10

11

12

13

A Holistic Approach to Power Efficiency in a Clock Offset Based
Intrusion Detection Systems for Controller Area Networks

Subir Halder®*, Mauro Conti?, Sajal K. DasP

“Department of Mathematics, University of Padua, Padua 35121, Italy
b Department of Computer Science, Missouri University of Science and Technology, Rolla, MO 65409, USA

Abstract

Controller Area Network (CAN) is an in-vehicle communication protocol, which provides
an efficient and reliable communication link between Electronic Control Units (ECUs) in
real time. Recent studies have shown that attackers can take remote control of the targeted
vehicle by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we
propose an Intrusion Detection System (IDS), called Clock Offset-based IDS (COIDS), to
monitor in-vehicle network activities to detect any intrusion. Precisely, COIDS measures
and then exploits the clock offset of transmitter ECU’s clock for fingerprinting ECU. COIDS
next leverages the derived fingerprints to construct a baseline of ECU’s normal clock behavior
using an active learning technique. Based on the baseline of normal behavior, COIDS uses
the Cumulative Sum method to detect any abnormal deviation in clock offset. Further,
COIDS uses sequential change-point detection technique to determine the exact time of
intrusion. Generally, COIDS has to run on every ECU to monitor the network behavior.
This can be a significant power overhead for a hardware-constrained ECU. Thus, we next
develop a cooperative game model to optimize the active time duration of COIDS in an ECU.
We performed exhaustive experiments on real world publicly available datasets primarily to
assess the effectiveness of COIDS against various in-vehicle network attacks. Our results
show that COIDS detects intrusions faster than the best performed IDS in the state-of-
the-art. Further, the results show that our designed cooperative game model significantly
reduces the power overhead of the ECU without compromising the performance.

Keywords: Clock Offset, Clock Skew, Cooperative Game, Controller Area Network,
Cumulative Sum Method, Intrusion Detection Systems

1. Introduction

In recent years, we have been witnessing a significant transformation of the automotive
industry. Almost every next day, new advanced functions and features are added into the
modern vehicles, which make them not only safe, but also connected, smart and intelli-
gent [1]. However, as modern vehicles have become more connected, security has become
an important factor for real concern [2]. Recently, researchers [3, 4, 5] have analyzed the
remote exploitation technique using different attack vectors (e.g., Cellular, Bluetooth) and
showed that in-vehicle Electronics Control Units (ECUs) can be compromised for remote
cyber attacks. The cyber attacker can control the vehicle by injecting packets in the in-
vehicle network through the compromised ECU. Recently, Miller and Valasek [6] have been
able to hack and remotely stop a Jeep Cherokee on a highway, which triggered a recall of 1.4
million vehicles by the Chrysler automobile company. More recently, Nie et al. [7] have been
able to compromise and remotely gain control of a Tesla Model S vehicle, which triggered

*Corresponding author.
Email addresses: subir.halder@math.unipd.it (Subir Halder), conti@math.unipd.it (Mauro Conti),
sdas@mst.edu (Sajal K. Das)

Preprint submitted to Elsevier March 5, 2021

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

the introduction of a code signing protection into vehicles by the Tesla Motors company.
These incidents of remote cyber attacks on vehicles have made automobile security as one of
the most vital issues [8]. The security of modern vehicle is a challenging job mainly due to
complexity, numerous attack surfaces, and unsafe and old technologies.

Today’s road vehicles are more intelligent than ever before. Automobile manufacturers
are embedding several ECUs to enhance many safety and comfort relevant functionalities
such as braking, steering and traction controls. All these ECUs continuously exchange mes-
sages through in-vehicle Controller Area Network (CAN) protocol. In almost every country,
all recently sold vehicles implement the CAN protocol as one of the on-board diagnostics
signal protocols. In spite of the widespread popularity and high reliability of the CAN proto-
col, from security perspective, the major problem of the CAN protocol is the lack of message
authentication. Recently, Mazloom et al. [9] have shown that attackers can take control of
the targeted vehicle remotely by exploiting the vulnerabilities of the CAN protocol. As a
defensive mechanism against such attacks on CAN, mainly, two types of defensive mecha-
nisms are followed: (i) message authentication [10, 11], and (ii) intrusion detection [12, 13].
Although, message authentication provides a level of security, however, due to limited space
available for adding a Message Authentication Code (MAC), e.g., HMAC with SHA256 in
a CAN message, hinders its applicability in CAN protocol. In contrast, Intrusion Detection
Systems (IDSs) are drawing attention as a promising technique to detect suspicious behaviors
on the in-vehicle CAN, as IDS provides security without generating computational overhead
in the CAN protocol [14].

In the recent past, several types of state-of-the-art IDSs were proposed [12, 13, 15, 16, 17].
The main philosophy of these IDSs is to monitor the physical invariants, e.g., message con-
tents, message periodicity, voltage distribution of the systems, and validate whether there
is any significant deviation in them. It is worth mentioning that ECUs generally transmit
messages of fixed length and at fixed periodicity, and the message contents do not vary
drastically over time. However, there are still some critical attacks, e.g., fuzzy attack, im-
personation attack, where existing IDSs fail in detection or prevention. The possible reasons
for this inefficiency is: (a) CAN messages do not carry transmitter information, and hence,
it is difficult to tell whether a message has originated from a genuine transmitter or not; and
(b) lack of transmitter’s information makes the job of an IDS nearly impossible to detect,
which ECU has launched an attack.

Contribution. To protect against various vehicle attacks, we propose a novel anomaly-based
IDS, called Clock Offset-based IDS (COIDS). COIDS monitors the interval of periodic mes-
sages, and then exploits them to estimate the clock offsets of transmitter ECUs’ clock, which
are then used to fingerprint the transmitter ECU. Unlike the existing state-of-the-art IDSs,
where clock skew is used as a fingerprint, COIDS exploits clock offset for fingerprinting
transmitter ECUs. This makes COIDS invulnerable to adversaries who can manipulate
inter-departure times of messages. Based on the extracted fingerprints from the message pe-
riodicity, COIDS first constructs a baseline of ECUs’ normal clock behavior model using an
active learning technique [18]. COIDS then uses the Cumulative Sum (CUSUM) method [19]
to derive the cumulative sums of deviations from the baseline of normal behavior for detecting
adversaries. Finally, COIDS uses the Sequential Change-Point Detection (SCPD) technique
to determine the exact time of attack. This allows COIDS to detect not only standard
attacks that are discussed in existing literatures, but also those that are more intelligent
and cannot be detected by existing IDSs, e.g., impersonation attack. Further, the use of
SCPD algorithm enables COIDS to detect an anomaly in real time. As an ECU may have
limited hardware resource, thus, running COIDS incessantly on every ECU may be a sig-
nificant power overhead. To overcome this challenge, we propose a probabilistic model to
minimize the active duration of the COIDS in the ECUs. We performed extensive simula-
tion on publicly available real CAN traffic traces. Our results demonstrate that COIDS can
detect three most potential attacks on CAN;, i.e., Denial of Service (DoS), impersonation

2

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

and fuzzy attacks almost in real time. The results also show that our designed cooperative
game model reduces power consumption considerably by optimizing the active time of the
COIDS without compromising its performance.

Organization. The rest of this paper is organized as follows. Section 2 discusses the related
work. We describe the system and adversary models considered for this work in Section 3.
Section 4 presents the detailed design of COIDS. In Section 5, we first define a problem
to optimize the active time duration of COIDS. We next present a multiplayer cooperative
game-theoretic analysis to the problem in Section 5. In Section 6, we provide a qualitative
analysis of COIDS. The performance of COIDS is evaluated by providing simulation results
in Section 7. Finally, we conclude the paper in Section 8.

2. Related Work

In many recent works, due to the lack of cryptography primitives in CAN, researchers
have preferred anomaly-based IDSs over message authentication mechanism to secure in-
vehicle CAN bus. The existing anomaly-based IDSs have (i) analyzed the data traffic on
the CAN bus, frequency/time, and entropy, (ii) exploited physical characteristics of ECUs,
and (iii) exploited the characteristics of the CAN protocol. Unlike the CAN bus data traffic,
imitating physical characteristics of ECUs is highly challenging for an attacker. In this work,
we classified existing anomaly-based IDS designed by levering physical characteristics into
three categories, namely, voltage-based, clock-based and message periodicity-based. Sec-
tion 2.1 briefly summarizes the existing voltage-based IDS. We present clock-based IDS in
Section 2.2. Finally, in Section 2.3, we discuss message periodicity-based IDS, most relevant
to our context.

2.1. Voltage-based IDS

In an early work, Hoppe et al. [20] first introduced the idea of IDS for in-vehicle net-
work. They proposed to exploit the traffic pattern of CAN bus, e.g., message frequency for
designing an efficient IDS. Motivated by the work [20], Choi et al. [12] proposed a novel
automotive IDS, called VoltagelDS, by exploiting the selected features of time and frequency
domains of the electrical signals in CAN bus. In a similar work, Cho and Shin [21] proposed
voltage-based attacker identification scheme, called Viden, for in-vehicle network. Viden
initially measures the voltage of the electrical signals in CAN bus to create and update the
transmitter ECUs’ voltage profiles. Finally, Viden uses the voltage profiles to identify any
anomaly in the in-vehicle network. Kneib and Huth [17] proposed an IDS, called Scission,
by leveraging physical characteristics of electrical signals in CAN bus. Unlike VoltagelDS
and Viden, Scission exploits variations in the resistor, signal reflections in addition to volt-
age. Through empirical studies, the authors show significant improvement of performance
in terms of false positive rate compared to VoltageIDS and Viden. Although, Scission has
shown impressive performance to detect intruders in CAN, however, real time measurement
and processing of variations in resistor, signal reflections and voltage are highly challenging
for ECUs due to limited resources. Further, in [22], researchers have shown that due to the
requirement of additional cable, voltage-based IDSs introduce new attack surface for various
voltage-based attackers. In an interesting work, Foruhandeh et al. [23] proposed a SIngle-
fraMe based Physical-LayEr (SIMPLE) solution to detect intrusion and identify the specific
ECU generating a CAN frame. SIMPLE exploit voltage based features in the time-domain
from every CAN frame for fingerprinting transmitter ECU. Different from existing voltage-
based IDS, SIMPLE securely updates the training data at regular interval to compensate
environmental changes, e.g., supply voltage, temperature.

