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Abstract

Controller Area Network (CAN) is an in-vehicle communication protocol, which provides
an efficient and reliable communication link between Electronic Control Units (ECUs) in
real time. Recent studies have shown that attackers can take remote control of the targeted
vehicle by exploiting the vulnerabilities of the CAN protocol. Motivated by this fact, we
propose an Intrusion Detection System (IDS), called Clock Offset-based IDS (COIDS), to
monitor in-vehicle network activities to detect any intrusion. Precisely, COIDS measures
and then exploits the clock offset of transmitter ECU’s clock for fingerprinting ECU. COIDS
next leverages the derived fingerprints to construct a baseline of ECU’s normal clock behavior
using an active learning technique. Based on the baseline of normal behavior, COIDS uses
the Cumulative Sum method to detect any abnormal deviation in clock offset. Further,
COIDS uses sequential change-point detection technique to determine the exact time of
intrusion. Generally, COIDS has to run on every ECU to monitor the network behavior.
This can be a significant power overhead for a hardware-constrained ECU. Thus, we next
develop a cooperative game model to optimize the active time duration of COIDS in an ECU.
We performed exhaustive experiments on real world publicly available datasets primarily to
assess the effectiveness of COIDS against various in-vehicle network attacks. Our results
show that COIDS detects intrusions faster than the best performed IDS in the state-of-
the-art. Further, the results show that our designed cooperative game model significantly
reduces the power overhead of the ECU without compromising the performance.

Keywords: Clock Offset, Clock Skew, Cooperative Game, Controller Area Network,
Cumulative Sum Method, Intrusion Detection Systems

1. Introduction1

In recent years, we have been witnessing a significant transformation of the automotive2

industry. Almost every next day, new advanced functions and features are added into the3

modern vehicles, which make them not only safe, but also connected, smart and intelli-4

gent [1]. However, as modern vehicles have become more connected, security has become5

an important factor for real concern [2]. Recently, researchers [3, 4, 5] have analyzed the6

remote exploitation technique using different attack vectors (e.g., Cellular, Bluetooth) and7

showed that in-vehicle Electronics Control Units (ECUs) can be compromised for remote8

cyber attacks. The cyber attacker can control the vehicle by injecting packets in the in-9

vehicle network through the compromised ECU. Recently, Miller and Valasek [6] have been10

able to hack and remotely stop a Jeep Cherokee on a highway, which triggered a recall of 1.411

million vehicles by the Chrysler automobile company. More recently, Nie et al. [7] have been12

able to compromise and remotely gain control of a Tesla Model S vehicle, which triggered13
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the introduction of a code signing protection into vehicles by the Tesla Motors company.14

These incidents of remote cyber attacks on vehicles have made automobile security as one of15

the most vital issues [8]. The security of modern vehicle is a challenging job mainly due to16

complexity, numerous attack surfaces, and unsafe and old technologies.17

Today’s road vehicles are more intelligent than ever before. Automobile manufacturers18

are embedding several ECUs to enhance many safety and comfort relevant functionalities19

such as braking, steering and traction controls. All these ECUs continuously exchange mes-20

sages through in-vehicle Controller Area Network (CAN) protocol. In almost every country,21

all recently sold vehicles implement the CAN protocol as one of the on-board diagnostics22

signal protocols. In spite of the widespread popularity and high reliability of the CAN proto-23

col, from security perspective, the major problem of the CAN protocol is the lack of message24

authentication. Recently, Mazloom et al. [9] have shown that attackers can take control of25

the targeted vehicle remotely by exploiting the vulnerabilities of the CAN protocol. As a26

defensive mechanism against such attacks on CAN, mainly, two types of defensive mecha-27

nisms are followed: (i) message authentication [10, 11], and (ii) intrusion detection [12, 13].28

Although, message authentication provides a level of security, however, due to limited space29

available for adding a Message Authentication Code (MAC), e.g., HMAC with SHA256 in30

a CAN message, hinders its applicability in CAN protocol. In contrast, Intrusion Detection31

Systems (IDSs) are drawing attention as a promising technique to detect suspicious behaviors32

on the in-vehicle CAN, as IDS provides security without generating computational overhead33

in the CAN protocol [14].34

In the recent past, several types of state-of-the-art IDSs were proposed [12, 13, 15, 16, 17].35

The main philosophy of these IDSs is to monitor the physical invariants, e.g., message con-36

tents, message periodicity, voltage distribution of the systems, and validate whether there37

is any significant deviation in them. It is worth mentioning that ECUs generally transmit38

messages of fixed length and at fixed periodicity, and the message contents do not vary39

drastically over time. However, there are still some critical attacks, e.g., fuzzy attack, im-40

personation attack, where existing IDSs fail in detection or prevention. The possible reasons41

for this inefficiency is: (a) CAN messages do not carry transmitter information, and hence,42

it is difficult to tell whether a message has originated from a genuine transmitter or not; and43

(b) lack of transmitter’s information makes the job of an IDS nearly impossible to detect,44

which ECU has launched an attack.45

Contribution. To protect against various vehicle attacks, we propose a novel anomaly-based46

IDS, called Clock Offset-based IDS (COIDS). COIDS monitors the interval of periodic mes-47

sages, and then exploits them to estimate the clock offsets of transmitter ECUs’ clock, which48

are then used to fingerprint the transmitter ECU. Unlike the existing state-of-the-art IDSs,49

where clock skew is used as a fingerprint, COIDS exploits clock offset for fingerprinting50

transmitter ECUs. This makes COIDS invulnerable to adversaries who can manipulate51

inter-departure times of messages. Based on the extracted fingerprints from the message pe-52

riodicity, COIDS first constructs a baseline of ECUs’ normal clock behavior model using an53

active learning technique [18]. COIDS then uses the Cumulative Sum (CUSUM) method [19]54

to derive the cumulative sums of deviations from the baseline of normal behavior for detecting55

adversaries. Finally, COIDS uses the Sequential Change-Point Detection (SCPD) technique56

to determine the exact time of attack. This allows COIDS to detect not only standard57

attacks that are discussed in existing literatures, but also those that are more intelligent58

and cannot be detected by existing IDSs, e.g., impersonation attack. Further, the use of59

