

strategies and margins of false data. Using real datasets collected from two different AMIs, experimental

results show that our proposed framework has a high true positive detection rate, while the average false

alarm and missed detection rates are much lesser than 10% for most attack combinations for two different

real AMImicro-grid datasets. Finally, we also establish fundamental theoretical limits of the proposedmethod,

which will help assess the applicability of our method to other domains.
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1 INTRODUCTION

AdvancedMetering Infrastructure (AMI) is one of the basic units of the smart grid technology. AMI
collects data on loads and customer’s power consumption [20, 38], from Smart Meters installed on
the customer site (see Figure 1). Such data plays a pivotal role in several critical tasks such as
automated billing, demand response, load forecast and management [9, 20, 23].
Apart from automated billing, strategic tasks are expected to be performed by future smart

grids, based on the AMI power consumption data. For example, AMI will have implications on
tasks such as daily and critical peak shifts [8, 14, 36]. When the consumption increases beyond a
critical limit, emergency “peaker plants” are currently used by most utilities for additional power
generation tomeet the demand. However, such peaker plants are extremely carbon- as well as cost-
intensive. In the modern grid, the utility will also have the option for automated demand response
where utilities pay customers to shut certain appliances temporarily (peak shifting) to obviate the
need for additional generation [13, 35]. In general, accurate short- or long-term data on loads and
consumption will aid in accurate demand response, load forecast, and planned generation in the
future smart grid [1]. Therefore, the integrity of the AMI data is of utmost importance.
Defense against falsification of power consumption data from AMIs has largely focused on elec-

tricity theft [12, 17, 19, 30], where individual customers are primary adversaries who report lower
than actual usage for lesser bills. Since isolated smart meters belonging to rogue customers re-
duce the value of power consumption, we term such an adversarial attack as a deductive mode
of data falsification. However, it has been widely acknowledged that, given the cyber and inter-
connected nature of AMI, it could potentially be the target of organized adversaries such as cyber
criminals [34], utility insiders [38], or business competitors [15]. Organized adversaries can com-
promise several smart meters and then spoof false power consumption data [17] from smart meters.
Organized adversaries are more equipped to crack/leak cryptographic secrets, have a higher attack
budget, and possess the ability to simultaneously attack other elements of the grid (e.g., audit logs,
transformers meters) in order to avoid easy consistency checks on false data. Existing research
does not focus on defense against such adversaries and is only restricted to electricity theft from
isolated customers as primary adversaries. Given that electricity theft is targeted at individual cus-
tomer gain, the margin of false data is usually arbitrary [12] and typically high [16] such that there
is a tangible benefit to each customer, thus facilitating easier detection.
Additionally, the goals of organized adversaries are not just restricted to monetary benefits on

the customer side. As a recent example, in the Netherlands [33], a manufacturer installed a large
number of faulty smart meters (not proved whether it was an erroneous or a deliberate act) that
reported 6 times higher than actual power consumption. We term such an attack as an additive
mode of data falsification. For example, an additive attack may be launched by a rival utility on
its competing company’s meters, that may induce loss of business confidence by the customers
of the victim company, due to higher bills, as reported in [32]. A class action lawsuit filed against
a victim utility was reported in this case. If the utility participates in demand response, it may
lose revenue from additive attacks for undue incentives paid to customers for induced peak shifts.
Indirectly, additive attacks can be triggered by a load altering attack (LAA) [22], thus increasing the
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Fig. 1. Architecture of AMI [3].

net consumption sensed by the smart meter. It may also be noted that adversaries may orchestrate
large-scale deductive attacks to cripple the utilities with huge revenue losses [38].
Apart from the additive and deductive attacks, we argue the possibility of more complex attack

types in AMI. For example, a balancing additive and deductive attack with the same margin of
falsification, could evade mean aggregate (or location parameter) based detection models. We term
such a strategy as a Camouflage attack, which may be motivated for generating lesser bills to one
set of customers at the expense of the other set. Such attacks may stay undetected, without raising
any suspicion because the total inflow and outflow of power measured (or mean predictions) at
the transformer meters, and the total demand and reported usage remain relatively unchanged.
The attacker in such a case does not need to attack other elements in the grid (for e.g. transformer
meters) to prevent easy consistency checks. In general, random additive and deductive attacks
may simultaneously coexist in the same AMI network, when launched by different adversaries
with conflicting goals. We term such a scenario as a Conflict attack, that is a mixed attack type with
unequal margins of falsification for each underlying simple attack type. Apart from the four attack
types, there could be special attack strategies such as: (i) Data Omission attacks, where the data is
prevented from reaching the utility (ii) On-Off attacks, where the adversary only attacks on specific
hours of the day, and (iii) Data Distribution Order Aware Attacks, where the attackers ensure that
the falsified data is more proximate to the original data distribution than usual assumed random
strategies. While, some works have explored on-off strategies [12], data-omission and order aware
attacks have not gained attention. To summarize, existing defense frameworks cannot handle all
of the above falsification types and strategies simultaneously.

Contributions. In this article, we introduce a taxonomy of multiple possible data falsification at-
tacks, and strategies launched by organized adversaries. Then, we design two novel coarse-grained
and fine-grained statistical invariants (based on PythagoreanMeans) of aggregate power consump-
tion data and learn their time series under no attacks. By exploiting knowledge of the impacts
of each attack type on these invariants, a coarse-grained and a fine-grained anomaly-based secu-
rity event detection criterion is proposed that collectively indicates the attack context that includes
occurrence, type, and strategyof different attacks. Such detection criterion with attack context un-
like existing works, better discriminate between attacks from legitimate changes and accordingly
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generates the following attack responses: (i) replaces location and scale parameters with an robust
mean and robust median absolute deviation, respectively, and (ii) calculates an attack probability
time ratio metric. Subsequently, we propose a Kullback-Leibler divergence-based Relative Entropy
Trust Model that embeds the attack responses from the attack context, in a way that identifies
compromised meters with a high detection rate in a quicker time with less false alarms. Experi-
mental results using real datasets from different AMIs, show that our detection technique is able
to identify compromised meters with higher detection rates in quick time while incurring lower
false positives, than recent works in the area, under various attack strategies employed by adver-
saries. Finally, we perform extensive formal security analysis to show the performance limits of
our model.

Novelty. Our proposed work is the first effort to establish trustworthiness in AMI against mul-
tiple attack types and faults with coarse-grained and fine-grained attack strategies. Second, our
focus is on orchestrated data falsification attacks devised by organized adversaries rather than
just rogue customers. Our method works well for even higher fractions of compromised meters,
unlike most statistics-based methods due to the embedding of real-time attack responses into the
trust model. To demonstrate detection sensitivity in terms of the margin of false data, we assume
the full attack strategy space and show that detection rates are high across a wider threat land-
scape. Additionally, our method’s time to detection of compromised meters is quick even under
opportunistic attack strategies that are sporadic over a time domain via attack-time probability
ratio embedding. Our proposed method is lightweight and gives better performance compared to
the classical bad data detection mechanisms which use expensive multi-class SVM and neural-
network-based training models. We also discuss about the limitations of our proposed framework
under the adversary’s knowledge of our defense mechanism, which motivates the direction in which
further research should be conducted.
The rest of this article is organized as follows: Section 2 describes the system and threat models

while Section 3 discusses the proposed framework with theoretical analysis. Section 4 includes
a special embedding method required to counter opportunistic attacks. Section 5 discusses the
experimental results and Section 6 concludes the article.

2 SYSTEM AND THREAT MODELS

In this section, we discuss the network architecture of the AMI, characterize the distribution of
two real datasets, and propose the threat model for organized data falsification in AMI.

2.1 Architecture

We consider a collection of N smart meters reporting power consumption data to a Neighborhood
Area Network (NaN) Gateway (acts as an edge computing node) periodically and independently.
The ith smart meter, records an actual power consumption data, say P iact (t ) at the end of each time
slot t (t is slotted hourly). The reported power consumption P ir ep (t ) is equal to P iact (t ), if i is not

compromised. However, P ir ep (t ) � P iact (t ), if i is compromised by an adversary. We model P iact (t )

as the realizations of a random variable P i , that denotes power consumption from the ith meter.
The NaN gateway piggybacks data from each smart meter and sends it to the utility via a Wide
Area Network (WaN) Gateway that collects data from multiple such NaN gateways. Occasion-
ally, there is another network hierarchy known as the Field Area Network (FAN) gateway which
connects NaN and WaN and may host edge computing services. Both FaN and WaN may host
the security monitoring mechanisms. Deploying security mechanism at the FaN is a decentralized
implementation, while deployments at the WaN is a centralized implementation. Our framework
works regardless of the implementation. The current evaluation proposed mechanism assumes a
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Fig. 2. Power consumption distribution: (a) All houses, (b) Mixture.

decentralized implementation given the size of the microgrid datasets. Moreover, Cardenas et al.
[6] has observed the benefits of decentralized security implementations over centralized ones.

2.2 Data Set Characterization and Transformations

To characterize the distribution of the random variable P i from the ith smart meter, we conducted
preliminary investigations on real power-consumption datasets with 800 [37] (Texas Dataset) and
5000meters [39] (Irish Dataset) collected on an hourly basis. The Texas dataset contains data across
the years 2014, 2015, and 2016. Throughout the article, data from 2014 and 2015 are used as the
historical training set, while 2016 serves as a testing set. The Irish Dataset contains approximately
535 days of data from years 2009-2010, which we use to prove the generality of our results.
Each home consists of one smart meter in the datasets. We observed that, for each meter, the

power consumption can be approximated as a log normal distribution. We also observed that all
such log normal distributions are clustered close to each other; that is, the variance between them
is not arbitrarily large. Figure 2(a) summarizes the results from all the houses in the Texas Dataset.
Thanks to this observation, we can approximate the aggregate of the individual log normals using
a mixture distribution, which is also log normal as evident from Figure 2(b). Let Pmix denote the
approximate log normal mixture of all P i .

Next we transform all P i using a Box-Cox transformation technique [5] to obtain an approximate

normally distributed r.v. denoted as P̂ i . Let P̂mix denote the mixture of all the P̂ i . Results of ˆPmix ,
for different months is depicted in Figure 3(a). The Box-Cox transformation serves a dual purpose.
First, it maps the data points to a lower portion real axis. Some interesting statistical properties of
proposed Pythagorean-Mean-based invariants are more prominent in this lower-dimensional real
axis which increases the relative sensitivity of Harmonic Mean to Arithmetic mean differences
and their ratios (used for detecting anomaly) under false data injections. Below, we describe the
Box-Cox transformation technique and how we apply it in our context.

2.2.1 Box-Cox Transformation. The transformation of non-normal data into approximate nor-
mal distribution can be achieved using the following method: Given any set of data points

D = {D (1), . . . ,D (k ), . . . ,D (n) }, where n denotes the total number of data points in D, the Box-Cox

transformation of D is given by d̂ = {d (1) (λ), . . . ,d (k ) (λ), . . . ,d (n) (λ)}:

d (k ) (λ) =
⎧⎪⎨⎪⎩

(D (k ) )λ−1
λ

if λ � 0;

ln(D (k ) ) if λ = 0,
(1)
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Fig. 3. After Box-Cox: (a) Monthly Texas; (b) Yearly Irish.

where λ is an appropriate transformation parameter chosen from a possible set λ∗ ⊆ R, such that

λ = argmax
λ∈R

f (D, λ∗),

where f (D, λ∗) is the logarithm of the likelihood function given by:

f (D, λ) = −n
2
ln
⎡⎢⎢⎢⎢⎣

n∑
i=1

[d (k ) (λ) − d̄ (λ)]2
n

⎤⎥⎥⎥⎥⎦
+ (λ − 1)

n∑
i=1

ln(d (k ) ), (2)

such that d̄ (λ) =
∑n
i=1 d

(k ) (λ)
n

is the arithmetic mean of the transformed data.

2.2.2 Applying Transformation to the Datasets. The data from each smart meter i (analogous to
D) is transformed onto the Box-Cox transformed scale by using the above procedure. Thereafter,
we build the time series of the whole dataset in the Box-Cox transformed scale as:

p̂ (t ) = {p̂1 (t ), . . . , p̂i (t ), . . . , p̂N (t )},
where p̂ (t ) denotes the reported time series over all smart meters i ∈ {1,N } at each time slot. The
appropriate λ is learned from the historical training set (2014, 2015), and the same is applied to
the testing set (2016) and Irish Dataset (2010). To prove the generality of this method, we repeated
the experiments for the Irish Dataset [12], and reported similar results which are included in the
preliminary version of our work [2]. The distribution for Irish Dataset after Box-Cox transforma-
tion. After the transformation, 67% and 68% of data points fall within the first standard deviation
for the Texas and Irish Datasets, respectively. However, the resultant distributions as a whole are
not symmetric about the mean and 64% and 69% of the data are lesser than the mean and 36%
and 31% of the data are greater than the mean. This asymmetry is another factor that affects the
observations in the anomaly detection phase.