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

151

152

153

154

155

156

157

158

159

2.2. Clock-based IDS

Different from earlier works, Cho and Shin [15] proposed an anomaly-based IDS, called
Clock-based IDS (CIDS), for in-vehicle network by leveraging clock skew of quartz crystal
clock associated with ECUs. In a similar work, Sagong et al. [24] proposed a clock skew-
based IDS for in-vehicle network. The authors first proposed an intelligent attack for CAN
bus, called cloaking attack, where an adversary regulates message timing and cloaks its
clock to equate the clock of the targeted ECU. Next, the authors defined a new metric
called Maximum Slackness Index (MSI) to measure the efficacy of the proposed IDS for
detecting cloaking attack. Further, the authors extended the work in [13] by providing formal
models to accurately predict and characterize the attack success probability curves. Recently,
Zhou et al. [25] propose an IDS, called Bit-time-based CAN Bus Monitor (BTMonitor)
by exploiting the physical discrepancies between clocks of different ECUs. In particular,
BTMonitor measures the anomalies of bit time in CAN frames from different ECUs for
fingerprinting the sender ECU. To reduce the necessity for a high sampling rate, the authors
next determine the bit time of recessive and dominant bits, respectively, and extract their
statistical features as fingerprint.

2.8. Message periodicity-based IDS

In a recent work, Han et al. [26] proposed a host-based IDS for in-vehicle network. Par-
ticularly, the authors used the survival analysis model for estimating the survival function,
which in turn helps to detect anomalies. Lee et al. [27] proposed an IDS for in-vehicle network
by exploiting the remote frame. Specifically, the proposed IDS broadcasts remote frame peri-
odically in the CAN bus and receives a response from the sender ECU. Based on the received
response, the IDS calculates offset and time interval. If calculated offset and time interval
exceeds a predefined threshold, IDS declares it as intrusion. In another work, Marchetti
and Stabili [28] exploited the message ID, an unique identifier of the message used by each
ECU, to design an IDS for in-vehicle network. In a similar work, Groza and Murvay [16]
proposed an IDS for in-vehicle network. Interestingly, the proposed IDS took the advantage
of Bloom filtering to check frame periodicity according to message ID. Kalutarage et al. [29]
proposed a context-aware IDS for monitoring cyber-attacks in CAN. Particularly, the au-
thors exploit CAN message sequence for fingerprinting ECU. To extract message sequences
from the CAN bus, they used a sequence modelling technique, called n-gram distribution.
Yu and Wang [30] proposed an IDS based on network topology construction and subsequent
verification. They initially used message periodicity to estimate the communication links
among the ECUs. The authors next exploited communication link information to construct
a network topology. The proposed scheme periodically verifies the topology construction
process and if it finds any deviation in the number of participating ECUs, IDS declares it as
an intrusion.

In the context of physical properties based IDS, we have the following observations:

e None of the works exploited clock offset of quartz crystal clock inbuilt in ECUs while
designing IDS for in-vehicle network. Motivated by this fact, in this work, we design
COIDS leveraging clock offset of transmitter ECUs’.

e Except the works in [15, 22], none of the works consider real time intrusion detection
scenario. However, it is utmost important to detect intruders in real time to minimize
possible escalation of fatalities due to cyber attacks. Therefore, motivated by this fact,
we employed CUSUM, the most powerful method for detecting irregular patterns in a
real time process, in our proposed COIDS.

e None of the works considered optimizing the active time duration of IDS without
compromising its effectiveness. Motivated by this fact, we propose a cooperative game
model to analyze the performance of COIDS with reduced activity within the ECU.

4

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

177

178

179

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

__Arbitration . . Control . _ Data ., CRC _ _ ACK
CRC
SOF | Message ID |RTR | IDE[RBO| DLC Data CRC Del ACK [?)CII(EOF
c [§
0 11 bits 0 | 1bit| 1bit [4 bits 8~64 bits | 15 bits [1bit | 1bit | Ibit [7 bits of 1

Figure 1: Format of a CAN data frame. Every CAN data frame consists of Start Of Frame (SOF), Arbitration,
Control, Data, CRC, ACK and End Of Frame (EOF) fields.

e In contrast to existing works, we employed an active learning technique in COIDS to
learn traffic patterns and SCPD to determine the exact time of attack.

3. Overview of CAN and Threat Model

In this section, we recall the required concepts related to our COIDS. Particularly, in
Section 3.1, we present the background information about the CAN protocol. Section 3.2
discusses the clock related concept. We then present a brief discussion on the SCPD technique
in Section 3.3. Section 3.4 briefly illustrates the CUSUM method. Finally, in Section 3.5,
we present the adversary model and attack scenarios.

3.1. CAN Background

In in-vehicle networking, CAN communication protocol is one of the most popular stan-
dards, which interconnects various ECUs (or, nodes) using a multi-master, message broad-
cast bus system. As CAN is a broadcast bus system, hence, ECUs connected on the bus can
transmit any messages to any ECU as well as monitor ongoing message transmissions. To
preserve data consistency and take control decision, ECU exchange messages among them-
selves through CAN frames. Figure 1 depicts the typical format of a CAN data frame. Since
CAN is a simple message oriented communication protocol, as an alternative of containing
transmitter and/or receiver address, each CAN data frame contains a unique message ID.
For example, a data frame with message ID 0x20 may comprise wheel speed of a vehicle. It
is worth noting that a CAN data frame does not contain encryption, authentication fields.

The CAN bus is designed to behave as a wired-AND gate, particularly, contending ECUs
give higher priority to a message with a smaller message ID. This procedure is known as
arbitration.For example, if two ECUs X and Y are contending for transmitting messages 0x01
and 0x11 over the CAN bus, respectively. Since ECU X sends message with lower ID, ECU X
wins arbitration, and acquires exclusive access of the CAN bus for message transmission. The
ECU Y, which has lost the arbitration, again attempts for transmission once the CAN bus
becomes idle. It is worth mentioning that CAN bus lacks clock synchronization. However,
SOF field and bit stuffing in CAN data frame provide the alignment of bit edges during the
message transmission. In absence of clock synchronization, time instants for ECUs are given
by their own quartz crystal clocks. In practice, a quartz crystal clock of an ECU runs at
diverse frequencies, resulting in as much as a drift of 2400ms over a period of 24 hours [15].
For easy reference, we have summarized the notations in Table 1.

3.2. Clock Related Concepts

In this paper, we follow the standard nomenclature of clocks as defined in Network Time
Protocol (NTP) [31]. Let C; be a true clock that runs at a constant rate, Cy(t) = t, and Cy
be a non-true clock kept by a clock A. We define the clock offset, frequency and clock skew
as follows:

e Clock Offset: Clock offset O4(t) is the time difference between the non-true clock
Cy4 and true clock Cy, i.e., O4(t) = Ca(t) — Ci(t).

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Summary of important notations

Symbol | Description Symbol | Description

Cy(t) True clock at time ¢ Cal(t) Non-true clock at time ¢

04(t) Clock offset at time ¢ T Message interval

t; Transmission time of i-th message a; Arrival time of i-th message

O; Accumulated clock offset of i-th message d; Network delay of i-th message
n; Quantization noise of i-th message Ji Jitter of i-th message

Ozvg Average clock offset of k-th batch message N Number of batches of messages
o Accumulated clock offset of k-th batch message f Probability density function
E[T,.;] | Expected inter-arrival time between message (¢ — 1) and i || My j-th message at k-th batch

L Instantaneous log-likelihood ratio S Cumulative sum

ta Abrupt change time D Intrusion decision function

o? Standard deviationof Gaussian distribution s Mean of Gaussian distribution
) Number of neighbors of an ECU 0% Security level

D Probability of neighborhood monitoring R A set of players, R = {1,2,...,¢}
\%4 Coalition v Characteristic function

1) Number of players in a game, 6 = 1,...,% Sh,. Shapley value of a player r

e Frequency: Frequency is the rate at which non-true clock runs. Hence, the frequency
at a time ¢ is given as: C’y = dCx(t)/dt.

e Clock Skew: Clock skew is the frequency difference between the non-true clock Cy
and true clock Cy, i.e., Sa(t) = dCa(t)/dt — dCy(t)/dt.

At any instant of time, if two clocks have clock skew as 0, we consider those clocks are
synchronized, otherwise, they are asynchronized. A positive clock skew means that C'4 runs
faster than C}, whereas a negative clock skew means that C'4 runs slower than C;. Generally,
the unit for measuring clock skew is microseconds per second (us/s) or parts per million.

3.8. Sequential Change Point Detection

Generally, in CAN; intrusions occur at unknown points in time and resulting significant
changes in the statistical properties of a data sequence [32]. To determine the precise time of
intrusion, we need to analyze the observed data sequence using a statistical approach, where
the number of observations is time varying. There are broadly two different techniques for
detecting abrupt variations in stochastic data sequence model, namely, fixed size batch detec-
tion and sequential change point detection. Among these two change detection techniques,
sequential change point detection is quicker than fixed size batch detection, and suitable for
real time scenario [32, 33, 34]. The sequential change point detection technique characterizes
the change point as the pre-change with unknown post-change in time, resulting in quickest
change detection. Basically, a change point in the change point detection technique is a par-
ticular time instant where the statistical properties of data before and after this time instant
are significantly different. In this work, motivated by the works [32, 33, 34], we model the
precise estimation of intrusion time problem as a change-point detection problem.