SCPD algorithm enables COIDS to detect an anomaly in real time. As an ECU may have60

limited hardware resource, thus, running COIDS incessantly on every ECU may be a sig-61

nificant power overhead. To overcome this challenge, we propose a probabilistic model to62

minimize the active duration of the COIDS in the ECUs. We performed extensive simula-63

tion on publicly available real CAN traffic traces. Our results demonstrate that COIDS can64

detect three most potential attacks on CAN, i.e., Denial of Service (DoS), impersonation65
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and fuzzy attacks almost in real time. The results also show that our designed cooperative66

game model reduces power consumption considerably by optimizing the active time of the67

COIDS without compromising its performance.68

Organization. The rest of this paper is organized as follows. Section 2 discusses the related69

work. We describe the system and adversary models considered for this work in Section 3.70

Section 4 presents the detailed design of COIDS. In Section 5, we first define a problem71

to optimize the active time duration of COIDS. We next present a multiplayer cooperative72

game-theoretic analysis to the problem in Section 5. In Section 6, we provide a qualitative73

analysis of COIDS. The performance of COIDS is evaluated by providing simulation results74

in Section 7. Finally, we conclude the paper in Section 8.75

2. Related Work76

In many recent works, due to the lack of cryptography primitives in CAN, researchers77

have preferred anomaly-based IDSs over message authentication mechanism to secure in-78

vehicle CAN bus. The existing anomaly-based IDSs have (i) analyzed the data traffic on79

the CAN bus, frequency/time, and entropy, (ii) exploited physical characteristics of ECUs,80

and (iii) exploited the characteristics of the CAN protocol. Unlike the CAN bus data traffic,81

imitating physical characteristics of ECUs is highly challenging for an attacker. In this work,82

we classified existing anomaly-based IDS designed by levering physical characteristics into83

three categories, namely, voltage-based, clock-based and message periodicity-based. Sec-84

tion 2.1 briefly summarizes the existing voltage-based IDS. We present clock-based IDS in85

Section 2.2. Finally, in Section 2.3, we discuss message periodicity-based IDS, most relevant86

to our context.87

2.1. Voltage-based IDS88

In an early work, Hoppe et al. [20] first introduced the idea of IDS for in-vehicle net-89

work. They proposed to exploit the traffic pattern of CAN bus, e.g., message frequency for90

designing an efficient IDS. Motivated by the work [20], Choi et al. [12] proposed a novel91

automotive IDS, called VoltageIDS, by exploiting the selected features of time and frequency92

domains of the electrical signals in CAN bus. In a similar work, Cho and Shin [21] proposed93

voltage-based attacker identification scheme, called Viden, for in-vehicle network. Viden94

initially measures the voltage of the electrical signals in CAN bus to create and update the95

transmitter ECUs’ voltage profiles. Finally, Viden uses the voltage profiles to identify any96

anomaly in the in-vehicle network. Kneib and Huth [17] proposed an IDS, called Scission,97

by leveraging physical characteristics of electrical signals in CAN bus. Unlike VoltageIDS98

and Viden, Scission exploits variations in the resistor, signal reflections in addition to volt-99

age. Through empirical studies, the authors show significant improvement of performance100

in terms of false positive rate compared to VoltageIDS and Viden. Although, Scission has101

shown impressive performance to detect intruders in CAN, however, real time measurement102

and processing of variations in resistor, signal reflections and voltage are highly challenging103

for ECUs due to limited resources. Further, in [22], researchers have shown that due to the104

requirement of additional cable, voltage-based IDSs introduce new attack surface for various105

voltage-based attackers. In an interesting work, Foruhandeh et al. [23] proposed a SIngle-106

fraMe based Physical-LayEr (SIMPLE) solution to detect intrusion and identify the specific107

ECU generating a CAN frame. SIMPLE exploit voltage based features in the time-domain108

from every CAN frame for fingerprinting transmitter ECU. Different from existing voltage-109

based IDS, SIMPLE securely updates the training data at regular interval to compensate110

environmental changes, e.g., supply voltage, temperature.111
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2.2. Clock-based IDS112

Different from earlier works, Cho and Shin [15] proposed an anomaly-based IDS, called113

Clock-based IDS (CIDS), for in-vehicle network by leveraging clock skew of quartz crystal114

clock associated with ECUs. In a similar work, Sagong et al. [24] proposed a clock skew-115

based IDS for in-vehicle network. The authors first proposed an intelligent attack for CAN116

bus, called cloaking attack, where an adversary regulates message timing and cloaks its117

clock to equate the clock of the targeted ECU. Next, the authors defined a new metric118

called Maximum Slackness Index (MSI) to measure the efficacy of the proposed IDS for119

detecting cloaking attack. Further, the authors extended the work in [13] by providing formal120

models to accurately predict and characterize the attack success probability curves. Recently,121

Zhou et al. [25] propose an IDS, called Bit-time-based CAN Bus Monitor (BTMonitor)122

by exploiting the physical discrepancies between clocks of different ECUs. In particular,123

BTMonitor measures the anomalies of bit time in CAN frames from different ECUs for124

fingerprinting the sender ECU. To reduce the necessity for a high sampling rate, the authors125

next determine the bit time of recessive and dominant bits, respectively, and extract their126

statistical features as fingerprint.127

2.3. Message periodicity-based IDS128

In a recent work, Han et al. [26] proposed a host-based IDS for in-vehicle network. Par-129

ticularly, the authors used the survival analysis model for estimating the survival function,130

which in turn helps to detect anomalies. Lee et al. [27] proposed an IDS for in-vehicle network131

by exploiting the remote frame. Specifically, the proposed IDS broadcasts remote frame peri-132

odically in the CAN bus and receives a response from the sender ECU. Based on the received133

response, the IDS calculates offset and time interval. If calculated offset and time interval134

exceeds a predefined threshold, IDS declares it as intrusion. In another work, Marchetti135

and Stabili [28] exploited the message ID, an unique identifier of the message used by each136

ECU, to design an IDS for in-vehicle network. In a similar work, Groza and Murvay [16]137

proposed an IDS for in-vehicle network. Interestingly, the proposed IDS took the advantage138

of Bloom filtering to check frame periodicity according to message ID. Kalutarage et al. [29]139

proposed a context-aware IDS for monitoring cyber-attacks in CAN. Particularly, the au-140

thors exploit CAN message sequence for fingerprinting ECU. To extract message sequences141

from the CAN bus, they used a sequence modelling technique, called n-gram distribution.142