2.3 Time- and Space-Domain Granularities of Detection

In this article, for various time series and trust score calculations, we use different time-domain
granularities. An hourly time granularity is referred to as a time ‘slot’, denoted by t . A daily time
granularity consisting of 24 time slots is referred to as a time ‘window’, denoted byT . A collection
of time windows is referred to as a time ‘frame’, denoted by F (e.g., 30 days). In this article, the
anomaly detection has two versions. The coarse-grained version runs on a daily basis (with T )
while the fine-grained version runs on an hourly basis (with t ). In this article, the Kullback-Leibler

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



Attack Context Embedded Data Driven Trust Diagnostics 9:7

(KL) divergence-based trust model assigns the trust of each smart meter at the end of a frame
(say every (a) 10 days or (b) 30 days) based on the evidence and observations that are collected
on an hourly basis. We assume that the whole defense framework is running in a decentralized
manner, that is deployed or hosted in an edge device such as a NaN gateway in the AMI network.
In such cases, the usual micro-grid size under observation varies between 100–1,000 houses. For
a larger grid, our trust model will also work for centralized implementations seamlessly, however,
the anomaly-based security event detection will need to be decentralized as pointed out in several
prior works [6].

2.4 Threat Model

Now let us introduce a detailed threat model for our framework.

2.4.1 Adversary Types and Scope. In this article, we keep the scope of threats to be a little less
specific, since, in the real world, the defender has no control over what kind of adversary will
attack its infrastructure. A good defense model is one that can capture a wider range of attacks
from various adversary types who can have various creative strategies to launch their intended
attack objectives. In this light, we divide the threat model specification into four features: data
falsification attack types, fraction of compromised meters, margins of false data, and attack strate-
gies that specify a wide threat landscape. The attack strategies are further divided into continuous
and opportunistic strategies. The article’s core contribution (Section 3) by default considers the
continuous strategies. Thereafter, it explains the modifications required to the core contribution
separately in Section 4 for opportunistic attack strategies.
We assume that the organized adversary belongs to either business competitors or organized

cyber-criminals, who possess the ability to compromise several smart meters by bypassing cryp-
tography or manipulating its sensory inputs, or utility personnel who might manipulate several
smart meters physically [38] (e.g., via optical probes [34]). False power consumption data from a
meter can be achieved in the following ways: (a) manipulation of inputs to the meter [22], (b) ma-
nipulating data content in the meter [34], and (c) in-flight from the meter [18] to NaN gateway. A
meter is compromised if either the input, content, or output is modified from the actual value. The
adversary launches data falsification from multiple such compromised smart meters concurrently.
In another variation, the attacker could take control of NaN gateway where it could intercept data
from multiple smart meters at once and launch smarter attack strategies as discussed later.
We assume attackers who may have a long- or short-term damage objective. Long-term damage

requires evading detection easily, while still benefiting from attacks. The adversary may accept
some initial loss in the hope of avoiding easy detection and accruing incremental benefits over
time. Examples of long-term adversarial objectives include monetary gains in terms of electric-
ity pricing and belief manipulation of learning-based demand forecast models. In this case, the
false data margins are typically smaller. Short-term damage, on the other hand, requires inflicting
the maximum damage in a short time, before getting detected. Examples of short-term objectives
include an attacker aiming to gain quick revenue or masquerade as an illegitimate demand re-
sponse event. Due to the contrasting requirements on these two objectives, important adversarial
parameters such as the fraction of compromised nodes ρmal and the margin of false data δavд can
readily vary, depending on the nature of time deadlines associated with such objectives. In the real
world, we can encounter attackers with rational or irrational objectives, and hence it is important
to explore all combinations of ρmal and δavд .

2.4.2 Data Falsification Attack Types in AMI. We define the manner in which the actual power
consumption data P iact (t ) of each meter i is modified as the mode of data falsification. We identify
the following modes:
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Additive. The adversary reports P ir ep (t ) = P iact (t ) + δ (t ), where δmin ≤ δ (t ) ≤ δmax . This mode
can lead to loss of business confidence from customers due to higher bills and masquerade a de-
mand peak leading to the remote disconnect of customer appliances, thereby inducing utilities to
pay undue incentives.
Deductive. The adversary reports P ir ep (t ) = P iact (t ) − δ (t ), where δmin ≤ δ (t ) ≤ δmax . This mode
can lead to loss of revenue for power utility companies.
Camouflage. The adversary divides the compromised meters into two teams equal in number,
which simultaneously adopt an additive and deductive mode, respectively, with an equal δ (t ).
This mode can favor a smart meter of one power utility at the expense of others and has less
impact on the strategic decisions in the grid. It cannot be detected by mean (parametric)-based
anomaly detectors, because no suspicion is raised due to the negligible change in the mean power
consumption.
Conflict. It is a scenario where additive and deductive attacks coexist simultaneously but are
not balanced (i.e., uncoordinated). Such a scenario represents that random attacks are possible
if there are more than one uncoordinated adversarial team or multiple dishonest customers acting
randomly.

2.4.3 Average Margin of False Data δavд . The value δ (t ) is generated randomly within an inter-
val [δmin ,δmax ], for δmin ,δmax > 0, and accordingly added to or deducted from the actual power
consumption. Note that, arbitrarily high δmax may facilitate intuitively easy detection, while very
low δmax hardly accrues any revenue. The average of δ (t ) is a strategic value, denoted by δavд and
referred to as the margin of false data. The units of δavд values in this article is in Watts.
Apart from the type of attack, the attacker chooses a strategic value of δavд in the interval

[δmin ,δmax ] as part of its strategic objective. The inflicted δavд may be high or low depending
on the amount of damage it wants to inflict, and the short- or long-time horizon of the attack.
However, the attack margin δ (t ), may be more in peak periods than non-peak periods, to exploit
the time-dependent pricing of electricity.

2.4.4 Attacker Budgets and Fraction of Compromised Meters. We assume that organized adver-
saries compromise a certain numberM of N smart meters based on attack budget. The fraction of
compromised nodes is ρmal =

M
N
, which can be high for smaller microgrids with a small N .

With higher ρmal , the adversary can afford to decrease the margin of false data (per meter) to
avoid getting intuitively and easily detected. Although the attack cost increases in these cases, the
adversary may reduce the chance of detection, and look to recover the initial cost in the long term.
This is however not an option for adversaries with short-term objectives. A concrete mathematical
example of this aspect can be found in the preliminary version of this work [2].

2.4.5 Attack Strategies. Now we represent different falsification strategies of additive, deduc-
tive, camouflage, and conflict attacks for any δavд and ρmal . The attack strategy describes how the
δ (t ) bias values are distributed over the interval [δmin ,δmax ] as well as over the time domain. In
this article, we study attack strategies such as (uniform random bias, data distribution order aware)
that are “continuous” over time, while (on-off, data omission) are opportunistic strategies that are
discontinuous and fine-grained over the time domain due to their opportunistic nature.
Uniform Random Bias. Since the distribution of power consumption is unimodal, the attacker re-
frains from any strategy that would make the resultant distribution multi-modal. In that sense, a
uniformly distributed random δ (t ) injected into the actual smart meter data does not change the
overall shape of the distribution but only affects its location and or scale parameters as proved in
our early work [2]. Such variants of a uniform distribution over time have been adopted from [12].
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Data Distribution Order Aware. We use this strategy where the adversary matches the δ (t ) values
with the actual consumption data recorded from its compromised set of meters. The adversary
sorts the data from its controlled meters and the false bias δ (t ) values from smallest to largest
on every time slot. For an additive attack, the smallest recorded value is biased with the highest
value in the set of δ (t ), and so on. For deductive attack, the smallest data from the meter set
is biased with smallest value in the set of δ (t ). For a camouflage attack, since the compromised
meter population is divided into two parts, the additive and deductive order aware strategy are
implemented similarly. Such an attack can prevent obvious outliers, which is much better than
a simple uniform random strategy, and therefore more proximate to the actual data distribution,
thus making it harder to detect. Detailed implementation of the attack and proof that it follows
the original data distribution more closely is provided in Appendix A. We use this specifically for
deductive attacks in this article, since P ir ep (t ) are lower bounded by 0. This does not allow realizing
the full δavд margin in the attack and too many zero values that can raise easy suspicion. Such a
strategy is possible if the adversary controls some NaN gateway.
On-Off. In this case, the adversary’s orchestrated attacks are distributed between OFF periods (no
falsification is launched) and ON periods (falsification is launched) over time. Such an attack is
inspired by dynamic pricing nature of the electricity. For example, if the malicious purpose is
electricity theft, the attackers launch attacks during time slots when the electricity prices are the
highest.
Data Omission. The data may be prevented from reaching the NaN/FaN gateways, either (i) inten-
tionally (omission attack) or (ii) due to accidental network failures (omission failure). An example
of an omission attack is the jamming of the wireless channels that carry the data over the mesh
network to the edge gateway. Such omission attacks cripple data availability which affects deci-
sion and analytics in the smart grid. Alternatively, some hops of the mesh network may fail or
channels may occasionally drop some packets due to network collisions. Hence, no data reaches
from particular meters on the concerned time slots, which is termed as an omission failure.
We use the uncleaned dataset (which contains missing data on certain times slots) to show

that we can detect such omission failures. In contrast, we simulate omission attacks by dropping
the data from ρmal fraction of compromised meters. We believe that omission failures tend to be
very random and infrequent, while omission attacks are likely to be more frequent. Additionally,
omission attacks depend on the opportunity to thwart the communication resources, and therefore
the time between successive attacks is not necessarily periodic like an ON-OFF strategy.

2.5 Overview of the Proposed Framework

The proposed framework has three phases: (a) Anomaly-Based Security Event Detection,
(b) Security-Event-BasedAttack Context and Response Generation, and (c) Attack Context Embed-
ded Trust Scoring Model. The anomaly detection phase indicates the nature of the security event
in terms of the information such as the presence, type, strategy, and strength of the concerned
data falsification attack. Such information extracted from the security event detection aids in the
calculation of certain attack response metrics such as an unbiased robust mean, a median absolute
deviation, and an attack probability time ratio by the attack context generation phase. Such attack
response metrics are supplied to the trust-scoring model phase that calculates a linearly separable
score for each meter and uses it to identify the compromised meters launching data falsification
attacks. The embedding of the attack-context-based response metrics improves the accuracy of the
compromised meter classification and the classification convergence times regardless of the attack
types, margins, and strategies inflicted.
The anomaly detection phase is further divided into two parts: (i) coarse-grained anomaly de-

tection for attacks for all strategies except on-off and omission strategies; (ii) fine-grained anomaly

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



9:10 S. Bhattacharjee et al.

detection for on-off and omission strategies. Note that, the coarse- and fine-grained anomaly de-
tectors run simultaneously in the framework since any attack strategy is possible in reality. While
both anomaly detection variants help to calculate the robust mean and median absolute deviation,
the attack probability time ratio is relevant only for the fine-grained anomaly detector. The trust
model is further divided into three parts: (a) estimating parameters of true proximity distributions,
(b) estimating parameters of observed proximity distribution with appropriate attack context em-
bedding, and (c) The Kullback-Leibler Divergence calculation.

3 PROPOSED FRAMEWORK FOR DATA-DRIVEN TRUST DIAGNOSTICS

In this section, we propose the coarse-grained and fine-grained anomaly-based security event de-
tection scheme. The proposed event detection scheme leverages the properties of how different
data falsification types change the Pythagorean Means (such as Harmonic, Geometric, and Arith-
metic Means) of an attacked time series. We propose an invariant for both coarse- and fine-grained
anomaly detection schemes, that is stable under no attacks. The evidence of invariant stability
is proved through two real datasets gathered from 200 from a solar village in Texas [37], and
5,000 smart meters in Dublin, Ireland. Then, we show how these invariants exhibit visibly evident
changes under various attacks, which forms the premise for inferring the presence of the attack,
the type of data falsification, and the strategy used by the adversary that collectively reconstructs
the security event. Based on the nature of the security event, an attack context is generated (in the
form of robust mean, median absolute deviation, attack probability time ratio). The attack context
information is forwarded to the trust-based scoring model which enables accurate identification
of the compromised smart meters.

3.1 Anomaly-Based Security Event Detection

First, we propose the detection metric (or invariant). Second, we explain the reasoning behind the
design of the proposed invariant. Third, we establish the normal range of the invariant under no
attacks. Fourth, we propose the detection criterion to detect the occurrence of an orchestrated
attack that needs a consensus (location and scale) correction. Fifth, we show how the attack type
could be determined given the incidence of attack. Finally, we show how the knowledge of the
incidence of attack and its corresponding type is used to estimate an approximate robust mean
and median absolute deviation (collectively called robust consensus measures). Information on the
robust consensusmeasures is supplied to the entropy-based trust model for improved classification
that maximizes detection sensitivity for a wide range of δavд and ρmal values while minimizing
the incidence of false alarms.