3.4. CUSUM Method

The CUSUM method is one of the most powerful methods for detecting irregular patterns
quickly in a real time process [19]. To detect irregular patterns or anomalies, CUSUM
uses hypothesis testing developed over independent identically distributed (i.i.d.) random
variables. Specifically, to detect an anomaly, CUSUM periodically calculates two sums,
i.e., the upper threshold and the lower threshold, which signify the cumulative deviations
between the observed and expected values. When the upper or lower control threshold
exceeds a particular threshold, CUSUM classifies it as irregular pattern or anomaly. It is
worth mentioning that, in CUSUM, the anomaly detection rule is a comparison between the
cumulative sum and adaptive threshold. It is also worth mentioning that we not only can
update the value of adaptive threshold in real time, but also can keep track of the memory
usage of past observations. In CUSUM, a batch processing approach is used to detect a

6

233

234

235

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

256

257

258

259

260

261

262

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

small variation in statistical parameters, e.g., mean with respect to the regular patterns.
Finally, the outcome of the CUSUM method is the list of anomalies associated with the plot
in the time series. The CUSUM method has been used in various applications, including
intrusion detection in networks, speech and image processing, signal processing. Due to the
simplicity and cost-effectiveness, we used the CUSUM method in in-vehicle networks for
intrusion detection. Nevertheless, we propose to connect a memory stick, running COIDS,
with the vehicle via OBD-II port and monitoring CAN bus for possible anomalies.

3.5. Adversary Model and Attack Scenarios

In this work, we assume that an adversary is capable of performing the read and write
operations on the CAN bus. Particularly, an adversary can perform eavesdropping and
intercepting messages by reading CAN bus. In contrast, by write operation, an adversary
can perform replaying, forging, and transmitting unauthenticated messages on the CAN bus.
Further, we assume that an adversary can remotely compromise ECUs or gain access to the
CAN bus via various attack surfaces, e.g., Bluetooth, mechanics tools, cellular connectivity.
However, we do not assume that adversaries have physical access to the vehicle through an
OBD-II port such as CANtact.

In this work, based on the above adversary model, we assume the following three most
potential attack scenarios that can significantly hamper in-vehicle networks: DoS, Imper-
sonation and Fuzzy.

a) DoS Attack. To mount DoS attack, an adversary injects high priority messages in a
short time interval on the CAN bus. Due to flooding of many high priority messages,
the CAN bus becomes busy all the time and unavailable to other ECUs. Generally,
an adversary mounts a DoS attack by injecting messages with theoretically highest
priority message ID [27]. For example, as shown in Figure 2(a), an attacker ECU Z
injects several high priority messages with ID=0x000. Since both ECU X and ECU Y
share the same CAN bus, increasing occupancy of CAN bus generates delay for both
message ID=0x153 and ID=0x4B0.

b) Impersonation Attack. To launch impersonation attack, an adversary ceases mes-
sage transmission by controlling the victim (or, target) ECU and successfully gains the
identity of the victim ECU to pose as an impersonating ECU. Thus, an impersonat-
ing ECU periodically broadcast a data frame and responds to a data frame as victim
ECU. For example, as shown in Figure 2(b), an attacker ECU Z successfully gains the
identity of ECU X and ceases all message transmissions from ECU X. ECU Z next
injects message ID=0x153 into the CAN bus impersonating ECU X.

c) Fuzzy Attack. To mount fuzzy attack, an adversary injects randomly spoofed mes-
sages with various identifiers. As a result, ECUs in the in-vehicle network receive
a significant number of messages. This may, in turn, leads to unintended CAN bus
behavior, e.g., message priority inversion, deadline violation, etc. For example, as
shown in Figure 2(c), an attacker ECU Z injects spoofed messages with ID=0x153
and ID=0x4B0 into the CAN bus randomly. Due to the random insertion of spoofed
messages, fuzzy attack paralyzes the various functions of a vehicle, including tremen-
dous shaking of the steering wheel, instrument panel blinking in countless ways and
automatic changing of gear shift.

4. Proposed IDS: COIDS

In this section, we present a detailed description of COIDS. Particularly, in Section 4.1,
we discuss the clock offset estimation procedure adapted in COIDS. Section 4.2 presents clock
offset anomaly detection mechanism. Finally, we put forward intrusion detection approach
in Section 4.3.

2

@

1

282

283

284

285

286

288

289

290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

ECUX ECUY ECUX ECUY

l l l 0x4B0 1

Delayed Delayed D

DCAN bus T Removed

4B D
CAN bus
o) Oeavs 0
Packet flooding Fuzzy
[ox000] m Impersonating 0x153

(a) DoS attack (b) Impersonation attack (c) Fuzzy attack

0x:

Figure 2: Three type of attack scenarios on in-vehicle CAN.

4.1. Clock Offset Estimation

Let us assume a scenario where an ECU X transmits messages periodically at every T
ms and an ECU Y receives those messages. As only ECU Y’s timestamp is available, we
assume its clock as the true/reference clock. Let g = 0 be the time when ECU X transmits
its first message. In ideal scenario when transmitter and receiver clocks are synchronized,
message 1 will be transmitted at t; = 7 in ECU Y’s clock. For the sake of convenience, we
depict the timing diagram in Figure 3. Then, due to the clock skew, the actual transmission
time is t; = ¢1 4+ O; in ECU Y’s clock, where O; is the accumulated clock offset of ECU X
as first message sent at tg = 0. Due to an incurred network delay of d; between transmission
and reception, timestamp of the i-th message arriving at the incoming buffer of ECU Y is:

=il + O; + d; + n;, (1)

where n; denote the noise introduced by ECU Y’s timestamp quantization. Similarly, times-
tamp of the (i — 1)-th message arriving at the incoming buffer of ECU Y is:

ai—1 = —1)T+Oj—1 +di—1 +ni_1. (2)

From egs. (1) and (2), the expected value of the inter-arrival time between message (i—1)
and ¢, E[T,,], is given by:

E[Turi] = Ela; — a;—1]
= E[T + AO; + Ad; + An;]
= T + E[AO; + Ad; + Any],

where AO; = O; — O;_1 is the clock offset, Ad; (= d; — d;—1) is the difference in network
delay, An;(= n; — n;—1) is the difference in noise. In CAN, as the lengths of messages of
same ID usually are constant over time, without loss of generality, we assume E[Ad;] = 0.
Let n; be a zero-mean Gaussian distribution, therefore, it is reasonable to assume E[n;] = 0,
and hence E[An;] = 0. So, in the ideal case, we have E[T,,;] = T + E[AO;] ~ T. It is
evident from the discussion that the inter-arrival time between any two successive messages
is approximately T, i.e., same as message periodicity. Therefore, to obtain a significant value
of clock offset estimation, we must measure for a batch of incoming messages instead of
two successive messages. Next, we discuss how we can estimate clock offset for a batch of
messages.

Considering the arrival timestamp of the first message at ECU Y’s end as dy + ng and the
expected inter-arrival time between messages, E[T,,;], we can determine the the expected
arrival time of the i-th message as iE[T,, ;] + do + no. In contrast, the actual i-th message
arrival time is a; = iT + O; + d; + n;. According to the NTP specification, we model the
accumulated clock offset from 1st to i-th message as a random variable, O; = iO + J;,
where O is the clock offset per message period T, and J; is the ECU jitter, caused by
variations in the task scheduling, execution time. It is worth mentioning that due to the
randomness of thermal noise, jitter follows a Gaussian distribution. As jitter follows a

8

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Ideal t;=0 4 =T t,=2T t3=3T

Actual t; =T+0O, t, =2T+0, t; =3T+0;3
ECUX —- k- |- - >
: ‘\\\ \\\\ \\\\ \\\\
'
ECUY — A A A S
' dytn T +0;+d;+n, 2T +0,y+dytn, 3T +O3+d3+ny
+— > > >
T = T +0,+Ad;+An, T +AO,+Ady+An, T+AO3+Ad3+An;

Figure 3: Timing analysis of message arrivals in CAN bus.

Gaussian distribution, we assume that .J; and J;_1 as outcomes of a Gaussian random variable
J ~ N(0,0?), where o2 is the deviation of jitter. Thus, the actual i-th message arrival time
isa; = 1T +i0+ J; + d; + n;. From Y’s perspective, the message period is T' with respect to
ECU Xs clock, which corresponds to Ty,; = a; — a;—1 in ECU Y’s clock. By the definition
of the clock offset, the observed offset is:

O_Z‘ = (ai — ai_l) -T
= (0 + AJ; + Ad; + Any),

where AJ; = J; — J;—1. To estimate the clock offset, we processed a batch of N received
messages and determine the average clock offset in the k-th batch, O;"Y, where k = 1,..., K.
We determine O, as follows:

av 1 N =
Ok 9 — Nzizl O;
1 N
- Zizl(o + AJ; + Ad; + Any). (3)

Since we measured the offset for every N received messages, using eq. (3), the accumulated
clock offset till the last message of the k-th batch is given as:

0% = 0§ | + NO™. (4)

It is worth mentioning that Cho and Shin [15] used the original value of O}" instead of the
absolute value. From eq. (4), it is clear that by calculating the clock offset from observation
of message periodicity, transmitter ECUs can be fingerprinted. In this work, we exploit this
characteristic in designing COIDS, a clock offset-based IDS for in-vehicle networks.

4.2. Clock Offset Anomaly Detector

To detect anomalies in accumulated clock offset, COIDS uses the CUSUM method, which
is the core of the SCPD algorithm. The CUSUM method is a sequential detection method
suitable for detecting any anomaly that causes changes in measurement. With a limited
computation resource, the CUSUM method uses the feature of sequential and non-parametric
examinations to detect any attack in time series data. Specifically, in COIDS, we processed
a batch of N messages and then, we applied the CUSUM method to detect small changes in
statistical parameters, e.g., mean with respect to the regular pattern.