Yu and Wang [30] proposed an IDS based on network topology construction and subsequent143

verification. They initially used message periodicity to estimate the communication links144

among the ECUs. The authors next exploited communication link information to construct145

a network topology. The proposed scheme periodically verifies the topology construction146

process and if it finds any deviation in the number of participating ECUs, IDS declares it as147

an intrusion.148

In the context of physical properties based IDS, we have the following observations:149

• None of the works exploited clock offset of quartz crystal clock inbuilt in ECUs while150

designing IDS for in-vehicle network. Motivated by this fact, in this work, we design151

COIDS leveraging clock offset of transmitter ECUs’.152

• Except the works in [15, 22], none of the works consider real time intrusion detection153

scenario. However, it is utmost important to detect intruders in real time to minimize154

possible escalation of fatalities due to cyber attacks. Therefore, motivated by this fact,155

we employed CUSUM, the most powerful method for detecting irregular patterns in a156

real time process, in our proposed COIDS.157

• None of the works considered optimizing the active time duration of IDS without158

compromising its effectiveness. Motivated by this fact, we propose a cooperative game159

model to analyze the performance of COIDS with reduced activity within the ECU.160
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Figure 1: Format of a CAN data frame. Every CAN data frame consists of Start Of Frame (SOF), Arbitration,
Control, Data, CRC, ACK and End Of Frame (EOF) fields.

• In contrast to existing works, we employed an active learning technique in COIDS to161

learn traffic patterns and SCPD to determine the exact time of attack.162

3. Overview of CAN and Threat Model163

In this section, we recall the required concepts related to our COIDS. Particularly, in164

Section 3.1, we present the background information about the CAN protocol. Section 3.2165

discusses the clock related concept. We then present a brief discussion on the SCPD technique166

in Section 3.3. Section 3.4 briefly illustrates the CUSUM method. Finally, in Section 3.5,167

we present the adversary model and attack scenarios.168

3.1. CAN Background169

In in-vehicle networking, CAN communication protocol is one of the most popular stan-170

dards, which interconnects various ECUs (or, nodes) using a multi-master, message broad-171

cast bus system. As CAN is a broadcast bus system, hence, ECUs connected on the bus can172

transmit any messages to any ECU as well as monitor ongoing message transmissions. To173

preserve data consistency and take control decision, ECU exchange messages among them-174

selves through CAN frames. Figure 1 depicts the typical format of a CAN data frame. Since175

CAN is a simple message oriented communication protocol, as an alternative of containing176

transmitter and/or receiver address, each CAN data frame contains a unique message ID.177

For example, a data frame with message ID 0x20 may comprise wheel speed of a vehicle. It178

is worth noting that a CAN data frame does not contain encryption, authentication fields.179

The CAN bus is designed to behave as a wired-AND gate, particularly, contending ECUs180

give higher priority to a message with a smaller message ID. This procedure is known as181

arbitration.For example, if two ECUs X and Y are contending for transmitting messages 0x01182

and 0x11 over the CAN bus, respectively. Since ECU X sends message with lower ID, ECU X183

wins arbitration, and acquires exclusive access of the CAN bus for message transmission. The184

ECU Y, which has lost the arbitration, again attempts for transmission once the CAN bus185

becomes idle. It is worth mentioning that CAN bus lacks clock synchronization. However,186

SOF field and bit stuffing in CAN data frame provide the alignment of bit edges during the187

message transmission. In absence of clock synchronization, time instants for ECUs are given188

by their own quartz crystal clocks. In practice, a quartz crystal clock of an ECU runs at189

diverse frequencies, resulting in as much as a drift of 2400ms over a period of 24 hours [15].190

For easy reference, we have summarized the notations in Table 1.191

3.2. Clock Related Concepts192

In this paper, we follow the standard nomenclature of clocks as defined in Network Time193

Protocol (NTP) [31]. Let Ct be a true clock that runs at a constant rate, Ctptq “ t, and CA194

be a non-true clock kept by a clock A. We define the clock offset, frequency and clock skew195

as follows:196

• Clock Offset: Clock offset OAptq is the time difference between the non-true clock197

CA and true clock Ct, i.e., OAptq “ CAptq ´ Ctptq.198
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Table 1: Summary of important notations
Symbol Description Symbol Description

Ctptq True clock at time t CAptq Non-true clock at time t

OAptq Clock offset at time t T Message interval

ti Transmission time of i-th message ai Arrival time of i-th message

Oi Accumulated clock offset of i-th message di Network delay of i-th message

ni Quantization noise of i-th message Ji Jitter of i-th message

Oavgk Average clock offset of k-th batch message N Number of batches of messages

Oack Accumulated clock offset of k-th batch message f Probability density function

ErTar,is Expected inter-arrival time between message pi´ 1q and i Mjk j-th message at k-th batch

L Instantaneous log-likelihood ratio S Cumulative sum

ta Abrupt change time D Intrusion decision function

σ2 Standard deviationof Gaussian distribution µ Mean of Gaussian distribution

ϑ Number of neighbors of an ECU γ Security level

p Probability of neighborhood monitoring R A set of players, R “ t1, 2, . . . , ψu

V Coalition v Characteristic function

δ Number of players in a game, δ “ 1, . . . , ψ Shr Shapley value of a player r

• Frequency: Frequency is the rate at which non-true clock runs. Hence, the frequency199

at a time t is given as: C 1A “ dCAptq{dt.200

• Clock Skew: Clock skew is the frequency difference between the non-true clock CA201

and true clock Ct, i.e., SAptq “ dCAptq{dt´ dCtptq{dt.202

At any instant of time, if two clocks have clock skew as 0, we consider those clocks are203

synchronized, otherwise, they are asynchronized. A positive clock skew means that CA runs204

faster than Ct, whereas a negative clock skew means that CA runs slower than Ct. Generally,205

the unit for measuring clock skew is microseconds per second (µs{s) or parts per million.206