3.1.1 Pythagorean Means. The various Pythagorean means (Arithmetic, Geometric, and Har-
monic means) in a particular time slot t is given by:

AM (t ) =

∑N
i=1 p̂

i (t )

N
, GM (t ) = �




N∏
i=1

p̂i (t )�
�

1
N

, HM (t ) =
N∑N

i=1
1

p̂i (t )

The average of all these hourly means AM (t ), GM (t ), and HM (t ) over a particular day (t ∈
[1, 24]) is represented by AM (T ), GM (T ), and HM (T ), respectively, where T ∈ [1, 365]. For exam-

ple, AM (T ) =
∑24

t=1AM (t )/24), and so on. Due to the well-known Pythagorean mean inequality,

HM (T ) ≤ GM (T ) ≤ AM (T ) holds.

3.1.2 Proposed Coarse-Grained Invariant (AD (T )). From our statistical studies over two big
datasets, we discovered that the time series of the absolute difference between average daily
harmonic and arithmetic mean power consumption is an effective invariant across datasets.
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Fig. 4. Time series of proposed AD (T ): (a) Texas Dataset; (b) Irish Dataset.

Fig. 5. Unstable AM (T ) for Texas Dataset.

Theoretical reasoning behind the stability of the harmonic mean and arithmetic combination has
been extensively discussed and presented in our previous work [3]. Formally, the coarse-grained
invariant is quantified by AD (T ) and is defined as:

AD (T ) = |AM (T ) − HM (T ) |. (3)

Equation (3) is designed as an anomaly detection metric with two main advantages: First, the
time series of AD (T ) is a highly stable invariant of the aggregate power consumption, compared
to other parametric and non-parametric measures that are functions of the instantaneous or his-
torical arithmetic mean power consumption as proved in our previous work [3]. Furthermore, our
previous work in the context of smart transportation systems [26, 28] showed that this observa-
tion of stationarity in harmonic and arithmetic mean generalizes across application domains under
careful spatial and temporal considerations. High invariance over time or a given context is one
of the desired properties of anomaly detectors [7].
Figure 4(a) shows the instantaneous values of AD (T ) for two different years (2014 and 2015). It

can be verified that, under no attacks, the average value of AD (T ) is about 0.49 and the values are
relatively stable over time across both years. Similarly, Figure 4(b), shows the time series ofAD (T )
for the portion of the Irish Dataset that has a historical overlap between two years 2009-2010. The
AD (T ) of the Irish Dataset is stable over history, since AD (T ) on the T th day in a year is not ar-
bitrarily different from the AD (T ) of the corresponding T th day in other year. Both Figures 4(a)

and 4(b) are in complete contrast to Figure 5, which shows that the average arithmetic meanAM (T )
for the Texas Dataset can be seen as neither stable over time or over history. As it is well known
that anomaly detection metrics ideally need high invariance under normal operations, we there-
fore conclude thatAD (T ) is a better invariant compared to any derivative of the popular arithmetic
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mean and standard deviation. Additionally, since the values are not arbitrarily different, the vari-

ance in theAD (T ) samples is also lesser compared to the variance inAM (T ) samples. An elaborate
theoretical explanation on the generality of the observed stability of the absolute difference be-

tween HM (T ) and AM (T ) across datasets is elaborated in detail in Appendix B.

3.1.3 Summary of Security Properties of Proposed AD (T ). The second advantage is that har-
monic, geometric, and arithmetic mean possess certain special mathematical properties that pro-
duce unique changes in the time series ofAD (T ), whenever data falsification occurs from a subset
of data sources that otherwise produced a stationary AD (T ).
While harmonic mean and geometric mean are strictly Schur-Concave functions [29], the arith-

metic mean is both a Schur Concave and a Schur Convex function of its arguments (the numbers
involved in the calculation of the means). Such a difference in the strictness of Schur-Concavity
property produces six unique novel properties in the context of data falsification that we had iden-
tified. The direction of deviation depends on the skewness in the datasets, but the fact there will
be deviation is generic and independent of the datasets. These six properties are divided into two
subgroups based on the direction of change in the AD (T ). The direction of change in AD (T ) is de-
pendent on whether the δavд is greater or lesser than a certain threshold Γ, given a particular ρmal ,
attack type, and the skewness in the data distribution. The theoretical and experimental proof of
the properties has been established in our earlier work [3]. For the sake of completeness, we now
provide a summary of the properties in Harmonic and Arithmetic means that cause the deviation
in AD (T ) under attacks.

Case 1: For all attacks with δavд > Γ, the following hold true:

Property 1: Under additive attacks, the harmonic mean grows slower compared to the arithmetic
mean. Thus, AD (T ) will increase.
Property 2: Under deductive attacks, the harmonic mean decays faster compared to the arithmetic
mean decay rate. Thus, AD (T ) will increase.
Property 3: Given the same δavд and the same set of arguments, the decay in harmonic mean is
larger for deductive attacks compared to growth in harmonic mean for additive attacks. Therefore,
in a camouflage attack with the same δavд , the resultant harmonic mean will be lesser than the
original harmonic mean, while the arithmetic mean will not change. Thus, AD (T ) will increase.
Effect on Properties 1, 2, and 3 onAD (T ): It is easy to conclude that all the above three properties will

cause the AD (T ) to increase after attacks rather than before attacks because the gap between HM

and AM widens, so does its absolute value represented by AD (T ). This is experimentally verified
in Figure 6(a), where an attack injected after the 250th day shows a sharp increase in the AD (T )
for various attack types.

Case 2: For all attacks with δavд < Γ, the above three properties are reversed and the following
hold true:
Property 4: Additive attacks will show larger growth in harmonic mean compared to arithmetic
mean growth. Thus, AD (T ) will experience a decrease.
Property 5: Deductive attacks will show smaller decay compared to arithmetic mean decay. Thus,
AD (T ) will experience a decrease.
Property 6: AD (T ) will decrease if all data points attacked with an additive attack type are per-
turbed with a value such that new perturbed values are smaller than the actual mean. This is
typically true for power consumption datasets that are right skewed, hence the mean is shifted
towards the right tail of the distribution. If such data is attacked, on average, the number of data-
points being modified will be smaller than the actual arithmetic mean.
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Fig. 6. AD (T ) deviation under attacks: (a) Texas Dataset; (b) Irish Dataset.

Effect on Properties 4, 5, and 6 on AD (T ): It is easy to conclude that all the above three properties
will cause the AD (T ) to decrease after attacks rather than before attacks because the gap between

HM and AM narrows, so does its absolute value, represented by AD (T ). This is experimentally
verified in Figure 6(b), where an attack injected after the 100th day shows a decrease in theAD (T ).

Approximation of Crossover Γ. For directional switching of the proposed AD (T ), the approxi-
mate bounds on the average value of Γ and its details have been published in our earlier work [3].
The closed form of Γ is not possible due to non-existence of the closed form. However, approxi-
mation of the lower and upper bounds are given by the following:
The approximate (average case) lower bounds are: Γ− (rlow ) = Γ+ (llow ) =

Γlow =
σ

M
+

σ
√
M

√
N −M
N − 1 + σ , (4)

where + and − superscripts denote additive and deductive manipulation and l and r denote
whether the bias points are on the left or right of the actual mean. The approximate upper bounds
are: Γ+ (lhiдh) = Γ− (rhiдh) =

Γhiдh =max �


σ 2,

2σ

M
+

σ
√
M

√
N −M
N − 1 + 2σ

�
�
. (5)

3.1.4 Identifying Normal Range of AD (T ). Let the standard deviation of the AD (T ) samples in
the training set be denoted as σAD (T ) . Given that theAD (T ) metric is stable over history as evident
from earlier results, the normal range can be a residual margin around the historical values. The
margins can be a parameterized by a scalar factor γ ∈ (0, 3] of the standard deviation of theAD (T )
samples, such that the upper threshold for AD (T ) at the T th window in the testing set i given by:

ADtest
max (T ) = ADhist (T ) + γσAD (T ),

and the corresponding lower threshold is:

ADtest
min (T ) = ADhist (T ) − γσAD (T ).

Please note that, it is possible that smaller δavд (stealthy) or smaller ρmal values (isolated
or small scale adversaries) will not create enough deviation for the AD (T ) to fall outside the
ADnorm ∈ [ADtest

min ,AD
test
max ]] range. However, such smaller attacks will also not drastically affect

the consensus measures (mean and standard deviation). As mentioned earlier, one of the pur-
poses of the anomaly detection phase in our framework is to provide an unbiased instantaneous
mean and median absolute deviation to the trust model across either high ρmal or δavд values.

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



9:14 S. Bhattacharjee et al.

Table 1. Concluding Security Events

AD AM HM GM Conclusion

Increased Increased Increased Increased Additive
Increased Decreased Decreased Decreased Deductive
Increased Same Decreased Decreased Camouflage
Decreased Increased Increased Increased Additive Low
Increased Any Any Any Conflict
Same Don’t Care Don’t Care Don’t Care No Attack

Therefore, successful detection of incidence and type of attack is only required when attacks
are strong enough to influence the consensus significantly. To this end, the simple definition of
ADnorm ∈ [ADtest

min ,AD
test
max ]] is sufficient. If attacks are not detected, however, at the same time,

they do not affect the consensus in a significant way. In such cases, the trust-scoring model pro-
posed later will be still successful in detecting the compromised meters regardless.

3.1.5 Coarse-Grained Detection Criterion for Presence of Organized Data Falsification. From
Figure 6(a), it is easy to conclude that, for all attack types, the ADobs is larger than the ADnorm

learned from the training phase. TheADnorm acts as a safe margin for the invariant, and anything
outside of it is inferred as an orchestrated attack that needs a location and scale correction as a
response. As long as the attack continues, the AD (T ) remains higher than the normal values.

ADobs (T ) :

{
∈ ADnorm No Organized Falsification;
> ADnorm Organized Falsification Occurred.

(6)

3.1.6 Determining the Type of Data Falsification Attack. From the above, we conclude that an
authentic change in the observed distribution may cause the mean consumption to increase or
decrease, but ADobs remains the same as compared to the historical range of values ADnorm =

[ADmin ,ADmax ]. An additive attack causes both the HM and AM of consumption to increase
but also causes ADobs to increase compared to its normal range. This way, a legitimate versus a
malicious increase in the data can be distinguished. A deductive attack causes the HM and AM of
mean consumption to decrease and causes ADobs to increase from the historical range. Similarly,
camouflage and conflict attacks do not have much change in the AM of the consumption but
triggers a large increase in the ADobs (T ). In this way, it is possible to infer which type of data
falsification has been launched. A summary of the above discussion to determine the presence and
type of attack is given in Table 1.

3.2 Attack Context Response Metrics

Given that an attack has been inferred that biases the instantaneous (hourly) consensus measures,
we need a consensus correction scheme. The knowledge of the attack type could be leveraged
to unbias the consensus measures. This is because the manner and extent to which different in-
stantaneous means, such asHM (t ),GM (t ), andAM (t ) and corresponding standard deviations, get
biased by different attack types, is unique (from Properties 1, 2, and 3 and their corollaries). Alter-
natively, one may be tempted to use the historical values of mean and standard deviation on the
corresponding hours of theT th day in the previous years. However, as already shown in Figure 5,
the mean values on the same days on successive years vary greatly, and hence historical values
are not reliable. Therefore, it is required that, for a successful statistical detection, a robust mean
(location consensus) and a robust measure of dispersion is calculated.
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Table 2. Robust Mean Responses

Security Incident Choice of μR (t )

Additive HM-AD

Deductive GM+AD

Camouflage AM

Conflict GM

No Attack AM

Table 3. Attacks on Various Means in Texas Dataset

Parameter Actual Add Deduct Camo Conf

AM 7.053 8.68 6.67 7.04 7.26

GM 6.860 8.35 6.29 6.65 6.89

HM 6.680 7.92 5.88 6.02 6.11

AD 0.373 0.76 0.79 1.02 1.15

3.2.1 Estimation of a Robust Mean as a Response. For the calculation of a robust mean, we
need to reconstruct the actual mean from the observed mean using knowledge of how each attack
type changes these means. Additionally, the extent of change triggered in the AD (T ) metric also
depends on δavд and/or ρmal . Hence, an adjusted robust mean helps to estimate an approximate
value closer to the original mean. Note that the highest possible δavд is lesser in deductive attacks
than additive ones because the feasible margin of deductive false data is bounded by zero. As the
margins of false data or compromised fraction increases, the observed consensus gets more and
more biased. To prevent this, we ought to have a consensus correction step. Otherwise, statistics-
based trust models will not be able to identify the compromised meters. The recommended mean
correction for each attack type is tabulated in Table 2. Below we provide an explanation of the
mean correction recommendation.
From the statistical observations, we see that the HM (t ) is more proximate to the actual AM

than the observed AM (t ), under the effect of additive attacks, due to a slower increase in HM
as opposed to AM. However, the HM (t ) itself is not a robust mean consensus, if either δavд or
ρmal is large. Therefore, we propose to use μR (t ) = HM (t ) −AD (t ) as the estimated robust mean
aggregate under additive attacks, which is closer to the original instantaneous arithmetic mean.
Therefore, we deduct the AD (t ) since it is the index of the extra deviation caused by the attacks.
As an example, in Table 3, for additive attack HM −AD = 7.92 − 0.76 = 7.16, which is very close
the actual AM value of 7.053.
In contrast, for deductive attacks, due to the HM ≤ GM ≤ AM property, the HM (t ) is even less

than the already biasedAM (t ). But,GM (t ) +AD (t ) is more robust than AM for deductive attacks,
and the results show that it is a good approximation to the actual mean. From the example in
Table 3, it can be verified that, for the deductive attack, the robust mean μR = 6.29 + 0.79 = 7.08 is
closer to the actual mean (7.05). For camouflage attacks, AM is the most robust and hence μR is set
as the AM. For conflict attacks, GM is an intermediate robust choice as it shows relative stability
to both partially positive and negative outliers.