Let M, = {mi, mak,...,mni} be the j-th message at k-th batch sent periodically
over time t;, where j = 1,...,N and k = 1,..., K. Also, let O; = {01,02,...,0n-1} be
a set of clock offsets of j messages and i.i.d. following a Gaussian distribution with mean
p and variance ¢2. Under normal scenario, as each message in CAN bus is transmitted
periodically, each clock offset O; follows a Probability Density Function (PDF), f(O;,a)
based on a deterministic parameter a, e.g., j or o2 of Oj. Under attack scenario, O; may

9

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

contain an abrupt change at some time ¢,, where ¢, € t;. It is worth mentioning that by the
abrupt change we mean the changes with both large and small magnitudes of O;. Using the
CUSUM method, we can model this abrupt change by an instantaneous modification of the
value of deterministic parameter « at time t,. Hence, o = «aq before t,, and o = a7 from
t, to the present time. Under this scenario, the whole PDF of the clock offset measured
between t; and the present time ¢; can be divided into two categories of hypotheses (h):

e Under no change hypothesis (h = hg), the PDF of clock offset is given as:

—] #(05,00) 5)

tj=t1

e Under a change hypothesis (h = hq), the PDF of clock offset is given as:

= 1_a[f(Oj,O[()) ﬁ f(Oj,CYl)- (6)

tj=t1 tj=ta,+1

It is clear from egs. (5) and (6) that to determine the clock offset, the PDF of each sample
f(Oj,) and the values of the deterministic parameter ¢, need to be known. Further, we have
to determine the time of the abrupt change between ¢; and ¢5. Since here the problem is
to decide between the two hypotheses hg and hy from the PDF of the measured clock offset,
we can call this problem as a binary hypothesis testing problem [19]. According to [32],
instantaneous log-likelihood ratio test is the best possible solution technique for the binary
hypothesis testing problem. Therefore, following the solution technique, the instantaneous
log-likelihood ratio at time ¢; is given as:

4m=LMﬁﬂ=m(

and the cumulative sum from t; to ty, i.e.,:

f(0j7a1)> 7

7(0;.a0) ™)

tn

S[tn] =), slts]. (8)

tj=t1

From egs. (7) and (8), we can rewrite the instantaneous log-likelihood ratio as:

O ,O[l))
Lty,t In J
N tZt < OJ,O[(])

=5S[tn] = Sta — 1]. (9)

It is worth noting that ¢, is unknown in eq. (9). To estimate t,, we can apply a standard
statistical approach based on the maximum likelihood principle. Following the maximum
likelihood principle, we obtain the intrusion decision function D[ty] and the estimated abrupt
change time ¢, as:

Ditn] = S[tn] — 1gun Slte — 1], (10)
to = 1;&121\75’[% —1]. (11)

It is worth noting from eq. (10) that the decision function is the present cumulative sum
minus its present minimum value. On the contrary, in eq. (11), we notice that the abrupt
change time estimate is the time of the present minimum of the cumulative sum. It is clear
from the above discussion that using eq. (10), one can decide whether any intrusion has

10

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

Packet Arrival Time
—_

: K+l Lo ko 1 k1 !
s [s e [e s [A e
]] I R C [[packet
CAN Bus ' '

Training
Database

Store

Profile

Figure 4: Flow chart of learning mechanism used in COIDS.

actually occurred or not. Similarly, using eq. (11), one can estimate the time of intrusion.
As far as the decision whether any intrusion has actually occurred or not, in this work, we
consider that if D[ty] exceeds a positive threshold hgp, we conclude that the intrusion has
occurred, otherwise, no intrusion. Since our objective is to detect intrusions in real time,
hence, we rewrite the eq. (8) in a recursive form and the same is given as:

S[t]’] = S[tj — 1] + S[tj]. (12)

Further, as we assume that in case intrusion decision function exceeds a positive threshold,
we can rewrite eq. (10) as:

D[tn] = {D[ty — 1] + s[t;]}", (13)

where {z}* = sup(z,0). Summarily, from our above analysis, we can take the decision about
the possible intrusion using eq. (13). In contrast, we can estimate the time of intrusion using
eq. (11) from the set of received messages, e.g., {mix, Mok, ..., myy} efficiently. Therefore,
the size of the set of received messages, i.e., N, determines the amount of past memory held
by the CUSUM algorithm and the correct choice of hy, are the vital parameters for efficient
intrusion detection in real time.

4.8. Intrusion Detection Approach

In this work, we exploit the clock offset of in-vehicle messages for fingerprinting trans-
mitter ECU. Generally, an ECU transmits messages through CAN bus at regular intervals
or frequency, where frequency is determined by the quartz crystal of that particular ECU. If
an adversary injects a spoofed message from an ECU that is distinct from the spoofed ECU,
the difference in clock frequency significantly changes the clock offset of messages [15]. In
this work, to characterize clock offset, we follow a batch processing approach, where the size
of a batch is N. Specifically, we determine the average clock offset of messages for every N
received messages from the attack-free dataset. Figure 4 shows the flow chart of learning
mechanism used in COIDS. In particular, we used an active learning strategy to accelerate
the training speed. In a normal state, the clock offsets of messages O; in a particular batch k
are measured and form the training set. This procedure of clock offset estimation continues
iteratively. We then measure the mean of the clock offsets of messages O;. If the mean of the
clock offsets of messages deviates +20% from a normal state [18], we consequently discard
the training dataset.

Algorithm 1 illustrates how we estimate clock offset and intrusion time. We determine the
PDF of O; by calculating the deterministic parameters p and o of the k-th batch messages.

11

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

407

408

409

410

411

412

413

414

415

416

Algorithm 1: Clock offset and intrusion time estimation

1: Initialize: set the threshold of decision function hy, > 0, S[t1] = D[t1] =0, j =1
2: for k=1 to K do

3: if hy, = D[tj] then

4 collect set of messages M, = {miy, mag, ..., MmNy}
5 calculate s[t;] = In (;Egjg;g)

6: calculate S[t;] = S[t; — 1] + s[t;]
7 if D[tj] > hyp, > 0 then

8 ta <t

9: reset or stop the algorithm

10: end if

11: J=J+1

12: end if

13: end for

We then compute the cumulative sum S[tx] as presented in eq. (8) using the instantaneous
log-likelihood ratio s[t;] given as follows:

S[ty] = Her — Hao (O[tN] _ M) . (14)

2
lop 2

In this work, for determining intrusion detection function and subsequently generating an
alarm signal, COIDS computes atleast ten Average Run Length (ARL) of mean and variance
of clock offset. At each step of ARL computation, COIDS updates the deviation of mean
and variance of clock offset by comparing ARL under attack-free scenario, i.e., hg and ARL
under attack scenario, i.e., hy. If either of the control point, hg or hq, exceeds the threshold
hip, i.e., an unexpected negative or positive change in value has been detected, respectively,
and hence COIDS proclaims this change as an intrusion. It is worth mentioning that as
COIDS is based on the cumulative sum, even a small drifting in the mean and variance of
clock offset from the normal value leads to steadily decreasing or increasing cumulative sum
values. In CUSUM, as a general rule of thumb, the value of hy, ranges between 0 and 3 [19].

5. Proposed Probabilistic Model

Typically, our proposed COIDS has to run incessantly in every ECU to oversee network
behavior and subsequent detection of any anomalous activity. Such behavior of COIDS
have the potential to increase the power overhead on an ECU. Hence, in this section, we
attempt to address the challenge: how to limit the active time duration of COIDS without
compromising its performance. We initially present a probabilistic model to optimize the
active time duration of COIDS in Section 5.1. Thereafter, in Section 5.2, we proposed a
multiplayer cooperative game based solution to the optimization problem.

5.1. Optimization Problem Formulation

To address the typical challenge of COIDS, we tackle the problem from the point of view
of an ECU being monitored by its immediate neighbor. We develop an optimization problem
for addressing the challenge and examine the optimization problem using multiplayer game
theory [35]. Let us assume a network scenario, where several ECUs are connected with each
other through a CAN bus and COIDS is running in each ECU for detecting malicious activity
within its immediate neighborhood.

Let us assume that an ECU X has ¢ active neighbors at a specific time instant. Hence,
each ¥ neighbor monitors the traffic activity of ECU X. Now, during a certain instant of time,
all or some of the ¥ neighbors might detect an anomalous activity of ECU X and trigger an

12

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

456

alarm upon crossing certain predefined detection rate. Interestingly, while monitoring ECU
X, the neighbors spend their significant amount of computational resources and energy.
Nevertheless, it might not be essential to keep the COIDS running on every ECU all the
time. Therefore, we attempt to minimize this redundancy, and subsequently saving the
scarcest resource of ECU. Here we assume that each ECU is equipped with COIDS and
COIDS monitors the traffic of its immediate neighbors incessantly. It is worth mentioning
that the number of COIDSs running and monitoring a neighborhood relies on the level of
security that is expected at some specific time instant. In this paper, we define the security
level v as: an ECU is monitored by at least 7 of its immediate neighbors at any time instant.
From definition, the security level offers a tradeoff between overheads and security. The
higher value of v, the greater number of immediate neighbors that monitor an ECU at a
particular time, which ultimately results in higher energy and computational overheads. We
introduce the concept of the security level so that COIDS can be used in various application
scenarios with varying security requirements. For example, some application scenarios may
tolerate some trivial ECU(s) like seat, door to be compromised. It means v = 1 is limited
for most security sensitive applications, where in-vehicle network cannot tolerate intruders.
Hence, based on the tolerance of the highest number of compromised ECUs, the security
level can be adjusted. Further, in an application scenario, an IDS component in an ECU
might observe a part of its neighbor’s behavior. This might lead to irregularities with respect
to the observed data in various IDSs. By setting the security level, one can limit the number
of ECUs observing an ECU’s behavior at any instant of time. Furthermore, if the validation
needs consensus of more neighboring ECUs, the security level can be raised.

Let us consider that ECU X has ¢ immediate neighboring COIDSs running on respective
ECUs at a specific time instant. Further, let us consider that each ECU monitors indepen-
dently its immediate neighbors with a probability of p. Hence, the probability that ECU X
is monitored for anomalous activity with security level « is given as:

9
Ply/9) = 3 (f)pla —p (15)

=

Based on eq. (15), our objective can be formulated by the following optimization problem:

min p (16)
subject to

ey

M (7)ra-nize am)
l=~

where w+d = 1 and 9 is a very small positive number. Here, w represents a threshold value,
which is the minimum probability required to maintain the desired level of v. We can set
the value of w considering the application scenario. Therefore, an optimal solution of our
formulated problem egs. (16)-(17) will provide the minimum p with which each immediate
neighbor has to monitor.

5.2. Game-Theoretic Solution

In this section, we determine the solution to the optimization problem presented in
egs. (16)-(17). It is here worth mentioning that our design solution must be profitable
from the cooperative IDS’s point of view. Alternatively, the design solution must ensure the
significant resource saving in balance way among the ECUs. To achieve this goal, we design
a multiplayer cooperative game model to designate the interactions among the COIDSs
running on immediate neighboring ECUs.