3.3. Sequential Change Point Detection207

Generally, in CAN, intrusions occur at unknown points in time and resulting significant208

changes in the statistical properties of a data sequence [32]. To determine the precise time of209

intrusion, we need to analyze the observed data sequence using a statistical approach, where210

the number of observations is time varying. There are broadly two different techniques for211

detecting abrupt variations in stochastic data sequence model, namely, fixed size batch detec-212

tion and sequential change point detection. Among these two change detection techniques,213

sequential change point detection is quicker than fixed size batch detection, and suitable for214

real time scenario [32, 33, 34]. The sequential change point detection technique characterizes215

the change point as the pre-change with unknown post-change in time, resulting in quickest216

change detection. Basically, a change point in the change point detection technique is a par-217

ticular time instant where the statistical properties of data before and after this time instant218

are significantly different. In this work, motivated by the works [32, 33, 34], we model the219

precise estimation of intrusion time problem as a change-point detection problem.220

3.4. CUSUM Method221

The CUSUM method is one of the most powerful methods for detecting irregular patterns222

quickly in a real time process [19]. To detect irregular patterns or anomalies, CUSUM223

uses hypothesis testing developed over independent identically distributed (i.i.d.) random224

variables. Specifically, to detect an anomaly, CUSUM periodically calculates two sums,225

i.e., the upper threshold and the lower threshold, which signify the cumulative deviations226

between the observed and expected values. When the upper or lower control threshold227

exceeds a particular threshold, CUSUM classifies it as irregular pattern or anomaly. It is228

worth mentioning that, in CUSUM, the anomaly detection rule is a comparison between the229

cumulative sum and adaptive threshold. It is also worth mentioning that we not only can230

update the value of adaptive threshold in real time, but also can keep track of the memory231

usage of past observations. In CUSUM, a batch processing approach is used to detect a232
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small variation in statistical parameters, e.g., mean with respect to the regular patterns.233

Finally, the outcome of the CUSUM method is the list of anomalies associated with the plot234

in the time series. The CUSUM method has been used in various applications, including235

intrusion detection in networks, speech and image processing, signal processing. Due to the236

simplicity and cost-effectiveness, we used the CUSUM method in in-vehicle networks for237

intrusion detection. Nevertheless, we propose to connect a memory stick, running COIDS,238

with the vehicle via OBD-II port and monitoring CAN bus for possible anomalies.239

3.5. Adversary Model and Attack Scenarios240

In this work, we assume that an adversary is capable of performing the read and write241

operations on the CAN bus. Particularly, an adversary can perform eavesdropping and242

intercepting messages by reading CAN bus. In contrast, by write operation, an adversary243

can perform replaying, forging, and transmitting unauthenticated messages on the CAN bus.244

Further, we assume that an adversary can remotely compromise ECUs or gain access to the245

CAN bus via various attack surfaces, e.g., Bluetooth, mechanics tools, cellular connectivity.246

However, we do not assume that adversaries have physical access to the vehicle through an247

OBD-II port such as CANtact.248

In this work, based on the above adversary model, we assume the following three most249

potential attack scenarios that can significantly hamper in-vehicle networks: DoS, Imper-250

sonation and Fuzzy.251

a) DoS Attack. To mount DoS attack, an adversary injects high priority messages in a252

short time interval on the CAN bus. Due to flooding of many high priority messages,253

the CAN bus becomes busy all the time and unavailable to other ECUs. Generally,254

an adversary mounts a DoS attack by injecting messages with theoretically highest255

priority message ID [27]. For example, as shown in Figure 2(a), an attacker ECU Z256

injects several high priority messages with ID=0x000. Since both ECU X and ECU Y257

share the same CAN bus, increasing occupancy of CAN bus generates delay for both258

message ID=0x153 and ID=0x4B0.259

b) Impersonation Attack. To launch impersonation attack, an adversary ceases mes-260

sage transmission by controlling the victim (or, target) ECU and successfully gains the261

identity of the victim ECU to pose as an impersonating ECU. Thus, an impersonat-262

ing ECU periodically broadcast a data frame and responds to a data frame as victim263

ECU. For example, as shown in Figure 2(b), an attacker ECU Z successfully gains the264

identity of ECU X and ceases all message transmissions from ECU X. ECU Z next265

injects message ID=0x153 into the CAN bus impersonating ECU X.266

c) Fuzzy Attack. To mount fuzzy attack, an adversary injects randomly spoofed mes-267

sages with various identifiers. As a result, ECUs in the in-vehicle network receive268

a significant number of messages. This may, in turn, leads to unintended CAN bus269

behavior, e.g., message priority inversion, deadline violation, etc. For example, as270

shown in Figure 2(c), an attacker ECU Z injects spoofed messages with ID=0x153271

and ID=0x4B0 into the CAN bus randomly. Due to the random insertion of spoofed272

messages, fuzzy attack paralyzes the various functions of a vehicle, including tremen-273

dous shaking of the steering wheel, instrument panel blinking in countless ways and274

automatic changing of gear shift.275

4. Proposed IDS: COIDS276

In this section, we present a detailed description of COIDS. Particularly, in Section 4.1,277

we discuss the clock offset estimation procedure adapted in COIDS. Section 4.2 presents clock278

offset anomaly detection mechanism. Finally, we put forward intrusion detection approach279

in Section 4.3.280
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Figure 2: Three type of attack scenarios on in-vehicle CAN.

4.1. Clock Offset Estimation281

Let us assume a scenario where an ECU X transmits messages periodically at every T282

ms and an ECU Y receives those messages. As only ECU Y’s timestamp is available, we283

assume its clock as the true/reference clock. Let t0 “ 0 be the time when ECU X transmits284

its first message. In ideal scenario when transmitter and receiver clocks are synchronized,285

message i will be transmitted at ti “ iT in ECU Y’s clock. For the sake of convenience, we286

depict the timing diagram in Figure 3. Then, due to the clock skew, the actual transmission287

time is ti “ iT ` Oi in ECU Y’s clock, where Oi is the accumulated clock offset of ECU X288

as first message sent at t0 “ 0. Due to an incurred network delay of di between transmission289

and reception, timestamp of the i-th message arriving at the incoming buffer of ECU Y is:290

ai “ iT `Oi ` di ` ni, (1)

where ni denote the noise introduced by ECU Y’s timestamp quantization. Similarly, times-
tamp of the pi´ 1q-th message arriving at the incoming buffer of ECU Y is:

ai´1 “ pi´ 1qT `Oi´1 ` di´1 ` ni´1. (2)