3.2.2 Estimating a Median Absolute Deviation as a Response. If the presence of an attack is
discovered from the anomaly detector, then we know that the instantaneous standard deviation
of the observed data is biased. The σ (t ) in the testing set under attacks will increase regardless
of the type of data falsification attack (except for low additive attacks). Therefore, a directional
correction of the standard deviation is not possible like μR (t ) based on the attack types. While
standard deviation is a very popular measure of dispersion (scale parameter) to build proximity
distributions, we argue the use of a less common statistical measure of dispersion known asMedian
Absolute Deviation (MAD), which is defined as follows:
For a univariate power consumption data at any time t , p̂ (t ) = {p1 (t ), . . . ,pi (t ), . . . ,pN (t )}, the

data’s median is defined as p̃ (t ) = Median(p̂ (t )). The median absolute deviation is defined as:
MAD (t ) = Median( |pi (t ) − p̃ (t ) |).

The MAD is a much more robust measure of dispersion (or more robust scale parameter) com-
pared to the traditional standard deviation because MAD is more robust and remains less affected

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



9:16 S. Bhattacharjee et al.

due to outliers (reducing false alarms under no attacks) and extreme values (under stronger mar-
gin attacks) compared to standard deviation. This is because measures such as standard deviation
are derived from variance which uses squares of the difference between those outlying datapoints
and the true mean. Squares produce very high values when datapoints are greater than 1, thus
causing an unwarranted increase in the standard deviation. This is the cause of increased missed
detection under attacks and increased false alarms under no attacks. Therefore, we depart from the
traditional use standard deviation for characterizing the probability distribution of the proximity
of individual smart meters data with the consensus.
The measuredMAD (t ) of the historical time slots, before the inference of orchestrated attack is

therefore embedded as the robust measure of dispersion or the robust scale parameter in the trust
model in the event of an attack indication from the anomaly detector. As shown later, the mean
correction, robust scale parameter as median absolute deviation and attack probability time ratio
embedding facilitates quick detection, this approximation works well.
Both robust mean and median absolute deviation bias correction improves results significantly

compared to the preliminary version of this work in [2]. The failure points for higher δavд values
completely disappear. While, the above adjustment of mean location parameter and median ab-
solute deviation may not always be perfectly close to the actual mean and median deviation, our
results show that classification performance is much better under these approximate bias correc-
tions rather than just using the exact harmonic mean and standard deviation as the location and
scale parameters as done in our preliminary work [2].

3.3 Attack Context Embedded Relative Entropy-Based Trust Model

We pursue a lightweight learning approach for identifying compromised smart meters that launch
data falsification. The prior historical data set is considered as the authentic distribution of power
consumption. From the historical dataset, a true proximity distribution, denoted as X i , for each
smart meter is generated based on its reported consumption’s proximity to the arithmetic mean of
the authentic dataset. Since the authentic historical dataset is attack-free, themeasure of consensus
is arithmetic mean (AM), denoted by μ (t ), and the standard deviation is σ (t ).
In the observed dataset under test, we define μR (t ) andMADR (t ) as the robust mean andmedian

absolute deviation of the observed distribution based on the inferred security incident. In the test-
ing set, a current proximity distribution, denoted by Y i , for each smart meter i is calculated, based
on the proximity of its reported consumption data pir ep (t ) to μR (t ). In the absence of a detected

security incident, the robust mean and median absolute deviation equals μ (t ) and σ (t ) (like in the
historical set). However, when an attack is present, the μR (t ) is set according to Table 2 based on
the inflicted attack type and strategy. This way, the attack context is embedded via the appropri-
ate robust mean as a response to the detected attack context. Similarly, the MADR (t ) is set to the
historical median absolute deviation if there is an indication of an attack.
If the true distribution is very different from the current distribution, it is an indication that

this meter’s data is unusually different and this difference in the probability space is measured as
Kullback-Leibler Divergence (also called KL Distance) which measures the relative entropy between
the two distributions. The higher the divergence between the two distributions, the more the indi-
cation of anomalous behavior. The trust of a meter is calculated at the end of the frame F (in days).
The total number of observations over the time frame is given byTS . For the relative entropy trust
model, we had time frames of length F = 10 days and F = 30 days. Therefore, the number of time
slots monitored in the frame of observation is TS = F ∗ 24.

3.3.1 True and Current Proximity Distributions as Meter Evidence. We introduce a binary ran-
dom variable X i = {0, 1} for each meter i , for i = 1, . . . ,N , which acts as a historical reference
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distribution. If the historical data reported p̂ir ep (t ) at time t from meter i falls within one standard

deviation of μ (t ), then X i = 1, else 0. Formally,

X i (t ) =

{
1 if p̂ir ep (t ) ∈ {μ (t ) ± σ (t )};
0 otherwise

(7)

where X i (t ) follows a Bernoulli distribution with parameter r , that is the probability of X i = 1 is
r , and the probability of X i = 0 is 1 − r .

Suppose, S (X ) be the variable that denotes the number of successes, that is S (X i ) =
∑TS

t=1X
i (t ).

Let S (X ) = k be the observed value of the variable for any meter i , such that number of success in
the true distribution is S (X i ) =

∑TS
t=1X

i (t ) = k .
Similarly, we have a binary random variable Y i for the current distribution of each smart me-

ter, such that the probability of Y = 1 is q and the probability of Y = 0 is 1 − q. In this case, the
number of successes is denoted by a variable R (Y i ) =

∑TS
t=1 Y

i (t ). Let R (Y ) = j denote the num-
ber of successes for any such meter i such that number of successes in the current distribution is
R (Y i ) =

∑TS
t=1 Y

i (t ) = j. If an attack has been detected through the anomaly detection phase, then
the robust mean μR (t ) and the robust standard deviation σR (t ) is calculated, and the Y i is calcu-
lated based on them. In this way, attack context is embedded such that Y i remains unbiased from
the effects of orchestrated attacks. However, in the absence of any detected attacks, μR (t ) = μ (t ).
Formally, the current proximity distribution is given by:

Y i (t ) =

{
1 if pir ep (t ) ∈ {μR (t ) ±MADR (t )};
0 otherwise

(8)

Intuitively, in absence of attacks, the distribution ofY should be very close toX . On the contrary,
the two distributions should show a difference when an attack is present.

3.3.2 Estimating Parameters of True and Current Proximity Distributions. Next, we need to esti-
mate the parameters r and q for corresponding distributionsX i and Y i . An obvious estimate is the
minimum variance unbiased estimate (frequentist), which is the sum of all successes divided by the
total number of observations TS . However, this approach may cause r = 0,q = 0, or r = 1,q = 1,
for which the relative entropy (see Equation (15)) is undefined. Moreover, frequentist probability
unbiased estimator makes sense only if there is a large set of observations [24]. However, since our
trust model works on a shorter horizon of time (typically on a few days or monthly basis), such
approaches are improper. Hence, we need to accommodate a Bayesian approach for estimation of
r and q, so it is theoretically sound and mathematically tractable. Since the following is true for all
meter’s i , we drop the suffix i from the notational simplicity.

First, we estimate the parameter of r . We prove that the estimated probability r = k+1
TS+2 , where

k is the realization of the total number of successes observed. Thus, S (X ) = k follows a binomial
distribution with parameter r .
Hence, the probability of observing exactly k successes out TS times, given the probability of

success of each trial was r , is given by,

P (S (X ) = k |r ) =
(
TS

k

)
rk (1 − r )TS−k (9)

The Bayesian posterior estimate of r , based on prior TS observations by Bayes theorem, is given
as:

P (X (TS + 1) = 1|S (X ) = k ) =
P (X (TS + 1)), S (X ) = k )

P (S (X ) = k )
(10)
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The denominator is the marginal probability of P (S (X ) = k ) marginalized over all possible out-
comes of r . Hence,

P (S (X )) =

1∫
0

(
TS

k

)
rk (1 − r )TS−k f (r )dr . (11)

Assuming conditional independence between S (X ), r and Xi (t + 1) of the prior probability and
the likelihood probability can be solved as:

P (X (TS + 1)), S (X ) = k ) ⇒ =
1∫

0

P (X (TS + 1) = 1|r )P (S (X ) = k |r )dr . (12)

Since there is no prior information on r , we assume a non-informative prior such that f (r ) = 1,
for Equation (11) and Equation (12). Plugging in Equation (11) and Equation (12) into Equation (10),
it can be shown that:

P (X (TS + 1) = 1|S (X ) = k ) =
k + 1

TS + 2
= r . (13)

Similarly,

q =
j + 1

TS + 2
(14)

It can be verified that r ,q � 0, 1. Hence, the logarithms of distributionsX i andY i for the ith smart

meter, (described in terms of probability parameters r (i ) = k (i )+1
TS+2 and q (i ) = j (i )+1

TS+2 ), in Equation (15)

is always defined and exist even as k (i ) = 0 or j (i ) = 0.

3.3.3 Kullback-Leibler Divergence Based Scoring and Classification. We adopt the Kullback-
Leibler divergence to measure the difference between the historical distribution X i and the ob-
served distribution Y i for a smart meter. Note that X i and Y i are not consumption patterns but
a trend on proximity to the middle quartile. Subsequently, the KL distance is transformed into a
trust value between 0 and 1 by passing it through an inverse square root function that produces
linearly separable trust values between compromised and honest meters via a single threshold.
The KL distance between two distributions X and Y for a smart meter i , is given by:

Di (X
i | |Y i ) = (1 − r (i ) ) × ln

(
1 − r (i )

1 − q (i )
)
+ r (i ) × ln

( r (i )
q (i )

)
. (15)

The Di (X
i | |Y i ) is a positive real value that indicates the divergence between the observed and

the historical proximity distribution. Hence, the smaller the value of Di (X
i | |Y i ), the better it is in

terms of being trustworthy; the larger it becomes, the less trustworthy it becomes, since a larger
divergence indicates a mismatch between the true and observed proximity distributions. Given
this, the final trust value Q i of a smart meter i , is given by:

Q i =
1

1 +
√
Di (X i | |Y i )

0 ≤ Q i ≤ 1. (16)

The rationale of Equation (16) is a scaling function that scales the lowest value in Di (X
i | |Y i ) a

trust score that is closest to 1 while the highest value in Di (X
i | |Y i ) gets the exponentially lower

trust score with increasing Di (X
i | |Y i ). The exponential nature ensures a risk aversion towards

progressively increasing distance in the probability space.

Limitation of Coarse-Grained Anomaly Detection-Based Trust Model. Since the coarse-grained
anomaly detection has an observation granularity of 24 hours, it is not suitable for detection of op-
portunistic omission and ON-OFF strategies that are discontinuous and sparsely distributed over
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the time domain. Therefore, an anomaly monitoring metric with a daily time granularity such as
AD (T ) will not be sensitive and will fail to provide the early indication of the attack’s presence
that is necessary to embed in the attack context.
Apart from failing to identify the incidence, type, and robust consensus, there will be another

hurdle for the subsequent pipelined trust model. Since inmost of the time slots, there are no attacks
from themeters, the evidence against eachmeter will have reduced sensitivity when observed over
a time frame. This is because the probabilities (modeled by evidence) in information theoretic mea-
sures (such as KL Divergence) are steady-state long-term measures. When observed over the time
frame, the detection of meters will be delayed due to a lesser change in evidence counts. However,
if the trust model is made aware of the incidence of such non-continuous strategies and the approx-
imate start and stop times of such attacks, the evidence against meters collected on those specific
slots may be weighted as more important (while others as less important). This would facilitate
quicker classification of such meters while running the trust-scoring model through information
theoretic measures. This is achieved by calculating the fraction of the time frame that a meter
was under such attack strategies (defined later as attack probability time ratio). This motivates the
need for a fine-grained anomaly detection phase that runs in parallel with coarse-grained anomaly
detection metric and associated attack context embedding.

4 FORMAL SECURITY ANALYSIS

We do the theoretical analysis in terms of attack parameters to formally specify the impact of
attacks on the effectiveness of the defense method. Specifically, we assess the security level of our
mechanism by taking into account what an intelligent adversary might do to bypass the invariant
based anomaly detection and the compromised meter detection trust model. Here, we also show
closed form theoretical expressions of our observations that will help generalize our framework.

Theoretical Analysis of Deviation in AD(T) under Attacks.As a part of the theoretical security analy-
sis of the anomaly detection phase, we provide the closed form approximate estimated deviation in
the anomaly detection metric AD (T ). This can be estimated by calculating the expected harmonic
mean and arithmetic mean, given an attack type, ρmal and δavд . Below, we provide an estimation
of the harmonic mean followed by the arithmetic mean. Finally, we show how closely the theoret-
ical result from the closed-form expression matches the experimental result to prove accuracy of
analysis. We also show that change in AD (T ) observed experimentally also matches the theoreti-
cal analysis. Because our detector uses the values in a Box-Cox transformation domain, we have
carefully estimated it for real data values and found their Box-Cox equivalents on the transformed
scale.