13

457

458

459

461

462

463

464

466

467

468

469

470

471

472

473

474

475

476

478

479

480

481

482

483

484

485

4

<)

6

487

488

4

<)
©

490

491

In our game model, we set the objective of each player or ECU as that of monitoring
the immediate neighboring ECUs at the prerequisite security level for detecting any mali-
cious activity. Additionally, we set objective of conserving resources, particularly, energy.
Therefore, among these two objectives, we consider monitoring objective as primary goal
and energy saving as secondary goal. It is worth mentioning that if we were set the prece-
dence of energy saving objective over monitoring objective, each ECU would independently
choose to sleep entire time duration, resulting in a completely ineffective COIDS. As ECUs
are operated independently, hence, each ECU must cooperate with each other to achieve our
aforementioned goals. Therefore, we can model our scenario as a i-player cooperative game.

To get an ECU monitored with ~ security level, each of its immediate neighbors must
participate in monitoring with the minimum probability determined through egs. (16)-(17).
To determine minimum probability, we can model our problem as a -player cooperative
Transferable Utility (TU) game [36]. A cooperative TU game is defined as a pair (R,v),
where R is a finite set of players with |R| > 2, and v : 2% — R is a characteristic function
that associates a real number v(V') with each subset V' of R such that v(¢) = 0 [36]. For
a coalition V' < R, v(V) is called the worth of coalition V' and it can be divided into any
possible way among its players. Considering that the energy consumption of a COIDS is
linear, we can represent v(V') as:

Mw_{&bﬂME,ﬁ6>7 a8)

0, if6 <~

where FE is the energy consumed by the COIDS when it incessantly monitors, 6 = |V, ps
is the probability (refer to egs. (16)-(17)) with which every player monitors in a coalition
comprising of § players, and ~y is the security level. It is worth noting that the utility of our
game is to save energy of each player. If § > ~, COIDS achieve the desired security level, i.e.,
~, and hence, the payoff v(V) = §(1 — ps)E. Otherwise, COIDS cannot achieve the desired
security level, and thus, v(V) = 0. According to [37], a solution to a cooperative game of
each player r is given by the Shapley value as follow:

sh[o] = 3 OV 4y) (19)

|
V,reV !

In eq. (19), the summation is taken over all subsets of V' of which player r is a member.
According to eq. (18), the value of v(V') depends on d. Hence, we group the subsets based
on their cardinality, and summation is determined over these groups of subsets such that
0=1,...,%. We can determine the number of subsets of size § of which player r as follow:

i _ _ _
subo1 =Y (457) O B0 -) - G- 0 - gl

H\i-1 Pl
&
== > [1=6ps + (6 — 1)ps_1]
Yo
=(1 _pw)Ev (20)

where py, is the probability with which every player monitors the whole coalition that com-
prises of ¢ players. From eq. (20), we can deduce a few observations, as follows:

e Observation 1: The Shapley value allocation for the game Sh[v] = [(1—py)E, ..., (1—
py)E] is individually rational for all the players as Sh,.[v] = v({r}).

Based on the nature of equation v(r) = (1 — p1)E, we can write Sh.[v] = (1 — py)E
as subset V' comprises of only one player. According to the aforementioned definition of

14

492

493

494

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

the characteristic function, ps is the probability with which every member monitors in a
coalition that comprises of § players, and ps is determined using our optimization problem
egs. (16)-(17). Hence, we can write: p; > py, and thereby, (1 —py)E > (1 —p1)E. It means
none of the players have any problem of accepting this payoff as it is preferable for a player
to monitor in a group instead of alone.

e Observation 2: The Shapley value allocation for the game Sh[v] = [(1—py)E, ..., (1—
py)E] is an imputation as Sh,[v] = v({r}) and Zle Sh,[v] = v(R).

Here, it is worth noting that Zle Sh,[v] = ¥(1—py)E, and v(R) = ¥(1—py)E. It means
that in our game, imputation is an individually rational payoff that allocates the maximum
amount (Pareto-optimality condition). Therefore, every player receives the maximum payoff
possible [38].

e Observation 3: The Shapley value allocation for the game Sh[v] = [(1—py)E, ..., (1—
py)E] is collectively rational as), ., Sh.[v] = v(V) VV < R.

Here, it is worth noting that] .\, Sh,[v] = 6(1 —py)E, v(V) = 6(1 —ps)E, and 6 = |V|.
Furthermore, we can derive p, and ps by solving our optimization problem, i.e., egs. (16)-
(17), and there are more players in R than in V (i.e., ¢» > ¢). Therefore, p, < ps. So, we
notice that 6(1 — py)E > 6(1 — ps)E. It means that in our game no player has the incentive
to deviate from the grand coalitions and form a relatively smaller coalition with neighboring
players (or, ECUs).

All these three observations reveal that energy saving achieved by COIDS with the help
of the optimization problem egs. (16)-(17) is in balance (or, equilibrium). Alternatively, a
solution of our game model in equilibrium is to prove that it is in the core of the game.
According to Lemaire [38], the core of the game is the set of all collectively rational payoffs.
In Observation 3, it is revealed that the Shapley value achieved is collectively rational. Hence,
the Shapley value of the game Sh[v] = [(1 —py)E, ..., (1 —py)E] is in the core.

6. Qualitative Analysis

We present the theoretical analysis of our designed framework in this section. In par-
ticular, we first derive the computational complexity of our intrusion detection technique
presented in Section 4.3. We then examine the message complexity of COIDS. Finally, we
analyze the optimization problem presented in Section 5.2.

Computational Complexity. We estimate the clock offset and the intrusion time using Algo-
rithm 1. We here derive the computational complexity of Algorithm 1 in Theorem 1.

Theorem 1. The proposed clock offset and intrusion time estimation algorithm has a poly-
nomial time complexity.

Proof. The proposed clock offset and intrusion time estimation algorithm effectively calculate
the instantaneous log-likelihood ratio of f(O;, 1) and f(Oj,ag) before and after ¢4, i.e.,
s[t;] for the k-th batch of received messages (line 5). Let us assume that the complexity
of computing s[t;] is B1, where (; depends on the size of a batch of message, i.e., N.
Particularly, for the larger value of N, the value of 8; will be higher or vice-versa. Our
algorithm also calculates the cumulative sum S[¢;], where j = 1,..., N in the k-th batch
of received messages (line 6). Let us assume that the complexity of computing S[¢;] is fa,
where (2 depends on the size of a batch of message, i.e., N. Similar to Sy, for the larger
value of N, the value of $s will be higher or vice-versa. Our proposed algorithm has a loop
(lines 2-13). Therefore, for executing this loop, the complexity is O(K (f1 + 52)). In totality,
the computational complexity of Algorithm 1 is O(K (51 + f2)) and it is polynomial time
complex. O

15

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

Message Complezity. Generally, in CAN bus, a message is broadcast by the ECUs (see
Section 3.1). Each active ECU receives messages from each of its neighbors. In our proposed
COIDS, an attacker is detected using only local information. Hence, in COIDS, the worst-
case complexity is O(T"), where I' is the maximum number of active neighbors at any instant
of time.

Security Level. In Section 5, we present a probabilistic model to determine the ideal proba-
bility based on which a COIDS will decide to remain active to achieve the desired security
level. Here, we now determine the minimum monitoring probability based on the solution
to the optimization problem given in egs. (16)-(17).

Theorem 2. The minimum monitoring probability to ensure that each ECU r is monitored
at the desired security level « is given as p™" where p™" is derived using the minimum
degree of neighbors z, of ECU r in eq. (17).

Proof. We prove this theorem by contradiction. Suppose that each ECU r is monitored with
security level . Further, assume that for each ECU r, p"" is derived using a positive integer
y such that y > x,.

Let p(®) be the solution to the problem given in egs. (16)-(17). Therefore, p*) signifies the
corresponding solution, where x, is substituted by y. Suppose ECU ¢ be the neighbor of ECU
r having the minimum degree of neighbors among all its neighbors. If we notice eq. (17),
the left hand side is representing the probability that at least v immediate neighbors are
monitoring out of the y neighbors. Hence, p(¥) decreases with the increase of y. Alternatively,
p@) < p@r) as y > x,. It is worth noting that z, is the degree of neighbors of ECU gq.
Thus, p®) is the minimum monitoring probability to ensure that ECU ¢ is monitored by
its neighbors to achieve security level v. As p¥) < p(@) ECU ¢ is monitored with desired
security level . This contradicts our initial assumption. Therefore, it proves our theorem.

O

7. Experimental Evaluation

In this section, we evaluate the performance of our proposed COIDS under practical
CAN bus application scenarios. More specifically, we compare this dynamic security enabled
COIDS with our main competitor, OTIDS [27], and Conventional COIDS (C-COIDS) [39].
Here, we first describe the attack scenarios considered during simulation in Section 7.1. We
next present the experimental setup used to evaluate the performance of the competing
schemes in Section 7.2. Finally, we discuss the experimental results performed under three
attack scenarios in Section 7.3.

7.1. Attack Scenarios

To measure the performance of all competing schemes, we use real world publicly available
datasets [40]. The datasets were constructed by logging CAN traffic through the OBD-II
port of a real vehicle. This real world datasets were collected during attack free state and
three different attack scenarios, namely, DoS, impersonation and fuzzy. Particularly, during
attack free state 2,369,868 messages were generated and collected from the CAN bus. In
contrast, during the DoS attack scenario, an attack message is injected in every 0.003 sec
and in total 656,579 messages are injected within CAN bus, where the dominant message
ID is 0x000. Similarly, during the impersonation attack scenario total 659,990 messages are
injected at the rate of 0.001 sec by impersonating the drive gear message ID. Finally, during
the fuzzy attack scenario total 591,990 messages are injected with random message 1Ds at
the rate of 0.005 sec to interfere the normal vehicle operations.