From eqs. (1) and (2), the expected value of the inter-arrival time between message pi´1q291

and i, ErTar,is, is given by:292

ErTar,is “ Erai ´ ai´1s
“ ErT `∆Oi `∆di `∆nis

“ T ` Er∆Oi `∆di `∆nis,

where ∆Oi “ Oi ´ Oi´1 is the clock offset, ∆di p“ di ´ di´1q is the difference in network293

delay, ∆nip“ ni ´ ni´1q is the difference in noise. In CAN, as the lengths of messages of294

same ID usually are constant over time, without loss of generality, we assume Er∆dis “ 0.295

Let ni be a zero-mean Gaussian distribution, therefore, it is reasonable to assume Ernis “ 0,296

and hence Er∆nis “ 0. So, in the ideal case, we have ErTar,is “ T ` Er∆Ois « T . It is297

evident from the discussion that the inter-arrival time between any two successive messages298

is approximately T , i.e., same as message periodicity. Therefore, to obtain a significant value299

of clock offset estimation, we must measure for a batch of incoming messages instead of300

two successive messages. Next, we discuss how we can estimate clock offset for a batch of301

messages.302

Considering the arrival timestamp of the first message at ECU Y’s end as d0`n0 and the303

expected inter-arrival time between messages, ErTar,is, we can determine the the expected304

arrival time of the i-th message as iErTar,is ` d0 ` n0. In contrast, the actual i-th message305

arrival time is ai “ iT ` Oi ` di ` ni. According to the NTP specification, we model the306

accumulated clock offset from 1st to i-th message as a random variable, Oi “ iO ` Ji,307

where O is the clock offset per message period T , and Ji is the ECU jitter, caused by308

variations in the task scheduling, execution time. It is worth mentioning that due to the309

randomness of thermal noise, jitter follows a Gaussian distribution. As jitter follows a310
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Figure 3: Timing analysis of message arrivals in CAN bus.

Gaussian distribution, we assume that Ji and Ji´1 as outcomes of a Gaussian random variable311

J „ Np0, σ2q, where σ2 is the deviation of jitter. Thus, the actual i-th message arrival time312

is ai “ iT ` iO` Ji` di`ni. From Y’s perspective, the message period is T with respect to313

ECU X’s clock, which corresponds to Tar,i “ ai ´ ai´1 in ECU Y’s clock. By the definition314

of the clock offset, the observed offset is:315

Ōi “ pai ´ ai´1q ´ T

“ pO `∆Ji `∆di `∆niq,

where ∆Ji “ Ji ´ Ji´1. To estimate the clock offset, we processed a batch of N received316

messages and determine the average clock offset in the k-th batch, Oavgk , where k “ 1, . . . ,K.317

We determine Oavgk as follows:318

Oavgk “
1

N

ÿN

i“1
Ōi

“
1

N

ÿN

i“1
pO `∆Ji `∆di `∆niq. (3)

Since we measured the offset for every N received messages, using eq. (3), the accumulated
clock offset till the last message of the k-th batch is given as:

Oack “ Oack´1 `NO
avg
k . (4)

It is worth mentioning that Cho and Shin [15] used the original value of Oavgk instead of the319

absolute value. From eq. (4), it is clear that by calculating the clock offset from observation320

of message periodicity, transmitter ECUs can be fingerprinted. In this work, we exploit this321

characteristic in designing COIDS, a clock offset-based IDS for in-vehicle networks.322

4.2. Clock Offset Anomaly Detector323

To detect anomalies in accumulated clock offset, COIDS uses the CUSUM method, which324

is the core of the SCPD algorithm. The CUSUM method is a sequential detection method325

suitable for detecting any anomaly that causes changes in measurement. With a limited326

computation resource, the CUSUM method uses the feature of sequential and non-parametric327

examinations to detect any attack in time series data. Specifically, in COIDS, we processed328

a batch of N messages and then, we applied the CUSUM method to detect small changes in329

statistical parameters, e.g., mean with respect to the regular pattern.330

Let Mjk “ tm1k,m2k, . . . ,mNku be the j-th message at k-th batch sent periodically331

over time tj , where j “ 1, . . . , N and k “ 1, . . . ,K. Also, let Oj “ to1, o2, . . . , oN´1u be332

a set of clock offsets of j messages and i.i.d. following a Gaussian distribution with mean333

µ and variance σ2. Under normal scenario, as each message in CAN bus is transmitted334

periodically, each clock offset Oj follows a Probability Density Function (PDF), fpOj , αq335

based on a deterministic parameter α, e.g., µ or σ2 of Oj . Under attack scenario, Oj may336
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contain an abrupt change at some time ta, where ta P tj . It is worth mentioning that by the337

abrupt change we mean the changes with both large and small magnitudes of Oj . Using the338

CUSUM method, we can model this abrupt change by an instantaneous modification of the339

value of deterministic parameter α at time ta. Hence, α “ α0 before ta, and α “ α1 from340

ta to the present time. Under this scenario, the whole PDF of the clock offset measured341

between t1 and the present time tj can be divided into two categories of hypotheses (h):342

• Under no change hypothesis (h “ h0), the PDF of clock offset is given as:343

fh0 “
tN
ź

tj“t1

fpOj , α0q. (5)

• Under a change hypothesis (h “ h1), the PDF of clock offset is given as:344

fh1 “
ta
ź

tj“t1

fpOj , α0q

tN
ź

tj“ta`1

fpOj , α1q. (6)

It is clear from eqs. (5) and (6) that to determine the clock offset, the PDF of each sample345

fpOj , αq and the values of the deterministic parameter ta need to be known. Further, we have346

to determine the time of the abrupt change between t1 and tN . Since here the problem is347

to decide between the two hypotheses h0 and h1 from the PDF of the measured clock offset,348

we can call this problem as a binary hypothesis testing problem [19]. According to [32],349

instantaneous log-likelihood ratio test is the best possible solution technique for the binary350

hypothesis testing problem. Therefore, following the solution technique, the instantaneous351

log-likelihood ratio at time tj is given as:352

srtjs “ Lrtj , tjs “ ln

ˆ

fpOj , α1q

fpOj , α0q

˙

, (7)

and the cumulative sum from t1 to tN , i.e.,:353

SrtN s “
tN
ÿ

tj“t1

srtjs. (8)

From eqs. (7) and (8), we can rewrite the instantaneous log-likelihood ratio as:354

LrtN , tas “
tN
ÿ

tj“ta

ln

ˆ

fpOj , α1q

fpOj , α0q

˙

“SrtN s ´ Srta ´ 1s. (9)