Nor (AMba (t )) =

∑N
i=1 P

i
r ep (t )

N
; Nor (AMba (T ) =

∑24
t=1 Nor (AMba (t ))

24
(17)

Similarly, Nor (HMba (T )) and Nor (GMba (T )) can be calculated. For brevity, we drop theT from
the following analysis. Since the closed-form expression of the harmonic mean does not exist,
we first estimate the new geometric mean Nor (GMesaa ) after the attack. Then, we harness the
following Pythagorean equation that calculates the estimated harmonic mean from the estimated
Geometric and Arithmetic Means:

Nor (HMesaa ) ≈ (Nor (GMesaa ))2

Nor (AMesaa )
(18)

where Nor (HMesaa ) and Nor (AMesaa ) denote the estimated HM and AM values after an attack.
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Estimation of the Geometric Mean after Attack. Let Nor (GMba ) denote the geometric mean of a
power consumption data before attack in the original data domain and is defined by:

Nor (GMba ) = �



N∏
i=1

P ir ep
�
�

1
N

=
N

√
(P1 × P2 · · · PM × PM+1 × · · · × PN ) (19)

Similarly, let the estimated geometric mean after additive attack from the ρmal = M/N meter
and δavд in the original data domain be denoted as Nor (GMesaa ) such that:

Nor (GMesaa ) = N

√
(P1 + δavд ) × (P2 + δavд ) × · · · × (PM + δavд ) × (PM+1) × · · · × (PN ). (20)

Now we need to convert each P i + δavд term into a multiplier of P i . Let the ratio between the δavд
and the actual data from the ith meter before attack P i be given by a dummy variable:

α i =
δavд

P i
(21)

Since P i is a completely random physical quantity, we will need to characterize the α variable as
a property that is shared across data points under an attack.
From the studies, we know that for the power consumption distribution, most of the data points

are within the first standard deviations from the mean (say P ). For the Irish and Texas Datasets, a

higher percentage of data points (70%) are less than the mean P compared to percentage of data
points greater than the 30% values are greater than the mean, cancels about 30% of its effect on
the estimation of P i . Thus the remaining fraction of points 70%–30% is the imbalance factor (say

∇ = 0.40). Since this fraction of samples is lesser than the arithmetic mean P , a corrective factor

of ∇ ∗ σ should be deducted from the P to adjust for the approximate estimated value of a P i .
Therefore, we can rewrite the α i as:

α =
δavд

P − ∇σ

Nor (GMesaa ) ≈ N

√
(P1 + α .P1) × (P2 + α .P2) × · · · × (PM + α .PM ) × (PM+1) × · · · × (PN )

Nor (GMesaa ) ≈ N

√
(1 + α )P1 × (1 + α )P2 × · · · × (1 + α )PM × (PM+1) × · · · × (PN )

Nor (GMesaa ) ≈ N

√
(1 + α )M × P1 × P2 × · · · × PM × (PM+1) × · · · × (PN )

Nor (GMesaa ) ≈ N

√
(1 + α )ρmal ∗N × P1 × P2 × · · · × P ρmal ∗n × (P ρmal ∗n+1) × · · · × (PN )

Nor (GMesaa ) ≈ N

√
(1 + α )ρmal ∗N × P1 × P2 × · · · × P ρmal ∗n × (P ρmal ∗N+1) × · · · × (PN )

Nor (GMesaa ) ≈ (1 + α )ρmal N

√
P1 × P2 × · · · × PM × (PM+1) × · · · × (PN )

From Equation (19), the above reduces to the following:

Nor (GMesaa ) ≈ (1 + α )ρmalNor (GMba )

Nor (GMesaa ) ≈
(
1 +

δavд

P − ∇σ

)ρmal

Nor (GMba ) (22)
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Plugging in the real values of σ ,∇, ρmal ,δavд and Nor (GMba ), we obtain the estimated theoret-
ical Geometric Mean after the attack as Nor (GMesaa ) = 410, while the actual measured Geometric
Mean after the attackwas recorded asNor (GMexpaa ) = 390. This indicates that this is a reasonably
close approximation. Now the next step is to calculate Nor (AMesaa ) to plug it in Equation (18) for
estimation of the new Harmonic Mean Nor (HMesaa ).

Estimation of AM value after Attack. Let the Nor (AMesaa ) denote the Arithmetic mean after
attack. For the following estimation, assume the attack to be additive. Similarly, this method could
be used to estimate other attack types. Given the ρmal = M/N is the fraction of compromised me-
ters and δavд is the average falsification margin per meter, then the estimated attacked arithmetic
mean is under additive attack is:

Nor (AMesaa ) = Nor (AMba ) + (ρmal ∗ δavд ). (23)

Estimation of HM after Attack. Equation (22) and Equation (23) can be plugged in the following:

Nor (HMesaa ) ≈ (Nor (GMesaa ))2

Nor (AMesaa )
(24)

Estimation of Box-Cox Equivalents of Means. Let the Box (Nor (AMba (T ), λ) denote the Box-Cox
equivalent of the mean before attack in the normal scale such that:

Box (Nor (AMba (T ), λ) =
(Nor (AMba (T ))λ − 1

λ
(25)

Similarly, Box (Nor (HMba (T ), λ) and Box (Nor (GMba (T ), λ) are corresponding Box-Cox equiva-
lent values of Harmonic and Arithmetic Means before attack. Similarly, the Box-Cox equivalent
values of them after attack, Box (Nor (AMesaa ), λ), Box (Nor (GMesaa ), λ), Box (Nor (HMesaa ), λ),
can be easily estimated.

Final Estimation of AD (T) after Attack. Note that the Box-Cox equivalent of the Arithmetic
Mean gives a slightly different answer compared to the Arithmetic Mean of data in a power
transformation scale (the experimental result). Let the difference be κ = |Box (Nor (AMesaa ), λ) −
Box (Nor (AMba ), λ) |. The estimated Arithmetic, Geometric, and Harmonic Means calculated over
Box-Cox transformed arguments (what our method actually implements), after the additive attack
is given by the following:

AM
esaa
= AM

ba
+ κ; GM

esaa
= Box (Nor (GMesaa ); HM

esaa
= Box (Nor (HMesaa )

(26)
For the estimation of Arithmetic Mean, the estimation of change (κ) will result in a closer approx-
imation compared to direct Box-Cox calculation for a given ρmal and δavд . Let be the value of the

AD (T ) metric after attack beADesaa (T ) = |HM
esaa −AMesaa

|. Thus, the expected deviation in the
AD (T ) metric after an attack of ρmal and δavд for additive attacks is given by:

E (ΔAD (T )) = |HM
ba −AMba | − |HM

esaa −AMesaa |. (27)

The theoretical deviation in the AD (T ) metric for a ρmal = 0.40 and δavд = 800W is 0.553. For
the same attack, the experimental result shows the change of AD (T ) to be 0.712. This indicates a
reasonable approximation aswell as the positivemagnitude of change. Additionally, the theoretical
value shows a increase in the AD (T ), which is also seen in the experimental result.

Optimal Evasion δavд against Anomaly Detection Invariants. For an optimal evasion of our anomaly
detection step, the adversary would want to use the maximum δavд , which creates a deviation in
the invariants, that is just within the designed safe margin. In practice, since the adversary does
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Table 4. Estimation Accuracy of Invariants

with Irish Dataset

Parameter Experimental Theoretical

AM
esaa

14.5245 14.257

HM
esaa

11.8113 11.703
ADesaa (T ) 2.713 2.554
E (ΔAD (T )) +0.712 +0.553

not know the current AD (T ) value (since he cannot possibly control 100%) of the meters, he relies
on the historical AD (T ), which can be possibly known by the adversary through a database hack.
Therefore, the adversary would ensure that, given its attack type and the fraction of compromised
meters, the δavд , should be such that the following condition satisfies:

|ADesaa (T ) −ADhist (T ) | < 0.75 ∗ σAD (T ) (28)

Specifically, expanding Equation (26), we get the theoretical expected change in the statistical
invariants as a function of the ρmal and δavд (the two key variables apart from the attack type that
changes the invariants). Thus, the estimated optimal evasion δavд can be found by the adversary
solving the following optimization problem:

δ evasionavд = argmax
δavд

f (δavд ) (29)

s.t. f (δavд ) < 0.75 × σAD (T )

where f (δavд ) = |ADesaa (T ) −ADhist (T ) | = |( |HM
esaa −AMesaa |) −ADhist (T ) |.

Note that HM
esaa

and AM
esaa

are given by the following as a function of the attack:

HM
esaa
= Box

����



((
1 +

δavд

P−∇σ

)ρmal

Nor (GMba )
)2

Nor (AMba ) + (ρmal ∗ δavд )
����
�

(30)

AM
esaa
= (AM

ba
+ |Box (Nor (AMba ) + (ρmal ∗ δavд )) − Box (Nor (AMba )) |) (31)

We can see that the above equations are a function of the ρmal and δavд , which formally an-
alyzes the effect of any attack on the statistical invariants. We have proven the approximation
accuracy of our expression in Table 5 by showing how theoretical values approximate to experi-
mental observations.

Formal Estimation of Robust Mean under Attacks. For robust mean closed form derivation, we just
plug in the values of Nor (AMesaa ), Nor (GMesaa ), Nor (HMesaa ) or their Box-Cox transformed
equivalents, (expressions derived previously) and plug into Table 2 to find the theoretical value as
shown below:

μAdditiveR (t ) = Box−1 (HM
esaa −AD (T )), μDeductiveR (t ) = Box−1 (GM

esaa
+AD (T )) (32)

μ
Camouf laдe

R
(t ) = Box−1 (AM

esaa
), μ

Conf lict

R
(t ) = Box−1 (GM

esaa
) (33)

where GM
esaa
= Box ((1 +

δavд

P−∇σ
)ρmalNor (GMba )), and HM

esaa
= Box ( Nor (GMesaa )2

Nor (AMesaa ) ).

The Box−1 (.) is defined as: Box−1 (x ) = (x ∗ λ + 1)1/λ where x is the value in Box-Cox scale being
remapped and λ is the Box-Cox transformation parameter.
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Table 5. Evasion δavд : Experiment

vs Theory

ρmal Exp. δ evasionavд Theo. δ evasionavд

20 400 380
30 370 360
40 350 330
50 330 320
60 320 300

Table 6. Inferred MAD at Invariant Evasion Points

ρmal Theo. MADevasion (t ) Current
Evasion δavд Mean

20 380 347 652
30 360 356 684
40 330 352 708
50 320 357 736
60 300 361 756

The AM
esaa

under camouflage is the same as the observed arithmetic mean, since it balances
out the mean by virtue of its attack type.

Condition for Successfully Evading Meter Detection. Note that, we already proved that as ρmal in-
creases, our invariant criterion forces the δavд to be smaller. Hence, the attacker cannot unilaterally
increase one attack parameter to arbitrarily change the median absolute deviation. Therefore, at
the theoretical evasion δavд , we first present, the currentmedian absolute deviation (under attacks)
by varying from the ρmal from 20% to 60%, as listed in Table 6.
The trust score depends on the divergence between proximity distributions Xi and Yi . The ad-

versary has to bypass the invariant-based anomaly detection to ensure that the mean and median
absolute deviation correction does not take place. Furthermore, the adversary has to make sure
that the majority of its compromised meter readings are within the observed (biased) mean and
the median absolute deviation (MAD) range. However, on average, we say that, to bypass meter
detection reliably, the following condition needs to be satisfied for a given ρmal :

δ
bypass
avд ≤ min(δ evasionavд ,MADevasion (t ))). (34)

Let us look at a specific example from Table 6. For ρmal = 40%, the δ evasionavд is 330 and the MAD

at that evasion δavд based attack is 352. The min(330,352) is 330, which is the theoretical value to
bypass the trust model. In our experiments, for δavд > 330 (Figure 17), the missed detection rate is
lower than 10%; however, when δavд < 330, it starts missing meters and missed detection becomes
about 30%. This is also repeated in the Texas Dataset results in Figures 14 and 15, where below
330, the missed detection becomes between 30%–40% proving correctness.

5 SPECIAL CASE STUDY ON FINE GRAINED ANOMALY BASED TRUST MODEL

Now we propose the customized version of our trust model that can run in parallel for effective
identification under ON-OFF or omission attack strategies. It is important to note that the
fine-grained anomaly-based detection will produce different responses than the coarse-grained
one, and therefore will invoke an augmented and modified version of the proposed trust model
in Section 3.3 with novel embeddings of responses produced by the fine-grained anomaly-based
security event detector.

5.1 Fine-Grained Anomaly-Based Security Event Detection

In this subsection, we will introduce the invariant (metric) for fine-grained anomaly detection,
justify the choice of invariant, establish a detection criterion for fine-grained attacks, determine
the attack type, strategy, and start and stop times, and calculate the attack probability time ratio.