16

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

7.2. Experimental Setup

We performed all experiments in a specially designed OMNeT++ simulator for CAN [41].
In CAN bus, we can learn the behavior of a message by inspecting the average number
of message instances and intervals between successive messages generated from the same
ECU. Therefore, to identify whether messages originate from the same ECU, we consider a
naive method [15] while simulating all the schemes. We initially run our intrusion detection
algorithm on attack free dataset to train COIDS using an active learning technique. To
speedup the training process, we used an active learning technique [18]. Further, to detect
an abnormal behavior, COIDS computes ten ARL functions of the mean and variance of
clock offset. Generally, the ARL function is the estimated number of samples to detect any
shift in the process mean and subsequently generating an alarm signal. The ARL function
takes ho and hy as inputs and is represented by: ARL = Ej[tq], where t4 is the change in
detection time of the CUSUM method. Similar to [33], we implemented a SCPD technique
to determine the exact time of attack while simulating the COIDS.

During simulation, we assume that the values of the various parameters used for the
CUSUM method as suggested by Olufowobi et al [34]. Specifically, in [34], they have deter-
mined the optimal parameter setting to detect small changes in the process mean in real time
for the CUSUM method. For example, they found that h;, = 3 and the value of reference
parameter of CUSUM method is 0.50 as the optimal value for detecting any small change in
real time. Additionally, we set w = 0.995 considering the fact that w + 9 = 1 and J is a very
small positive number. While running COIDS, we calculate clock offsets in every 20 received
messages, i.e., N = 20. Finally, during simulation, we consider two variants of COIDS. In
first variant, we set v = 1, i.e., at least one ECU is monitoring the CAN bus for detecting
adversaries. In the second variant, we set v = 3, i.e., at least three ECUs are monitoring the
CAN bus for detecting adversaries. While simulating COIDS, we consider v as the thresh-
old value so that in the detection scenario when at least one ECU is monitoring, at least
one alarm signal is essential to declare an adversary as detected. Finally, while simulating
C-COIDS and OTIDS, we did not consider the security level.

7.3. Experimental Results

In this section, we discuss the performance of both COIDS and OTIDS under three dif-
ferent attack scenarios mentioned in Section 7.1. Specifically, we first evaluate the validity of
fingerprinting of the transmitted ECUs based on accumulated clock offset in Section 7.3.1.
We then present our experimental results under DoS attack scenario in Section 7.3.2. Sec-
tion 7.3.3 discusses the experimental results under impersonation attack scenario. In Sec-
tion 7.3.4, we put forward the experimental results under fuzzy attack scenario. Finally, we
discuss the power efficiency of the COIDS in Section 7.3.5.

7.8.1. Clock Offset as a Fingerprint

We first determine the validity of COIDS’s fingerprinting of the transmitted ECUs based
on accumulated clock offset. Figure 5 shows our simulation results of accumulated clock
offsets for different messages generated from three ECUs. Specifically, messages {0x153,
0x164} sent from ECU X, messages {0x4B0, 0x4B1} sent from ECU Y and finally message
0x5A0 sent from ECU Z. We notice from the plot that all accumulated clock offsets are
linear in time. Here, it is worth mentioning that the slope of the plot is representing the
estimated clock offset. Interestingly, the plot shows that for the same message source the
value of the clock offset is almost same. For example, messages {0x153, 0x164} sent from
ECU X, exhibited almost the same clock offset range between 0 and 1.08 sec in Figure 5.
Likewise, messages {0x4B0, 0x4B1} sent from ECU Y, exhibited almost the same clock offset
range between 0 and 0.70 sec. These experimental results indicate that COIDS can use clock
offset to distinguish ECUs, and hence can be used as the fingerprints of the respective ECUs.

17

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

1; ——0x153 by X
0x164 by X
16 1l —o—0x4BO by Y !
L4 || ——0x4B1 by Y
1.2 —=—0x5A0 by Z
1

N
[NCT Nre N

Accumulated clock offset (ms)

o

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

Figure 5: Accumulated clock offsets determined by COIDS in our experimental evaluation setting.

7.8.2. Defense Against DoS Attack

To evaluate the capability of COIDS for defending DoS attack on the CAN bus at a
desired security level, we program ECU Z as the attacker, which injects periodic messages
from ¢ = 2.5 sec at 0.003 sec intervals with message ID 0x000, i.e., the highest priority
message. Further, we program ECU X as the victim ECU and ECU Y as the monitoring
ECU running COIDS.

Figure 6(a) shows how the value of accumulated clock offset changes in the absence and
presence of DoS attack. The plot shows that as soon as ECU Z mounts DoS attack, the
value of accumulated clock offset suddenly changes in the positive direction. Due to this
sudden shift, the change hypothesis, h1, of CUSUM method suddenly increases and exceeds
its threshold hy, = 3, i.e., detects an intruder.

We measure the effectiveness of detecting DoS attack for all competing schemes consid-
ering the average detection rate as the performance metric. We plot the average detection
rate in Figure 6(b). While simulating, we considered the number of ECUs as 20 and number
of malicious ECUs as 5. We also considered that at any instant of time any one of the 5
malicious ECUs is chosen for injecting messages at the rate of 0.05 sec. Figure 6(b) shows
that all schemes are successful in detecting DoS attack after a certain time. In all schemes,
we observe that the average detection rate increases with the increase of time. We also ob-
serve that C-COIDS has the highest detection rate, whereas COIDS, v = 3 has the lowest
detection rate. It is due to the different number of votes that are required to finally convict
an ECU as malicious.

We plot the intrusion detection time by varying the time in Figure 6(c). The plot reveals
that C-COIDS detects the injected message ID 0x000 in a very short delay, in fact, almost
in real time compared to other schemes. Similar to C-COIDS, COIDS, v = 1 also shows a
similar kind of plot as in both cases at least one ECU is sufficient for declaring adversaries.
The possible reason for this very short delay is the inclusion of SCPD technique. Precisely,
we observe that the first injection of message ID 0x000 was at 2.5 sec, while C-COIDS and
COIDS, v = 1 signaled the intrusion detection alarm at ty = 2.704 sec and ty = 2.711 sec,
respectively. This indicates that the delay of detecting DoS attack is 0.204 sec and 0.211
sec for C-COIDS and COIDS, v = 1, respectively. It means that the delay in detecting
DoS attack is slightly more in COIDS, v = 1 compared to C-COIDS. This is mainly due
to the stricter requirement for v = 1 in COIDS compared to C-COIDS. All these results
indicate that both C-COIDS and COIDS, v = 1 are most suitable for security sensitive
applications, where in-vehicle network cannot tolerate intruders. Now, if we notice the plot
of OTIDS, the intrusion detection alarm is generated at t; = 3.346 sec, i.e., delay of 0.846 sec.
In summary, the performance of C-COIDS and COIDS, v = 1 have significantly improved

18

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

2 1
=18 —o— with attack
\E, 16 |- without attack 209
% 5
c% 1.4 g
= 0.8
2 1.2 §
8 1 ’—_,,—" g
B os 807
=06 i 5 —A—C-COIDS
£ 206 —8—OTIDS
=04 .
3 —6—COIDS, y=1
< 0.2 —&— COIDS, y=3
0 0.5
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Time (sec) Time (sec)
(a) Accumulated clock offsets derived by COIDS (b) Intrusion detection rate
30
—a&— C-COIDS
g 25 —B8— OTIDS)
2 —6—COIDS, y=1
£20 | .—e—=coms.y=3
Ei1s b
w
ES
810
=]
2
é 5 h/h /
£ T—o—o—o—o—o—o—o—o—w
-5

Time (sec)

(c) Intrusion detection instant

Figure 6: DoS attack - Variations in accumulated clock offset, intrusion detection rate and intrusion detection
instant.

compared to OTIDS. It is primarily due to the inclusion of SCPD technique and an active
learning technique. Finally, the plot of COIDS, v = 3 shows the maximum delay of detecting
intrusion. A possible reason is that stricter security level requires more alarm signals from
ECUs to declare the detection of an adversary. Particularly, in COIDS, ~ = 3, there is a
requirement of at least 3 ECUs to generate alarms for deciding an adversary.

7.8.83. Defense Against Impersonation Attack

To evaluate the capability of COIDS for defending impersonation attack on the CAN
bus, we program ECU Z as attacker and impersonating ECU W. We assume that ECU Z
impersonating message ID 0x2CO0, i.e., drive gear message and injecting periodic message
from ¢t = 2.5 sec at 0.001 sec intervals. Further, we program ECU X as the victim ECU and
ECU Y as the monitoring ECU running COIDS.

Since the attacker ECU Z is impersonating ECU W, so it sends the injected message at
the same frequency as sent by the ECU W. To identify the originating ECU for the message
ID 0x2C0, we initially evaluate the probability mass function of the interval of message ID
0x2C0, before and after the attack was mounted. We plot only the significantly large values
of the PMF before and after the attack in Figure 7(a). Figure 7(a) shows the abnormal
deviation of PMF plot from the mean. This is due to the mistimed impersonation attack.
Particularly, we observe from the plot that the mean of the PMF before and after the attack
is 0.75 and 0.58, respectively.

We plot the changes of accumulated clock offset in the absence and presence of imper-
sonating attack in Figure 7(b). It is interesting to show that in presence of impersonation
attack the value of accumulated clock offset changes in the positive direction. It is because
for an impersonating ECU it is difficult to control the arrival of response for a message
within a particular time. As a matter of this significant change in accumulated clock offset,

19

692

693

694

695

696

697

698

699

700

701

702

703

704

705

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

740

741

742

743

the changed hypothesis, hi, exceeds its threshold h;y, = 3, i.e., COIDS declares detection of
an intruder.

Similar to DoS attack, we measure the effectiveness of detecting the impersonation attack
for all competing schemes, considering the average detection rate as performance metric.
Figure 7(c) shows the average impersonation attack detection rate for all schemes. While
simulating, we considered the same experimental setup as a DoS attack. Figure 7(c) shows
that all schemes are successful in detecting impersonation attack after a certain time. The
plot also shows that C-COIDS outperforms the other schemes in terms of average detection
rate. Specifically, we notice that C-COIDS has the highest detection rate, whereas COIDS,
v = 3 has lowest detection rate. It is mainly due to the different number of votes that are
required to finally convict an ECU as malicious.