It is worth noting that ta is unknown in eq. (9). To estimate ta, we can apply a standard
statistical approach based on the maximum likelihood principle. Following the maximum
likelihood principle, we obtain the intrusion decision function DrtN s and the estimated abrupt
change time t̂a as:

DrtN s “ SrtN s ´ min
1ďtaďN

Srta ´ 1s, (10)

t̂a “ min
1ďtaďN

Srta ´ 1s. (11)

It is worth noting from eq. (10) that the decision function is the present cumulative sum355

minus its present minimum value. On the contrary, in eq. (11), we notice that the abrupt356

change time estimate is the time of the present minimum of the cumulative sum. It is clear357

from the above discussion that using eq. (10), one can decide whether any intrusion has358
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Figure 4: Flow chart of learning mechanism used in COIDS.

actually occurred or not. Similarly, using eq. (11), one can estimate the time of intrusion.359

As far as the decision whether any intrusion has actually occurred or not, in this work, we360

consider that if DrtN s exceeds a positive threshold hth, we conclude that the intrusion has361

occurred, otherwise, no intrusion. Since our objective is to detect intrusions in real time,362

hence, we rewrite the eq. (8) in a recursive form and the same is given as:363

Srtjs “ Srtj ´ 1s ` srtjs. (12)

Further, as we assume that in case intrusion decision function exceeds a positive threshold,
we can rewrite eq. (10) as:

DrtN s “ tDrtN ´ 1s ` srtjsu
`, (13)

where txu` “ suppx, 0q. Summarily, from our above analysis, we can take the decision about364

the possible intrusion using eq. (13). In contrast, we can estimate the time of intrusion using365

eq. (11) from the set of received messages, e.g., tm1k,m2k, . . . ,mNku efficiently. Therefore,366

the size of the set of received messages, i.e., N , determines the amount of past memory held367

by the CUSUM algorithm and the correct choice of hth are the vital parameters for efficient368

intrusion detection in real time.369

4.3. Intrusion Detection Approach370

In this work, we exploit the clock offset of in-vehicle messages for fingerprinting trans-371

mitter ECU. Generally, an ECU transmits messages through CAN bus at regular intervals372

or frequency, where frequency is determined by the quartz crystal of that particular ECU. If373

an adversary injects a spoofed message from an ECU that is distinct from the spoofed ECU,374

the difference in clock frequency significantly changes the clock offset of messages [15]. In375

this work, to characterize clock offset, we follow a batch processing approach, where the size376

of a batch is N . Specifically, we determine the average clock offset of messages for every N377

received messages from the attack-free dataset. Figure 4 shows the flow chart of learning378

mechanism used in COIDS. In particular, we used an active learning strategy to accelerate379

the training speed. In a normal state, the clock offsets of messages Oj in a particular batch k380

are measured and form the training set. This procedure of clock offset estimation continues381

iteratively. We then measure the mean of the clock offsets of messages Oj . If the mean of the382

clock offsets of messages deviates ˘20% from a normal state [18], we consequently discard383

the training dataset.384

Algorithm 1 illustrates how we estimate clock offset and intrusion time. We determine the385

PDF of Oj by calculating the deterministic parameters µ and σ2 of the k-th batch messages.386
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Algorithm 1: Clock offset and intrusion time estimation

1: Initialize: set the threshold of decision function hth ą 0, Srt1s “ Drt1s “ 0, j “ 1
2: for k “ 1 to K do
3: if hth ě Drtjs then
4: collect set of messages Mjk “ tm1k,m2k, . . . ,mNku

5: calculate srtjs “ ln
´

fpOj ,α1q

fpOj ,α0q

¯

6: calculate Srtjs “ Srtj ´ 1s ` srtjs
7: if Drtjs ą hth ą 0 then
8: t̂a Ð tj
9: reset or stop the algorithm

10: end if
11: j “ j ` 1
12: end if
13: end for

We then compute the cumulative sum SrtN s as presented in eq. (8) using the instantaneous387

log-likelihood ratio srtjs given as follows:388

SrtN s “
µα1 ´ µα0

σ2α

ˆ

OrtN s ´
µα1 ` µα0

2

˙

. (14)

In this work, for determining intrusion detection function and subsequently generating an389

alarm signal, COIDS computes atleast ten Average Run Length (ARL) of mean and variance390

of clock offset. At each step of ARL computation, COIDS updates the deviation of mean391

and variance of clock offset by comparing ARL under attack-free scenario, i.e., h0 and ARL392

under attack scenario, i.e., h1. If either of the control point, h0 or h1, exceeds the threshold393

hth, i.e., an unexpected negative or positive change in value has been detected, respectively,394

and hence COIDS proclaims this change as an intrusion. It is worth mentioning that as395

COIDS is based on the cumulative sum, even a small drifting in the mean and variance of396

clock offset from the normal value leads to steadily decreasing or increasing cumulative sum397

values. In CUSUM, as a general rule of thumb, the value of hth ranges between 0 and 3 [19].398

5. Proposed Probabilistic Model399

Typically, our proposed COIDS has to run incessantly in every ECU to oversee network400

behavior and subsequent detection of any anomalous activity. Such behavior of COIDS401

have the potential to increase the power overhead on an ECU. Hence, in this section, we402

attempt to address the challenge: how to limit the active time duration of COIDS without403

compromising its performance. We initially present a probabilistic model to optimize the404

active time duration of COIDS in Section 5.1. Thereafter, in Section 5.2, we proposed a405

multiplayer cooperative game based solution to the optimization problem.406

5.1. Optimization Problem Formulation407

To address the typical challenge of COIDS, we tackle the problem from the point of view408

of an ECU being monitored by its immediate neighbor. We develop an optimization problem409

for addressing the challenge and examine the optimization problem using multiplayer game410

theory [35]. Let us assume a network scenario, where several ECUs are connected with each411

other through a CAN bus and COIDS is running in each ECU for detecting malicious activity412

within its immediate neighborhood.413

Let us assume that an ECU X has ϑ active neighbors at a specific time instant. Hence,414

each ϑ neighbor monitors the traffic activity of ECU X. Now, during a certain instant of time,415

all or some of the ϑ neighbors might detect an anomalous activity of ECU X and trigger an416
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alarm upon crossing certain predefined detection rate. Interestingly, while monitoring ECU417