5.1.1 Proposed Invariant. We propose a more fine-grained detection metric denoted by
ADratio (t ) that is computed hourly, in contrast to AD (T ) that is computed daily. The ADratio (t )
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Fig. 7. (a) Time Series of ADratio (t ); (b) Distribution of ADratio (t ).

is the ratio of the absolute difference between “hourly” Arithmetic and Harmonic Means between
the previous t − 1 and current time slot t . At any time slot t , the metric is defined as:

ADratio (t ) =
AD (t − 1)
AD (t )

(35)

where AD (t ) = |HM (t ) −AM (t ) |. The time series of the proposed metric ADratio for the Texas
Dataset is shown in Figure 7(a).

5.1.2 Identifying Normal Range of ADratio (t ). Figure 7(b) shows the distribution of the pro-
posed ADratio (t ) for the historical training dataset (2014 and 2015). It can be seen that the distri-
bution of ADratio (t ) has a mean value of 0.998 with a standard deviation of 0.1. Very few sample
ADratio (t ) values lie beyond the second standard deviation. Let ADnorm

ratio ∈ [ADmin
ratio ,AD

max
ratio] de-

note the normal range of this fine-grained ADratio (t ) metric.

5.1.3 Investigating Effect of Various Attacks on ADratio (t ). For deductive attacks, we had men-
tioned that the decay rate of Harmonic Mean is larger compared to the decay in Arithmetic mean
given the dataset. Therefore,

HM (t ) − HM (t − 1) > AM (t ) −AM (t − 1).

Solving the above, we get,
HM (t − 1) −AM (t − 1)

HM (t ) −AM (t )
< 1

⇒ AD (t − 1)/AD (t ) < 1⇒ ADratio (t ) < 1.
From the above, it is clear that a deductive or omission (which is a virtual deductive attack) attack

when initiated, will cause a sharp drop in the proposed ADratio (t ) metric. When the attack stops,
there will be a sharp rise in theADratio metric, since the Harmonic Mean has to increase more than
the Arithmetic Mean to restore the original ratio that is very stable andADratio (t ) → 1. Therefore,
the difference between HM (t ) −AM (t ), will be much lesser compared to HM (t − 1) −AM (t − 1).
Since the denominator decreases when the attack stops, the ADratio (t ), experiences a sharp rise.
Experimental verification of this is provided in Figure 8.
Similarly, for additive attacks, Harmonic Means have a slower growth rate compared to the

Arithmetic Mean. Therefore,

HM (t ) − HM (t − 1) < AM (t ) −AM (t − 1).

Solving the above, we get
HM (t − 1) −AM (t − 1)

HM (t ) −AM (t )
> 1
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Fig. 8. Omission attack example.

Table 7. Concluding Fine Grained Security Events

ADratio (2c − 1) |FGAT | t
oe Conclusion

> ADmax
ratio High Constant Additive ON-OFF

< ADmin
ratio High Constant Ded/Camo ON-OFF

< ADmin
ratio High Varying Omission Attack

< ADmin
ratio Sparse Don’t Care Omission Failure

⇒ AD (t − 1)/AD (t ) > 1⇒ ADratio (t ) > 1.

From the above, it is clear that for additive attacks the ADratio (t ) must increase when attacks
start, while for deductive and camouflage attacks the ADratio (t ) must decrease.

5.1.4 Detecting Incidence of Fine-Grained Attacks. The following equation is similar to the
coarse-grained logic for confirming presence of opportunistic fine-grained attacks.

ADratio (t ) :

{
∈ {ADnorm

ratio (t )} No Attack;
� {ADnorm

ratio (t )} Fine-Grained Attack
(36)

5.1.5 Determining Fine-Grained Attack Types and Strategies. To reconstruct the security events
under fine-grained attack strategies, we first need to record the sequence of time slots where the
event ADratio (t ) � {ADnorm

ratio (t )} occurred over the observed time duration, into a vector FGAT =
{t (1), t (2), . . . , t (c ), . . . , t (C )}, where c ∈ N is the set of first C natural numbers. The odd and even
entries of the set FGAT are represented by t (2c − 1) and t (2c ), respectively, and |FGAT | is the
cardinality of this set over the time frame under observation. Additionally, let the time difference
between the pairs of odd entries and even entries be toe = |t (2c − 1) − t (2c ) |.

There are three important facets to monitor. First, the set of toe values help distinguish be-
tween deductive ON-OFF and omission attacks having similar signatures. Second, the cardinality
of |FGAT | is important to distinguish between the possibility of omission attack versus omission fail-
ures. Third, whether ADratio (t ) corresponding to the odd entriest = 2c − 1 in FGAT are greater
than ADmax

ratio or smaller than ADmin
ratio , help differentiate between additive, deductive, and camou-

flage data falsification types.
If the toe is constant for all odd values of c , then there is an ON-OFF attack. Given that toe

is constant, if ADratio (2c − 1) > ADmax
ratio , it is an additive ON-OFF attack, while an ADratio (2c −

1) < ADmin
ratio (t ), it is an deductive ON-OFF attack. Therefore, odd entries ADratio (2c − 1) helps

to distinguish between additive, deductive, or camouflage attacks. Since attacks are launched and
stopped at periodic intervals, the |FGAT | will not be singleton or sparse.
If the set of toe = |t (2c − 1) − t (2c ) | consists of variable values, the |FGAT | is not singleton or

sparse, and ADratio (2c − 1) < ADmin
ratio (t ), it is an omission attack (deliberate). On the other hand,

if t (2c − 1) − t (2c ) consists of variable values, |FGAT | is singleton or sparse, theADratio (2c − 1) <
ADmin

ratio (t ) is a omission failure due to non-adversarial reasons.
The missing data from a subset of houses at any time slot t is perceived as a deductive attack

where actual power consumption values are replaced by null values which are lesser than actual
data. This causes the harmonic mean to decay at a rate greater than compared to the decay in the
arithmetic mean. Therefore, the difference between arithmetic mean and harmonic mean at time
slot t increases compared to the previous time slot (t − 1) with no data omission. Therefore, the
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ADratio (t ) value between time slots t and t − 1 experiences a sharp decrease. As long as the degree
of omission stays same the ADratio is restored to normal value. When omission stops there will
be another drastic change, where the harmonic mean will grow faster than the AM, such that the
AD (t ) decreases compared to the ADratio (t − 1) calculated with missing data. Hence, there is a
sharp drop in the proposed ADratio . This can be verified in Figure 8.

5.2 Estimation of Attack Probability Time Ratio as a Response

Apart from the robust consensus measures, which are required for fine-grained attack strategies,
we also need another additional response that needs to be embedded into the subsequent trust
modeling step. This response is known as the attack probability time ratio.
The attack probability time ratio Pattack is an indicator of the fraction of time slots that the

system was under attack over an observed time frame. For example, for an on-off attack having an
ON period of 6 hours of attack in a day, Pattack = 1/4. Therefore, the fraction of time slots with
no attack is (1 − Pattack ), will be automatically considered as successes even when this meter is
launching data falsification attacks. Therefore, in the probability space, these meters will not be
further apart when there are on-off attacks versus no attacks. Hence, the time to detection of such
meters will be significantly larger. To reduce this, we need to keep track of the Pattack , and embed
this information in the trust model. Such Pattack can be estimated from our designed FGAT vector,
by the

Pattack =

∑C
c=1 |t (2c ) − t (2c − 1) |

TS

5.3 Trust-Scoring Model with Attack-Probability Time-Ratio Embedding

Since on-off and omission strategies are discontinuous over time, the number of failures will not
be as high compared to the case of continuous attacks in an observed time frame. This will produce

q (i ) values of compromised meters which are still high and therefore proximate to the parameter
r in the true distribution. Hence, the time to detection convergence of meters with missing data
(omission) or discontinuous falsification of data (ON-OFF) will be time consuming, due to lack of
evident separation in the probability space, which leads to classification errors as well.
Since the fine-grained anomaly detector gives an early indication on the time slots when such

an ON-OFF attack happened (from FGAT vector), a lesser weight can be given to the number of
successes observed by weighing it with the fraction of duration the system is not under attack
(i.e., 1 − Pattack ) in the observed frame F . In this manner, the time to detection of these meters
could be improved. Under these opportunistic attack strategies, which are captured in the fine-
grained anomaly detector, Equation (14) in the trust model is modified by weight to the number
of successes j. This weight is (1 − Pattack ), which prevents the value of q to be very high even
when the number of OFF periods is large compared to the ON period of attacks over the observed
time frame containing TS windows. Hence, due to the attack context awareness, the observed
distribution q under evidence of ON-OFF and omission attacks (from the fine-grained detector) for
each meter is modified as:

q (i ) =
(1 − Pattack )j (i ) + 1

TS + 2
(37)

Equation (37), can be explained by the following: Note that theq is the probability thatY i (t ) = 1,
meaning the meter i ′s reading is falling within the robust mean and median absolute deviation.
However, in an ON-OFF attack, there are OFF periods, where this compromised meter’s data is
likely to achieve a value of 1. Hence, the probability of q over a given time frame TS is not re-
markably different from r . Since the probability of q is specified by the number of successes j, a
discounting factor of 1 − Pattack is required, since these 1 − Pattack timewas not under attacks was

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



Attack Context Embedded Data Driven Trust Diagnostics 9:27

a part of the OFF period. that be counted on as the FGAT vector shows evidence of orchestrated
data falsification on selective ON periods (e.g., when prices are high/demand is high, etc.,).
The value of q is lesser compared to a value that contributes the entire observed j towards

the probability of success. This ensures a larger difference between q and r in the probability
space, which facilitates quick classification that is apparent even when the attacker acts honestly
in the majority of the time slots. The modification by Equation (37) is termed as attack probability
ratio time embedding that customizes the trust model for better and quick classification of the
compromised meters.
Some Limitations of Our Approach. The relative entropy-based trust model detects compromised

meters only if the δavд is greater than the median absolute deviation of the datasets. From Equa-
tion (22) and Equation (23), it is clear that if the δavд is lesser than theMAD, in most time instances,
theYi of the attackedmeters will be within that deviation and therefore be labeled as one instead of
zeromore frequently. Thus, there will not be a significant change in the probability ofp (Yi = 1) = q
in the attacked set. Therefore, the deviation between Xi and Yi in the probability space will not be
evident to produce a divergence that could clearly classify the malicious meters from the honest
ones. Our studies from real datasets indicate that the MAD ranges between 290W − 350W . There-
fore, in our approach, the missed detection errors increase δavд < 300. However, the error rates
are better than existing works across datasets, as shown in the comparison in Section 5.6.
Intuitively, one solution to this limitation is to introduce multinomial evidence labels for each

meter instead of binary labels (0,1), and then calculate the distances between the distributions in
the probability space with a similar entropy measure. However, our experience showed that this is
not enough to improve classification accuracy. This motivates the need for an alternative approach,
that complements the relative entropy approach, when δavд < MAD.

6 PERFORMANCE EVALUATION

We utilized two big datasets for the performance evaluation of our proposed method. The first
dataset is an hourly power consumption dataset from PeCan Street Project [37], containing 200
and 800 houses from a solar village near Austin, Texas for the years 2014, 2015, and 2016. The 2014
and 2015 datasets are used for learning (training), while 2016 is used a testing set. Two 90-day
periods representing two seasons in 2016 were used as a scenario under attacks to generate the
malicious dataset. The malicious datasets were generated from the real data samples that were fed
with our threat model with various ρmal and δavд . The second dataset is a power consumption
dataset from 5,000 houses from six micro-grid regions in Dublin, Ireland [39], which was utilized to
prove the scalability and generality of our proposed approach. The datasets are publicly accessible.
The experimental section is divided into five parts (i) remains unchanged from previous ver-

sion (ii) we show how the anomaly based attack context generation improves real time nature
of detection and minimize classification error rates (iii) Shows supervised classification snapshot
results for a small dataset of 200 houses from Texas (iv) remains unchanged (v) we show a few
comparisons of our performance with existing works.

6.1 Fine-Grained Anomaly-Detection Forensics

Here, we show some results on how the fine-grained anomaly detection metric can detect oppor-
tunistic strategies such as Omission and ON-OFF.
Data Omission Strategy. Figure 9(a) shows a result on the uncleaned real dataset with missing
data. We do not know whether this was due to an attack or a network failure. Nonetheless, this is
analogous to data omission, and our proposed fine grained anomaly detection metric ADratio (t ),
can capture such events. Since the metric FGAT contains only two entries for the whole year, it
is evident that this is particular data omission is likely an isolated failure, rather than an attack. A
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Fig. 9. (a) Data omission captured in uncleaned data; (b) Deliberate additive ON-OFF attack forensic.

magnified version was shown previously in Figure 8 to prove that the ADratio (t ) first decreases
(when omission starts) and then increases (when omission stops).
ON-OFF Strategy.We study a small timeline of say 10 days, and start additive attacks (ON) and then
stop it (OFF). It is possible to detect the ON period of attacks with the proposedADratio (t ) metric.
As an example, Figure 9(b) shows an additive attack with δavд = 600, which was launched from
the 60th hour to the 200th hour of this timeline. Note that, in additive attacks, the harmonic mean
grows at a much slower rate compared to the growth in arithmetic mean (given a sufficiently high
δavд). Hence, at the 60th slot the difference between the arithmetic mean and harmonic mean is
larger than the previous time slots. There the ratio ADratio (t ), shows a sharp increase.