Now, if we compare the performance of all schemes, C-COIDS and COIDS, v = 1 signif-
icantly outperforms COIDS, v = 3 and OTIDS. It is because both C-COIDS and COIDS,
~v = 1 exploits the accumulated clock offset for detecting the intruder as well as includes the
SCPD technique to reduce intrusion detection time and at least one alarm signal is required
to declare an adversary as detected, whereas OTIDS exploits the time interval of message.
It is quite clear that due to the intelligent attacker, time interval of message may not change.
However, it is difficult for an intelligent attacker to keep unchanged accumulated clock off-
set. As far as the detection time is concerned in Figure 7(d), C-COIDS and COIDS, v =1
exhibit similar plot patterns and detect impersonation attack at 2.736 sec and 2.741 sec,
respectively. Hence, the delay of detecting impersonation attack is 0.236 sec and 0.241 sec
in C-COIDS and COIDS, v = 1, respectively. It means, similar to DoS attack, the delay
in detecting impersonation attack is slightly more in COIDS, v = 1 compared to C-COIDS.
This is primarily due to the stricter requirement for v = 1 in COIDS compared to C-COIDS.
Conversely, OTIDS and COIDS, v = 3 detects impersonation attack at 3.472 sec and 3.687
sec, respectively. Thus, the delay of detecting impersonation attack is 0.972 sec and 1.187
sec in OTIDS and COIDS, v = 3, respectively. Interestingly, we notice from Figure 7(d) that
the detection time increases with the increase in security levels, i.e., v. It is due to the fact
that a higher security level signifies a stricter IDS, where more alarm signals are required
from ECUs to finally convict an activity or ECU as malicious. Summarily, C-COIDS and
COIDS, «v = 1 outperform both OTIDS and COIDS, v = 3 in terms of quick impersonation
attacker detection. Alternately, in C-COIDS and COIDS, v = 1 have the least intruder
tolerance capability than the other schemes.

7.8.4. Defense Against Fuzzy Attack

In this section, we evaluate the capability of COIDS for defending fuzzy attack. We
program ECU Z as attacker randomly injecting message IDs 0x2C0 and 0x5A2 at every
0.005 sec. Further, similar to the two earlier attack scenarios, we program ECU X as the
victim ECU and ECU Y as monitoring ECU running COIDS.

We plot the value of accumulated clock offset changes in the absence and presence of
fuzzy attack in Figure 8(a). The plot shows that as soon as ECU Z mounts fuzzy attack, the
value of accumulated clock offset suddenly changes in the positive direction. Particularly,
the plot shows that fuzzy attack mounted at 2.5 sec. Now, due to injection of 0x2C0 and
0x5A2 messages, the accumulated clock offset abruptly changes from 0.937 sec to 1.367 sec.

Similar to the earlier two attacks, we measure the effectiveness of detecting impersonation
attack for all competing schemes considering the average detection rate as the performance
metric. We considered the same experimental setup as DoS attack while measuring the
average detection rate. Figure 8(b) shows the average impersonation attack detection rate
for all schemes. We notice from Figure 8(b) that all schemes are successful in detecting fuzzy
attack after a certain time. We also notice from the plot that C-COIDS has the highest
detection rate, whereas COIDS, v = 3 has the lowest detection rate. It is mainly due to the
different number of votes that are required to finally convict an ECU as malicious.

In Figure 8(c), we observe that the first set of message injections for the spoofing gear is

20

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

1 2
—6— 0x2C0 (before attack) f;é\ 18 —o— with attack
§ 08 —*— 0x2C0 (after attack) <16 — - — — without attack
B Q
2 2 14
& 3]
§ 0.6 .:g 1.2
g - |
204 B 08
2 =06 p
£ E -7
S 0.2 S 04 -
-9 31
202
0 & il 0
0 0.25 0.5 1 1.25 1.5 2 0 0.5 1 1.5 2 2.5 3 3.5 4
Message interval (ms) Time (sec)

(a) Probability mass function of message intervals (b) Accumulated clock offsets derived by COIDS
30

1
—4— C-COIDS
£25 || —=—oOTIDS
209 5]
g0 3 —o—COIDS, y=1
= 520 || ——coms, y=3
‘= 0.8 (=]
E g1s
2 RZ
< Q
© 0.7 S 10
= =
8 o
s g S
Z 06 —B8— OTIDS =
—e— COIDS, y=1 £ 0
—o— COIDS, y=3
0.5 5
0 05 1 15 2 25 3 35 4 .
Time (sec) Time (sec)
c) Intrusion detection rate ntrusion detection instan
Int detect t d) Int detect tant

Figure 7: Impersonation attack - Probability mass function of message intervals, variations in accumulated
clock offset, intrusion detection rate and intrusion detection instant.

at 2.5 sec, whereas C-COIDS signals the alarm at t; = 2.719 sec. It means that the detection
delay of C-COIDS for the gear data injection is 0.219 sec, due to the inclusion of the SCPD
technique to reduce the intrusion detection time. Like C-COIDS, COIDS, v = 1 also show
similar kind of plot as in both schemes alarm signal from at least one ECU is required to
declare an adversary as detected. Now, if we compare the performance between C-COIDS,
COIDS, v = 1 and OTIDS, the detection delay of C-COIDS and COIDS, v = 1 is much
less than OTIDS. In particular, OTIDS signals the alarm at 3.392 sec, i.e., delay of 0.892
sec. Finally, as expected, COIDS, v = 3 shows the highest detection delay, particularly,
(3.603 — 2.5) = 1.103 sec. As explained previously, at higher security level, COIDS is more
stricter, and thus, requires more alarm signals to convict an ECU as an adversary. It means
that in COIDS where v = 3, has more intruder tolerance capability than in COIDS where

v =1

7.8.5. Power Efficiency

In this section, through simulation, we show how power consumption is minimized using
our probability model (see Section 5.1). Here, we first introduce the power model used
during simulation. In our power model, we determine the power consumption in an ECU
as a function of its transceiver and controller. Particularly, we assume an ECU embeds
a Microchip MCP2551 transceiver and a Microchip MCP2515 controller [42], where the
controller is considered to require constant power irrespective of operating state. According
to the data sheet of MCP2551 [43], the transmitter consumes more power than the receiver.
Whereas idle state consumes equal power to that of receiving. Specifically, based on the
values obtained from the data sheet, the power consumption for transmitting and receiving
by an ECU in the CAN bus are 177 mW and 105 mW, respectively [42]. Here it is worth
mentioning that although CAN bus supports a data transfer rate of 1 Mbps, it is unusual to
use more than 50% of the maximum, due to its collision handling scheme. While measuring

21

769

770

771

772

773

74

775

776

T

778

779

780

781

782

783

784

786

787

788

789

790

791

792

793

2 1
g 1.8 —o— with attack
=16 - = = = without attack %; 09
Q
<14 -] o
212 gl £ 03
~ . - s Y
g .- g
) - 3
208 g 07
= <
506 s —A— C-COIDS
£ 04 Z 06 —&—OTIDS
802 —e—COIDS, y=1
< U —o— COIDS, ’Y:3
0 0.5
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec) Time (sec)

(a) Accumulated clock offsets derived by COIDS (b) Intrusion detection rate

30
—4— C-COIDS

g 25 —&— OTIDS
= —6—COIDS, y=1
é 20 —o— COIDS, y=3
&1s
w)
3
210
8
g
E o

-5

Time (sec)

(c) Intrusion detection instant

Figure 8: Fuzzy attack - Variations in accumulated clock offset, intrusion detection rate and intrusion detection
instant.

the power efficiency, we vary the number of ECUs from 5 to 20. We define the power efficiency
as the minimum power consumed to provide the desired security level. We performed two
sets of experiments for evaluating the power efficiency of the various schemes. One set of
experiments measures power efficiency with varying desired security levels and the second
one measures power efficiency with varying number of ECUs. Without loss of generality, we
consider fuzzy attack scenario while performing these two sets of experiments.

Figure 9(a) depicts the average power consumption of various schemes with varying
desired security levels. While simulating, we consider the number of ECUs connected through
CAN bus as 20. For all three schemes, the power consumed by IDS is increasing linearly
with the increase in security level, i.e., . It is obvious that to maintain a higher value of
v, comparatively more power needs to be consumed. However, the power saving in COIDS
is clearly visible and quite significant. It is because, in both C-COIDS and OTIDS, ECUs
are active all the time, irrespective of -, resulting in significant power consumption. On the
contrary, in COIDS, power consumption is significantly reduced by minimizing the active
time duration of ECU based on the devised multiplayer cooperative game model. We notice
from Figure 9(a) that the average power consumption in COIDS is 33.05% and 37.21%
reduced compared to C-COIDS and OTIDS, respectively. Therefore, the results reveal that
a significant amount of power is saved during the entire lifetime of the vehicle.

We next evaluate the power efficiency by varying the number of ECUs, and the results
are plotted in Figure 9(b). While simulating, we set v = 3 for all three schemes. We notice
from the plot that the power consumption increases with the increase in number of ECUs
for all three schemes. However, the power consumption in both C-COIDS and OTIDS is
significantly more than COIDS. It is obvious as previously explained that, in C-COIDS and
OTIDS, ECUs are active all the time, resulting in considerable power consumption. On
the contrary, in COIDS, most of the ECUs remain in the idle state, resulting in significant

22

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

X\

Power consumption (W)
(3]

Power consumption (W)
58]

1 —— C-COIDS 1 —&— C-COIDS
—8— OTIDS —8— OTIDS
—o— COIDS —e— COIDS
0 0
1 2 3 4 5 5 10 15 20
Security level Number of ECUs
(a) Effect of security level (b) Effect of number of ECUs

Figure 9: Average power consumption of different competing schemes.

power conservation. In Figure 9(b), we observe that COIDS reduces the average power
consumption by 31.57% and 35.09% compared to C-COIDS and OTIDS, respectively. Here,
again, we observe that the use of our designed multiplayer cooperative game model results
in significant saving of power.