X, the neighbors spend their significant amount of computational resources and energy.418

Nevertheless, it might not be essential to keep the COIDS running on every ECU all the419

time. Therefore, we attempt to minimize this redundancy, and subsequently saving the420

scarcest resource of ECU. Here we assume that each ECU is equipped with COIDS and421

COIDS monitors the traffic of its immediate neighbors incessantly. It is worth mentioning422

that the number of COIDSs running and monitoring a neighborhood relies on the level of423

security that is expected at some specific time instant. In this paper, we define the security424

level γ as: an ECU is monitored by at least γ of its immediate neighbors at any time instant.425

From definition, the security level offers a tradeoff between overheads and security. The426

higher value of γ, the greater number of immediate neighbors that monitor an ECU at a427

particular time, which ultimately results in higher energy and computational overheads. We428

introduce the concept of the security level so that COIDS can be used in various application429

scenarios with varying security requirements. For example, some application scenarios may430

tolerate some trivial ECU(s) like seat, door to be compromised. It means γ “ 1 is limited431

for most security sensitive applications, where in-vehicle network cannot tolerate intruders.432

Hence, based on the tolerance of the highest number of compromised ECUs, the security433

level can be adjusted. Further, in an application scenario, an IDS component in an ECU434

might observe a part of its neighbor’s behavior. This might lead to irregularities with respect435

to the observed data in various IDSs. By setting the security level, one can limit the number436

of ECUs observing an ECU’s behavior at any instant of time. Furthermore, if the validation437

needs consensus of more neighboring ECUs, the security level can be raised.438

Let us consider that ECU X has ϑ immediate neighboring COIDSs running on respective439

ECUs at a specific time instant. Further, let us consider that each ECU monitors indepen-440

dently its immediate neighbors with a probability of p. Hence, the probability that ECU X441

is monitored for anomalous activity with security level γ is given as:442

P pγ{ϑq “
ϑ
ÿ

l“γ

ˆ

ϑ

l

˙

plp1´ pqϑ´l. (15)

Based on eq. (15), our objective can be formulated by the following optimization problem:443

min p (16)

subject to444

ϑ
ÿ

l“γ

ˆ

ϑ

l

˙

plp1´ pqϑ´l ě ω, (17)

where ω` δ “ 1 and δ is a very small positive number. Here, ω represents a threshold value,445

which is the minimum probability required to maintain the desired level of γ. We can set446

the value of ω considering the application scenario. Therefore, an optimal solution of our447

formulated problem eqs. (16)-(17) will provide the minimum p with which each immediate448

neighbor has to monitor.449

5.2. Game-Theoretic Solution450

In this section, we determine the solution to the optimization problem presented in451

eqs. (16)-(17). It is here worth mentioning that our design solution must be profitable452

from the cooperative IDS’s point of view. Alternatively, the design solution must ensure the453

significant resource saving in balance way among the ECUs. To achieve this goal, we design454

a multiplayer cooperative game model to designate the interactions among the COIDSs455

running on immediate neighboring ECUs.456
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In our game model, we set the objective of each player or ECU as that of monitoring457

the immediate neighboring ECUs at the prerequisite security level for detecting any mali-458

cious activity. Additionally, we set objective of conserving resources, particularly, energy.459

Therefore, among these two objectives, we consider monitoring objective as primary goal460

and energy saving as secondary goal. It is worth mentioning that if we were set the prece-461

dence of energy saving objective over monitoring objective, each ECU would independently462

choose to sleep entire time duration, resulting in a completely ineffective COIDS. As ECUs463

are operated independently, hence, each ECU must cooperate with each other to achieve our464

aforementioned goals. Therefore, we can model our scenario as a ψ-player cooperative game.465

To get an ECU monitored with γ security level, each of its immediate neighbors must466

participate in monitoring with the minimum probability determined through eqs. (16)-(17).467

To determine minimum probability, we can model our problem as a ψ-player cooperative468

Transferable Utility (TU) game [36]. A cooperative TU game is defined as a pair pR, vq,469

where R is a finite set of players with |R| ě 2, and v : 2R Ñ R is a characteristic function470

that associates a real number vpV q with each subset V of R such that vpφq “ 0 [36]. For471

a coalition V Ď R, vpV q is called the worth of coalition V and it can be divided into any472

possible way among its players. Considering that the energy consumption of a COIDS is473

linear, we can represent vpV q as:474

vpV q “

#

δp1´ pδqE, if δ ě γ

0, if δ ă γ
, (18)

where E is the energy consumed by the COIDS when it incessantly monitors, δ “ |V |, pδ475

is the probability (refer to eqs. (16)-(17)) with which every player monitors in a coalition476

comprising of δ players, and γ is the security level. It is worth noting that the utility of our477

game is to save energy of each player. If δ ě γ, COIDS achieve the desired security level, i.e.,478

γ, and hence, the payoff vpV q “ δp1 ´ pδqE. Otherwise, COIDS cannot achieve the desired479

security level, and thus, vpV q “ 0. According to [37], a solution to a cooperative game of480

each player r is given by the Shapley value as follow:481

Shrrvs “
ÿ

V,rPV

pδ ´ 1q!pψ ´ δq!

ψ!
rvpV q ´ vpV ´ rqs. (19)

In eq. (19), the summation is taken over all subsets of V of which player r is a member.482

According to eq. (18), the value of vpV q depends on δ. Hence, we group the subsets based483

on their cardinality, and summation is determined over these groups of subsets such that484

δ “ 1, . . . , ψ. We can determine the number of subsets of size δ of which player r as follow:485

Shrrvs “

ψ
ÿ

δ“1

ˆ

ψ ´ 1

δ ´ 1

˙

pδ ´ 1q!pψ ´ δq!