6.2 Effectiveness of the Anomaly-Based Attack Context Generation

The effectiveness of the anomaly detection step is directly related to the embedding of attack
context in the proposed trust model which in turn preserves the classification accuracy, lowers
false alarm rates, and improves the time to accurate classification of the compromised meters.
Therefore, the effectiveness of the anomaly detector is demonstrated through the minimization of
classification error rates (defined as the average of missed detection and false alarm rates).
The effectiveness of the anomaly detector is also directly dependent on the value of threshold

(±γσAD (T )) around the historicalAD (T ) value. Recall, that γ is the scalar factor that parameterizes
the threshold variation. Therefore, to demonstrate the effectiveness of anomaly detector we show
the error rates (average of missed detection and false alarms) as a function of the varying margins
of false data and variable candidate thresholds in the anomaly detector. Through this, we also
demonstrate the optimal threshold range that the anomaly detectors should use to minimize the
error rate in classification.
Effectiveness of Error Rate Minimization.We report a 0.75σAD (T ) as a threshold that produces mini-
mal error rates across extreme values of ρmal and over all trained values δavд . This study is done be-
cause the defender has no control on the actual ρmal and δavд values that will manifest. Figure 10(a)
clearly shows that a global minima for classification error rate exists for a threshold of 0.75σAD (T ) ,
which produces minimal error rates regardless of δavд among all candidate thresholds for the Irish
Dataset for ρmal = 15% under additive attacks. Figure 10(b) shows that the minimal error rate is
achieved for the same 0.75σAD (T ) across all δavд for different ρmal = 50% under a deductive attack.
Effectiveness of Time to Detection (TTD). Figure 11(a) is a CDF that is a testimony of the convergence
times to the detection rate for an additive attack with ρmal = 20% and δavд = 600 and a data-order
aware strategy. The classification of compromised meters is not only accurate but also happens
in a very short time. The steady-state detection rate as observed from Figure 11(a) is achieved
within 2 days. Additionally, Figure 11(b) shows the effectiveness of the probability of attack-time
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Fig. 10. Error rate minimization. (a) Low ρmal = 15%; (b) High ρmal = 50%.

Fig. 11. (a) TTD of compromised meters; (b) Comparative effectiveness of Pattack embedding.

ratio embedding (as a result of the fine-grained anomaly detector) into the trust model, and proves
that it improves the time to detection of compromised meters significantly. Figure 11(b) shows
the comparison between the CDF of detections with and without embedding under an ON-OFF
strategy with an ON-to-OFF ratio of 1 : 3. We can observe that the circled line corresponding to
detection rate without the Pattack embedding approaches its steady state after at least 10 days
compared to the blue line with the probability of attack time ratio embedding that approaches the
steady state detection rate of 90% within just 2 days.

6.3 Supervised Classification

In this case, the threshold is obtained from a small set of training meters from the training dataset,
which is then applied to the testing set with the full set of meters in test set. Later, we show how
our proposed approach performs in an unsupervised mode as well.

6.3.1 Training Set. First, we use a training data set from 40 houses and use power consumption
reported in 2014 for a month. In each training case, we labeled 40%meters as compromised (ρmal =

0.4) and altered their reported values with δavд = 500W and then plotted the corresponding trust
values. We chose intermediate values of ρmal and δavд to prevent overfitting or underfitting. We
use the trust scores of these labels to calculate a threshold that can linearly separate between
compromised and non-compromised nodes. We use a decision-tree-based classifier called CART
(Classification and Regression Trees) to find the supervised thresholds. The results of training for
additive and deductive attacks are shown in Figures 12(a) and 12(b). Then, we studied the effect
of meter training size by repeating this with 80 meters (see Figure 12(c)) as well as the effect of
the training time period (seasonal change) on all meters (see Figure 12(d)) to test the sensitivity of
training for supervised classification. The conclusion is that all thresholds are close.
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Fig. 12. Training set: (a) Additive; (b) Deductive; (c) Effect of meter sizes; (d) Effect of different seasons.

Fig. 13. Testing sets: (a) Additive; (b) Deductive.

6.3.2 Classification with Testing Set. For testing illustration, we use the 2016 dataset from Texas
and the attack launching period is 1 month. We set ρmal = 0.4 and δavд = 600W . More results over
completely different combinations of ρmal and δavд are presented later to prove the robustness
performance. Results for additive and deductive attacks shown in Figures 13(a) and 13(b) exhibit
a clear separation between honest and compromised nodes with a false alarm rate of 1.5% in both
cases. The missed detection rate is 5% and 8% for additive and deductive attacks, respectively.

6.4 Classification Performance Evaluation

Figure 14(a) shows the classification error rates for a larger dataset of 800 houses in terms of missed
detections and false alarms under additive attack for the unsupervised classification approach over
all possible values of δavд , given a ρmal = 0.50. From the figure, we can conclude that the relative
entropy approach works well for most values of δavд even when 50% of the nodes are compro-
mised. Particularly, the missed detection is higher than false alarms, which means the detection
rate is more of a concern for additive attacks particularly when δavд < 400. We report 22% missed
detection and 2% false alarm at δavд = 400. At δavд = 300, the missed detection rate increases to
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Fig. 14. Error sensitivity analysis over δavд (Texas): (a) Additive; (b) Deductive.

Fig. 15. Error sensitivity analysis over δavд (Texas): (a) Camouflage; (b) Conflict.

Fig. 16. Error sensitivity analysis over ρmal (Texas): (a) Additive; (b) Deductive.

39%. Therefore, we experimentally verify that this methodology is not well suited for the margin
of false data lesser than the median absolute deviation of the dataset.
Figure 14(b) shows the classification error rates in terms of missed detections and false alarms

for the unsupervised classification approach over all possible values of δavд , given ρmal = 0.50
under a deductive attack for 800 houses. This indicates the robustness of our solution across all
margins of false data under deductive attacks. The missed detection rate does not have an upper
evasion point compared to our preliminary work [2] and other information theoretic approaches.
Figures 15(a) and 15(b) show the classification error rates in terms of missed detections and

false alarms for the unsupervised classification approach over all possible values of δavд , given a
ρmal = 0.20 under a camouflage and conflict attack.
Figure 16(a) confirms that the error rate is within 10% for all possible fractions of compromised

nodes as high as 90% for the additive attack. This indicates the robustness of our solution to
higher fractions of compromised nodes for additive attacks. Additionally, Figure 16(b) indicates
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Fig. 17. Error rate comparison with existing works: Irish Dataset.

Table 8. Comparison with Existing Work

Parameter Proposed CPBETD [12] ARMA [19] Prior [2] F-Deta [16]

False alarm 1.5%–4% 29% 33% 11% NA

Missed detection 0%–30% 24% 28% 8% 10%–36%

δavд 300 W–3,000 W 400 W NA 700 W–800 W 1,000 W–2,000 W

ρmal 1%−90% 1% NA ≤40% 55%

Attack type All Deductive Deductive All Deductive

Detection time 2–3 days 77 days 30 days 30 days NA

Opportunistic strategies Yes Yes No No No

the robustness of our solution to various margins of false data under deductive attacks. The
missed detection rate does not have an upper evasion point in terms of ρmal .

6.5 Comparisons with Existing Work and Scalability of Error Rates

Figure 17 shows that the false alarm rate for the Irish Dataset across 5,000 houses is less than 2%.
Additionally, the missed detection rate is below 20% for any δavд ≥ 350W. Second, Figure 17 com-
pares our performance for deductive attacks with existing works in terms of missed detection (MD)
and false alarm (FA) rates, that use techniques such as one-class SVM [12], multi-class SVM [12],
F-Deta (Information-Theory-based) [16], folded Gaussian trust [4]. The proposed approach’s per-
formance in terms of FA and MD is shown in solid lines with season-wide cross-validation. From
the figure, it is evident that across various margins of false data, our FA and MD rates are lowest
compared to the other approaches. Additionally, across the same chosen δavд , our work remains
resilient under high fractions of compromised meters compared to previous works. The work [11],
surveys neural network based approaches for electricity theft detection and reveals that most of
those methods do not reveal false alarm rates systematically.
Table 8 also quantifies the advantages and benefits of our framework in comparison to some

of the recent works in this area, in terms of “other aspects” that are not directly comparable with
previous works. These aspects include ranges of a studied margin of false data δavд and ρmal ,
detection-rate convergence times, applicability to multiple attack types, and both coarse- and fine-
grained opportunistic attack strategies. While our framework applies to all attack types, other
works (except our previous work) focus on deductive attacks. Therefore, for a fair comparison,
the numbers for our framework in Table 8 are for deductive attacks only. However, our work
is much broader compared to existing works since it addresses an umbrella of various threats
simultaneously. Some entries in the table are marked NA when a concerned parameter that is not
reported explicitly. Moreover, our work shows error sensitivity performance over both datasets.

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



Attack Context Embedded Data Driven Trust Diagnostics 9:33

Our framework has a much better performance over a wide attack strategy space with ρmal

ranging from 1% to 90% and δavд ranging from 300W –2,000W compared to the existing works
that assume a narrower or fixed attack strategy space in terms of ρmal and δavд . Works such
as [16] have reasonable missed detection rates, but assume a very high δavд of above 1,000
W, which facilitates easier classification. The false alarm rate at only select δavд is provided
and the detection time is not clear. At this assumption, our missed detection rate is less than
6% and our false alarm rates are 8% for a larger dataset of 800 meters. The work in [12] has
a small ρmal of 0.72%, but at their assumed δavд = 400W , our MD and FA rates are better for
both additive and deductive attacks across lower and higher ρmal values while needing the same
number observations per day. Our work can also perform classification in an unsupervised mode
compared to the supervised approach with a high training time as reported in [12]. The upper
evasion limit of high δavд and ρmal vanishes, compared to our preliminary work [2], due to the
robust mean andmedian absolute deviation correction and convergence times are preserved under
omission and ON-OFF attacks. Our recent work [10] also showed that harmonic and arithmetic
mean calculations are compatible with fully homomorphic encryption schemes enabling privacy
preserving security computations in AMI. Therefore, our security method, unlike others, will be
compatible with AMI privacy requirements [31].

7 CONCLUSIONS AND FUTURE WORK

In this article, we proposed coarse- and fine-grained anomaly-based security event detection tech-
niques that serve as an early indicator of the presence of organized data falsification attack. These
techniques infer the attack type and the strategy inflicted, which helps to reconstruct an attack
context that includes response metrics such as robust mean, standard deviation, and attack prob-
ability time ratio, which depend on what kind of threat has been inflicted. Based on this attack
context, the relative entropy trust model adapts itself dynamically in runtime to produce linearly
separable trust scores that can identify the compromised meters injecting false data with higher
accuracy and in near real time. In all, we showed that our framework applies regardless of the
high fraction of compromised nodes and across various margins of false data in an unsupervised
classification mode as well with very low time to detection of compromised meters.
In the future, we will address the problem of anomaly detection and meter identification when

the margin of false data, the upper and lower interval of false data is much smaller than the estab-
lished bypass margin of false data. Such stealthy attacks are possible since every unit of electricity
has a value, which the evidential model using robust mean and median absolute deviation will not
be able to detect.

APPENDIX

A IMPLEMENTATION OF DATA ORDER AWARE ATTACKS

In Figure 18, the blue line corresponds to the actual power consumption. The red and yellow lines
correspond to deductive attacked consumption data following a non-data-order-aware and a data-
order-aware strategy, respectively, under the same δavд and ρmal . Even as the same revenue is
achieved with both strategies, the chances of detection (using proximity-based mechanisms) are
lesser in data-order-aware strategy due to the closer proximity to the actual data.
This strategy is implemented in the following manner: The adversary sorts the actual power

consumptions observed from its set ofM compromised meters such that P (1)
act (t ) ≤, . . . , P

(m)
act (t ), ≤

P (M )
act (t ). Then, the adversary generatesM random numbers for δ (t ), sorted as δmin

t ≤, . . . , ≤ δmax
t .

For a deductive attack, the highest observed power-consumption data is changed with the high-
est δmax

t , while the lowest observed power-consumption data is changed with the lowest δmin
t .
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Fig. 18. Illustration: Benefit of data order awareness.

Hence, P (1)
act (t ) − δmin

t , . . . , P (M )
act (t ) − δmax

t . For an additive attack, the lowest observed power-
consumption data is changed with the highest δmax

t , while highest observed power-consumption

data is modified with lowest δmin
t , and so on, such that P (1)

act (t ) + δ
max
t , . . . , P (M )

act (t ) + δ
min
t . For a

camouflage attack, the sorted P (1)
act (t ) ≤, . . . , ≤ P (M )

act (t ) is divided into two parts, and correspond-
ing portions are changed accordingly. This kind of attack, therefore, is more aware of the current
consumption trends as seen by the meters under adversarial control and minimizes the chances of
the final reported value to be obvious outliers and more closer to the actual power consumption
distribution.