8. Conclusion

We present COIDS, a new anomaly based IDS for the in-vehicle network. COIDS mon-
itors the intervals of periodic messages and exploits them to estimate the clock offset of
the transmitter ECUs’ clock for fingerprinting ECUs. COIDS then leverages the derived
fingerprints to construct a baseline of ECU’s normal clock behavior using an active learn-
ing technique. Based on the baseline of normal behavior, COIDS detects any abnormal
deviation in clock offset via the CUSUM method. Further, to determine the exact time of
intrusion, COIDS uses SCPD. As COIDS incessantly runs on every hardware-constrained
ECU, we present the minimization of the active time duration of COIDS in an ECU as an
optimization problem. We next devise a multiplayer cooperative game model where the main
objective of the COIDS is to monitor the neighboring ECUs at a desired security level for
detecting anomalous activities, whereas the secondary objective of the COIDS is to conserve
power as much as possible. To attain these objectives, each ECUs has to cooperatively
participate in monitoring its neighbors with a minimum probability. The evaluated results
show that COIDS outperforms the state-of-the-art IDS, OTIDS under three most potential
attacks on CAN, i.e. DoS, impersonation and fuzzy. The experimental results show that
COIDS is not only effective in defending all these three attacks, but also ensures intrusion
detection almost in real time. Further, the results show that our devised cooperative game
model significantly improves the power efficiency of the ECU without compromising the per-
formance. In the future, we intend to design a secure authentication scheme for ECUs on
the legacy CAN bus by exploiting the covert channels. Further, we seek to investigate the
performance of the COIDS under more sophisticated attacks, like cloaking attack [13].

References

[1] V. H. Le, J. D. Hartog, Z. Zannone, Security and privacy for innovative automotive
applications: A Survey, Computer Communications 132 (2018) 17-41.

[2] S. Halder, A. Ghosal, M. Conti, Secure over-the-air software updates in connected
vehicles: A survey, Computer Networks (2020) 107343.

23

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

[3]

[11]

[12]

[13]

[14]

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno, Comprehensive experimental analyses of automotive
attack surfaces, in: Proc. of USENIX Security Symposium, 2011, pp. 77-92.

L. Constantin, Researchers hack Tesla Model S with remote attack, Accessed on April
20, 2020. [Online]: http://www.pcworld.com/article/3121999/security /researchers-
demonstrate-remote-attack-against-tesla-model-s.html.

E. Weise, Chinese group hacks a Tesla for the second year in a row, [Online] Accessed
on April 20, 2020. [Online]: https://eu.usatoday.com/story/tech/2017/07/28/chinese-
group-hacks-tesla-second-year-row /518430001 /.

C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle, in: Black
Hat USA, 2015, pp. 1-91.

S. Nie, L. Liu, Y. Du, Free-fall: Hacking tesla from wireless to can bus, in: Black Hat
USA, 2017, pp. 1-16.

J. Liu, S. Zhang, W. Sun, Y. Shi, In-vehicle network attacks and countermeasures:
Challenges and future directions, IEEE Network 31 (2017) 50-58.

S. Mazloom, M. Rezaeirad, A. Hunter, D. McCoy, A security analysis of an in-vehicle
infotainment and app platform, in: Proc. of 10th USENIX Workshop on Offensive
Technologies, 2016, pp. 1-12.

A. 1. Radu, F. D. Garcia, LeiA: a lightweight authentication protocol for can, in: Proc.
of European Symposium on Research in Computer Security (ESORICS), 2016, volume
9879 of LNCS, pp. 283-300.

B. Groza, S. Murvay, A. V. Herrewege, [. Verbauwhede, Libra-can: Lightweight broad-
cast authentication for controller area networks, ACM Trans. on Embedded Computing
Systems 16 (2017) 1-25.

W. Choi, K. Joo, H. J. Jo, M. C. Park, D. H. Lee, VoltagelDS: low-level communication
characteristics for automotive intrusion detection system, IEEE Trans. on Information
Forensics and Security 13 (2018) 2114-2129.

X.Ying, S. U. Sagong, A. Clark, L. Bushnell, R. Poovendran, Shape of the cloak: Formal
analysis of clock skew-based intrusion detection system in controller area networks,
IEEE Trans. on Information Forensics and Security 14 (2019) 2300-2314.

W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, K. Li, A survey of intrusion detection
for in-vehicle networks, IEEE Trans. on Intelligent Transportation Systems 21 (2020)
919-933.

K. Cho, K. Shin, Fingerprinting electronic control units for vehicle intrusion detection,
in: Proc. of USENIX Security Symposium, 2016, pp. 911-927.

B. Groza, P. S. Murvay, Efficient intrusion detection with bloom filtering in controller
area networks, IEEE Trans. on Information Forensics and Security 14 (2019) 1037-1051.

M. Kneib, C. Huth, Scission: Signal characteristic-based sender identification and in-
trusion detection in automotive networks, in: Proc. of ACM Conference on Computer
and Communications Security (ACM CCS), 2018, pp. 787-800.

K. Huang, Q. Zhang, C. Zhou, N. Xiong, Y. Qin, An efficient intrusion detection
approach for visual sensor networks based on traffic pattern learning, IEEE Trans. on
Systems, Man, and Cybernetics: Systems 47 (2017) 2704-2713.

24

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

[19]

[20]

[26]

[27]

M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and applica-
tion, volume 104, Prentice Hall Englewood Cliffs, 1993.

T. Hoppe, S. Kiltz, J. Dittmann, Security threats to automotive can networks—practical
examples and selected short-term countermeasures, in: Proc. of International Confer-
ence on Computer Safety, Reliability, and Security, 2008, pp. 235-248.

K.-T. Cho, K. G. Shin, Viden: Attacker identification on in-vehicle networks, in: Proc.
of ACM Conference on Computer and Communications Security (ACM CCS), 2017, pp.
1109-1123.

S. U. Sagong, X. Ying, R. Poovendran, L. Bushnell, Exploring attack surfaces of voltage-
based intrusion detection systems in controller area networks, ESCAR Europe (2018)
1-13.

M. Foruhandeh, Y. Man, R. Gerdes, M. Li, T. Chantem, Simple: single-frame based
physical layer identification for intrusion detection and prevention on in-vehicle net-
works, in: Proc. of 35th Annual Computer Security Applications Conference, 2019, pp.
229-244.

S. U. Sagong, X. Ying, A. Clark, L. Bushnell, R. Poovendran, Cloaking the clock: emu-
lating clock skew in controller area networks, in: Proc. of ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), 2018, pp. 32-42.

J. Zhou, P. Joshi, H. Zeng, R. Li, Btmonitor: Bit-time-based intrusion detection and
attacker identification in controller area network, ACM Trans. on Embedded Computing
Systems (TECS) 18 (2019) 1-23.

M. L. Han, B. I. Kwak, H. K. Kim, Anomaly intrusion detection method for vehicular
networks based on survival analysis, Vehicular communications 14 (2018) 52-63.

H. Lee, S. H. Jeong, H. K. Kim, Otids: A novel intrusion detection system for in-vehicle
network by using remote frame, in: Proc. of 15th Annual Conference on Privacy, Security
and Trust (PST), 2017, pp. 57-5709.

M. Marchetti, D. Stabili, Anomaly detection of can bus messages through analysis of id
sequences, in: Proc. of IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1577-1583.

H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, G. Madzudzo, Context-aware anomaly
detector for monitoring cyber attacks on automotive can bus, in: Proc. of ACM Com-
puter Science in Cars Symposium, 2019, pp. 1-8.

T. Yu, X. Wang, Topology verification enabled intrusion detection for in-vehicle can-fd
networks, IEEE Communications Letters 24 (2020) 227-230.

D. Mills, Network Time Protocol (Version 3) specification, implementation and analysis,
Technical Report, University of Delaware, 1992, pp. 1-92.

A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, H. Kim, A novel approach to detection
of intrusions in computer networks via adaptive sequential and batch-sequential change-
point detection methods, IEEE Trans. on Signal Processing 54 (2006) 3372-3382.

A. G. Tartakovsky, A. S. Polunchenko, G. Sokolov, Efficient computer network anomaly
detection by changepoint detection methods, IEEE Journal of Selected Topics in Signal
Processing 7 (2012) 4-11.

25

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

[34]

H. Olufowobi, U. Ezeobi, E. Muhati, G. Robinson, C. Young, J. Zambreno, G. Bloom,
Anomaly detection approach using adaptive cumulative sum algorithm for controller
area network, in: Proc. of ACM Workshop on Automotive Cybersecurity (AutoSec),
2019, pp. 25-30.

C. Kiennert, Z. Ismail, H. Debar, J. Leneutre, A survey on game-theoretic approaches
for intrusion detection and response optimization, ACM Computing Surveys (CSUR)
51 (2018) 1-31.

B. Peleg, P. Sudholter, Introduction to the theory of cooperative games, volume 34,
Springer Science & Business Media, 2007.

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games 2
(1953) 307-317.

J. Lemaire, Cooperative game theory and its insurance applications, ASTIN Bulletin:
The Journal of the International Actuarial Association 21 (1991) 17-40.

S. Halder, M. Conti, S. K. Das, Coids: A clock offset based intrusion detection system for
controller area networks, in: Proc. of 21st ACM International Conference on Distributed
Computing and Networking (ACM ICDCN), 2020, pp. 1-10.

H. Lee, S. H. Jeong and H. K. Kim, CAN Dataset for intrusion detection (OTIDS),
[Online]: http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset, 2018. Accessed
on January 15, 2020.

J. Matsumura, Y. Matsubara, H. Takada, M. Oi, M. Toyoshima, A. Iwai, A simulation
environment based on omnet++ for automotive can—ethernet networks, Analysis Tools
and Methodologies for Embedded and Real-time Systems (2013) 1-44.

K. French, Energy Consumption of In-Vehicle Communication in Electric Vehicles: A
comparison between CAN, Ethernet and EEE, Ph.D. thesis, Link6ping University, 2019.

N. Balbierer, T. Waas, J. Noebauer, J. Seitz, Energy consumption of ethernet compared
to automotive bus networks, in: Proc. of 9th International Workshop on Intelligent
Solutions in Embedded Systems, 2011, pp. 61-66.

26