B EXPLANATION OF THE STABILITY OF RATIO METRIC

We provide a short theoretical and mathematical reasoning behind the observed stability of ab-
solute difference between harmonic mean to arithmetic mean for AMI power-consumption data
across various datasets. Note that the invariant AD (T ) is a daily metric and that most residential
households share certain coarse-grained common behavioral routines, although individual fine-
grained differences exist. Hence, the power consumption of different households are not com-
pletely independent but exhibit some weak positive correlation (i.e., the power consumption of
houses tend to increase or decrease together due to commonality of habits). For example, most
houses tend to use more electricity on very cold days. Obviously, the strength of this positive
correlation may vary from region to region, but in a particular Neighborhood Area, it produces
some common correlations. Since humans have common behavioral habits during a typical day,
then intuitively the daily pattern of average difference in power consumption values between
any two pair of houses averaged over T is not going to be arbitrarily different from each other.
Let the average difference between power consumption of any two houses in the sorted series
p1 (T ), . . . ,pN (T ) over T be denoted as ξ (T ) = 1

N

∑N
i=1 |pi+1 (T ) − pi (T ) |. The distribution of ξ (T )

for the Irish Dataset, as shown in Figure 19(a), follows a stable trend. Additionally, the variance in
ξ (T ) is also less. The most important thing is that the ξ (T ) is stationary in the mean in the wide
piecewise sense even for 5,000 houses.

Fig. 19. Irish Dataset: Distribution of (a) ξ (T ); (b) amin .
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Now, we show an important relationship between the stability of ξ (T ) and Tung’s Theorem [25],
which proposed the theoretical upper and lower bounds on the absolute difference between
Arithmetic and Geometric Means in any series data. The corollary for this theorem [21] describes
the upper and lower bounds on the absolute difference between Harmonic and Arithmetic Mean
in a series data.
• Tung’s Theorem Corollary. Given a sorted series a = 1 ≡ a1, . . . ,an ≡ B, where 1 and B denote
the minimum andmaximum values of the series ofn numbers. LetHn andAn denote the Harmonic
and Arithmetic Means, respectively. Then, the bounds on the absolute difference between Hn and
An :

(B − 1)2
N (B + 1)

≤ |An − Hn | ≤ (
√
(B) −

√
(1))2. (38)

For minimum (amin ) and maximum (amax ) values, Equation (38) can be rewritten as:

(amax − amin )
2

n(amax + amin )
≤ |An − Hn | ≤ (

√
(amax ) −

√
(amin ))

2, (39)

where amax ∼ amin + (n − 1)ξ . Therefore, the bounds on |An − Hn | are only a function of ξ and
amin . From Figures 19(a) and 19(b), we know that both ξ and amin are mostly stable; hence,
|An − Hn | is also highly stable. This is one explanation on the stability of Harmonic to Arithmetic
Mean ratios across multiple datasets and subsets.

ACKNOWLEDGMENTS

We thank the reviewers and associate editor for suggestions. We thank Mr. Aditya Thakur for
assistance with some of the experimental plots.

REFERENCES

[1] V. Agate, A. Khamesi, S. Gaglio, and S. Silvestri. 2020. Enabling peer-to-peer user-preference-aware energy sharing

through reinforcement learning. IEEE International Conference on Communications (ICC).

[2] S. Bhattacharjee, A. Thakur, S. Silvestri, and S. K. Das. 2017. Statistical security incident forensics against data fal-

sification in smart grid advanced metering infrastructure. ACM Conference on Data and Application Security (ACM

CODASPY). 35–45.

[3] S. Bhattacharjee and S. K. Das. 2018. Detection and forensics under stealthy data falsification in smart metering

infrastructure. IEEE Trans. on Dependable and Secure Computing, Vol. 16.

[4] S. Bhattacharjee, A. Thakur, and S. K. Das. 2018. Towards fast and semi-supervised identification of smart meters

launching data falsification attacks.ACMAsia Conference on Computer and Communications Security (ACMASIACCS).

173–185.

[5] P. Box and D. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B. 26, 2 (1964),

211–252.

[6] A. Cardenas, R. Berthier, R. Bobba, J. Huh, J. Jetcheva, D. Grochocki, andW. Sanders. 2014. A framework for evaluating

intrusion detection architectures in advanced metering infrastructures. IEEE Trans. on Smart Grid 5, 2 (2014), 906–915.

[7] V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys 41, 15 (2009),

15–58.

[8] S. Ciavarella, J. Y. Joo, and S. Silvestri. 2016. Managing contingencies in smart grids via the internet of things. IEEE

Trans. on Smart Grid 7, 4 (2016), 2134–2141.

[9] V. Dolce, C. Jackson, S. Silvestri, D. Baker, and A. De Paola. 2018. Social-behavioral aware optimization of energy

consumption in smart homes. IEEE International Conf. on Distributed Computing in Sensor Systems (DCOSS), 2018.

[10] Y. Ishimaki, S. Bhattacharjee, H. Yamana, and S. K. Das. 2020. Towards privacy-preserving anomaly-based attack de-

tection against data falsification in smart grid. IEEE International Conference on Communications, Control, and Com-

puting Technologies for Smart Grids (SMARTGRIDCOMM), Nov. 2020.

[11] R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, and X. Shen. 2014. Energy-Theft detection issues for advanced metering

infrastructure in smart grids. Tsinghua Science and Technology 19, 2 (2014), 105–120.

[12] P. Jokar, N. Arianpoo, and V. Leung. 2016. Electricity theft detection in AMI using customers’ consumption patterns.

IEEE Trans. on Smart Grid 7, 1 (2016), 216–226.

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.



9:36 S. Bhattacharjee et al.

[13] A. Khamesi, S. Silvestri, D. Baker, and A. De Paola. 2020. Perceived-value driven optimization of energy consumption

in smart homes. ACM Transactions on Internet of Things 1, 2 (2020).

[14] A. R. Khamesi and S. Silvestri. 2020. Reverse auction-based demand response program: A truthful mutually beneficial

mechanism. IEEE Mobile Ad Hoc Sensor and Smart Systems (IEEE MASS) (2020).

[15] T. Koppel. 2015. Lights Out: A Cyberattack, A Nation Unprepared, Surviving the Aftermath. Crown Publishers, New

York.

[16] V. B. Krishna, K. Lee, G. A. Weaver, R. K. Iyer, andW. H. Sanders. 2016. F-DETA: A framework for detecting electricity

theft attacks in smart grids. IEEE/IFIP on Dependable Systems and Networks (IEEE DSN). 407–418.

[17] S. McLaughlin, D. Podkuiko, and P. McDaniel. 2009. Energy theft in the advanced metering infrastructure. Proc. of

Critical Information Infrastructures Security. Springer-Verlag, 176–187.

[18] S. McLaughlin, B. Holbert, S. Zonouz, and R. Berthier. 2012. AMIDS: Amulti-sensor energy theft detection framework

for advanced metering infrastructures. IEEE Conf. on Communications, Control, and Computing Technologies for Smart

Grid Communications (SMARTGRIDCOMM). 354–359.

[19] D. Mashima and A. Alvaro. 2012. Evaluating electricity theft detectors in smart grid networks. Springer Intl. Workshop

on Recent Advances in Intrusion Detection. 210–229, Sept. 2012.

[20] R.Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar. 2014. A survey on advancedmetering infrastructure. Elsevier

Journal of Electrical Power & Energy Systems 63 (2014), 473–484.

[21] B. Meyer. 1984. Some inequalities for elementary mean values. AMS Mathematics of Computation 42, 165 (1984), 193–

194.

[22] A. Rad and A.L. Garcia. 2011. Distributed internet-based load altering attacks against smart power grids. IEEE Trans.

on Smart Grids 2, 4 (2011), 667–674.

[23] E. Shin, A. R. Khamesi, Z. Bahr, S. Silvestri, and D. A. Baker. 2020. A user-centered active learning approach for

appliance recognition. IEEE International Conference on Smart Computing (SMARTCOMP), 2020.

[24] Y. L. Sun, W. Yu, Z. Han, and K. J. Ray Liu. 2006. Information theoretic framework of trust model and evaluation for

ad hoc networks. IEEE Journal on Sel. Areas in Communications 24, 2 (2006), 305–317.

[25] S. H. Tung. 1975. On lower and upper bounds of the difference between the arithmetic and the geometric mean. AMS

Mathematics of Computation 29, 131 (1975), 834–836.

[26] J. P. Talusan, F. Tiasus, K. Yasumoto, M. Wilbur, A. Dubey, and S. Bhattacharjee. 2019. Smart transportation delay and

resiliency testbed based on information flow of things middleware. IEEE International Conference on Smart Computing

(SMARTCOMP), USA, 2019.

[27] E. Werley, S. Angelos, O. Saavedra, O. Cortes, and A. Souza. 2011. Detection and identification of abnormalities in

customer consumptions in power distribution systems. IEEE Trans. on Power Delivery 26, 4 (2011), 2436–2442.

[28] M. Wilbur, A. Dubey, B. Leao, and S. Bhattacharjee. 2020. A decentralized approach for real time anomaly detection

in transportation networks. IEEE Conference on Smart Computing, 2020.

[29] W. Xia and Y. Chu. 2011. The schur convexity of gini mean values in the sense of harmonic mean. Mathematica

Scientia 31, 3 (2011), 1103–1112.

[30] W. Yu, D. Griffith, L. Ge, S. Bhattarai, and N. Golmie. 2015. An integrated detection system against false data injection

attacks in the Smart Grid. Security and Commun. Networks 8, 2 (2015), 91–109.

[31] [Online] Available at: https://skyvisionsolutions.files.wordpress.com/2014/08/utility-smart-meters-invade-privacy-

22-aug-2014.pdf.

[32] NY Times, Last Accessed Oct. 2020, [Online] Available at: http://www.nytimes.com/2009/12/14/us/14meters.html?

ref=energy-environment&_r=0.

[33] [Online] Last Accessed Oct. 2020, Available at: http://www.telegraph.co.uk/news/2017/03/06/smart-energy-meters-

giving-readings-seven-times-high-study-finds/.

[34] [Online] Last Accessed Oct. 2020, Available at: https://www.maximintegrated.com/content/dam/files/design/

technical-documents/white-papers/smart-grid-security-recent-history-demonstrates.pdf.

[35] [Online] Last Accessed Oct. 2020, Available at: https://energy-solution.com/2015/01/29/enabling-automated-

demand-response-pge-dras/.

[36] [Online] Last Accessed Oct. 2020, Available at: https://www.smartgrid.gov/files/The_Smart_Grid_Promise_

DemandSide_Management_201003.pdf.

[37] [Online] Last Accessed Oct. 2020, Available at: https://www.smartgrid.gov/project/pecan_street_project_inc_

energy_internet_demonstration.html.

[38] [Online] Last Accessed Oct. 2020, Available at: http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/14-

AMI_System_Security_Requirements_updated.pdf.

[39] [Online] Last Accessed Oct. 2020, Available at: Irish Social Science Data Archives, Available at: http://www.ucd.ie/

issda/data/.

Received June 2018; revised March 2020; accepted September 2020

ACM Transactions on Privacy and Security, Vol. 24, No. 2, Article 9. Publication date: January 2021.

https://skyvisionsolutions.files.wordpress.com/2014/08/utility-smart-meters-invade-privacy-22-aug-2014.pdf
https://skyvisionsolutions.files.wordpress.com/2014/08/utility-smart-meters-invade-privacy-22-aug-2014.pdf
http://www.nytimes.com/2009/12/14/us/14meters.html?ref$=$energy-environment&_r$=$0
http://www.nytimes.com/2009/12/14/us/14meters.html?ref$=$energy-environment&_r$=$0
http://www.telegraph.co.uk/news/2017/03/06/smart-energy-meters-giving-readings-seven-times-high-study-finds/
http://www.telegraph.co.uk/news/2017/03/06/smart-energy-meters-giving-readings-seven-times-high-study-finds/
https://www.maximintegrated.com/content/dam/files/design/technical-documents/white-papers/smart-grid-security-recent-history-demonstrates.pdf
https://www.maximintegrated.com/content/dam/files/design/technical-documents/white-papers/smart-grid-security-recent-history-demonstrates.pdf
https://energy-solution.com/2015/01/29/enabling-automated-demand-response-pge-dras/
https://energy-solution.com/2015/01/29/enabling-automated-demand-response-pge-dras/
https://www.smartgrid.gov/files/The_Smart_Grid_Promise_DemandSide_Management_201003.pdf
https://www.smartgrid.gov/files/The_Smart_Grid_Promise_DemandSide_Management_201003.pdf
https://www.smartgrid.gov/project/pecan_street_project_inc_energy_internet_demonstration.html
https://www.smartgrid.gov/project/pecan_street_project_inc_energy_internet_demonstration.html
http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/14-AMI_System_Security_Requirements_updated.pdf
http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/14-AMI_System_Security_Requirements_updated.pdf
http://www.ucd.ie/issda/data/
http://www.ucd.ie/issda/data/