ψ!
rδp1´ pδq ´ pδ ´ 1qp1´ pδ´1qsE

“
E

ψ

ψ
ÿ

δ“1

r1´ δpδ ` pδ ´ 1qpδ´1s

“p1´ pψqE, (20)

where pψ is the probability with which every player monitors the whole coalition that com-486

prises of ψ players. From eq. (20), we can deduce a few observations, as follows:487

• Observation 1: The Shapley value allocation for the game Shrvs “ rp1´pψqE, . . . , p1´488

pψqEs is individually rational for all the players as Shrrvs ě vptruq.489

Based on the nature of equation vprq “ p1 ´ p1qE, we can write Shrrvs “ p1 ´ pψqE490

as subset V comprises of only one player. According to the aforementioned definition of491
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the characteristic function, pδ is the probability with which every member monitors in a492

coalition that comprises of δ players, and pδ is determined using our optimization problem493

eqs. (16)-(17). Hence, we can write: p1 ą pψ, and thereby, p1´ pψqE ą p1´ p1qE. It means494

none of the players have any problem of accepting this payoff as it is preferable for a player495

to monitor in a group instead of alone.496

• Observation 2: The Shapley value allocation for the game Shrvs “ rp1´pψqE, . . . , p1´497

pψqEs is an imputation as Shrrvs ě vptruq and
řϑ
r“1 Shrrvs “ vpRq.498

Here, it is worth noting that
řϑ
r“1 Shrrvs “ ψp1´pψqE, and vpRq “ ψp1´pψqE. It means499

that in our game, imputation is an individually rational payoff that allocates the maximum500

amount (Pareto-optimality condition). Therefore, every player receives the maximum payoff501

possible [38].502

• Observation 3: The Shapley value allocation for the game Shrvs “ rp1´pψqE, . . . , p1´503

pψqEs is collectively rational as
ř

rPV Shrrvs ě vpV q @V Ă R.504

Here, it is worth noting that
ř

rPV Shrrvs “ δp1´ pψqE, vpV q “ δp1´ pδqE, and δ “ |V |.505

Furthermore, we can derive pψ and pδ by solving our optimization problem, i.e., eqs. (16)-506

(17), and there are more players in R than in V (i.e., ψ ą δ). Therefore, pψ ă pδ. So, we507

notice that δp1´ pψqE ą δp1´ pδqE. It means that in our game no player has the incentive508

to deviate from the grand coalitions and form a relatively smaller coalition with neighboring509

players (or, ECUs).510

All these three observations reveal that energy saving achieved by COIDS with the help511

of the optimization problem eqs. (16)-(17) is in balance (or, equilibrium). Alternatively, a512

solution of our game model in equilibrium is to prove that it is in the core of the game.513

According to Lemaire [38], the core of the game is the set of all collectively rational payoffs.514

In Observation 3, it is revealed that the Shapley value achieved is collectively rational. Hence,515

the Shapley value of the game Shrvs “ rp1´ pψqE, . . . , p1´ pψqEs is in the core.516

6. Qualitative Analysis517

We present the theoretical analysis of our designed framework in this section. In par-518

ticular, we first derive the computational complexity of our intrusion detection technique519

presented in Section 4.3. We then examine the message complexity of COIDS. Finally, we520

analyze the optimization problem presented in Section 5.2.521

Computational Complexity. We estimate the clock offset and the intrusion time using Algo-522

rithm 1. We here derive the computational complexity of Algorithm 1 in Theorem 1.523

Theorem 1. The proposed clock offset and intrusion time estimation algorithm has a poly-524

nomial time complexity.525

Proof. The proposed clock offset and intrusion time estimation algorithm effectively calculate526

the instantaneous log-likelihood ratio of fpOj , α1q and fpOj , α0q before and after ta, i.e.,527

srtjs for the k-th batch of received messages (line 5). Let us assume that the complexity528

of computing srtjs is β1, where β1 depends on the size of a batch of message, i.e., N .529

Particularly, for the larger value of N , the value of β1 will be higher or vice-versa. Our530

algorithm also calculates the cumulative sum Srtjs, where j “ 1, . . . , N in the k-th batch531

of received messages (line 6). Let us assume that the complexity of computing Srtjs is β2,532

where β2 depends on the size of a batch of message, i.e., N . Similar to β1, for the larger533

value of N , the value of β2 will be higher or vice-versa. Our proposed algorithm has a loop534

(lines 2-13). Therefore, for executing this loop, the complexity is OpKpβ1`β2qq. In totality,535

the computational complexity of Algorithm 1 is OpKpβ1 ` β2qq and it is polynomial time536

complex.537

15



Message Complexity. Generally, in CAN bus, a message is broadcast by the ECUs (see538

Section 3.1). Each active ECU receives messages from each of its neighbors. In our proposed539

COIDS, an attacker is detected using only local information. Hence, in COIDS, the worst-540

case complexity is OpΓq, where Γ is the maximum number of active neighbors at any instant541

of time.542

Security Level. In Section 5, we present a probabilistic model to determine the ideal proba-543

bility based on which a COIDS will decide to remain active to achieve the desired security544

level. Here, we now determine the minimum monitoring probability based on the solution545

to the optimization problem given in eqs. (16)-(17).546

Theorem 2. The minimum monitoring probability to ensure that each ECU r is monitored547

at the desired security level γ is given as pminr , where pminr is derived using the minimum548

degree of neighbors xr of ECU r in eq. (17).549

Proof. We prove this theorem by contradiction. Suppose that each ECU r is monitored with550

security level γ. Further, assume that for each ECU r, pminr is derived using a positive integer551

y such that y ą xr.552

Let ppxrq be the solution to the problem given in eqs. (16)-(17). Therefore, ppyq signifies the553

corresponding solution, where xr is substituted by y. Suppose ECU q be the neighbor of ECU554

r having the minimum degree of neighbors among all its neighbors. If we notice eq. (17),555

the left hand side is representing the probability that at least γ immediate neighbors are556

monitoring out of the y neighbors. Hence, ppyq decreases with the increase of y. Alternatively,557

ppyq ă ppxrq, as y ą xr. It is worth noting that xr is the degree of neighbors of ECU q.558

Thus, ppxrq is the minimum monitoring probability to ensure that ECU q is monitored by559

its neighbors to achieve security level γ. As ppyq ă ppxrq, ECU q is monitored with desired560

security level γ. This contradicts our initial assumption. Therefore, it proves our theorem.561

562

7. Experimental Evaluation563

In this section, we evaluate the performance of our proposed COIDS under practical564

CAN bus application scenarios. More specifically, we compare this dynamic security enabled565

COIDS with our main competitor, OTIDS [27], and Conventional COIDS (C-COIDS) [39].566

Here, we first describe the attack scenarios considered during simulation in Section 7.1. We567

next present the experimental setup used to evaluate the performance of the competing568

schemes in Section 7.2. Finally, we discuss the experimental results performed under three569

attack scenarios in Section 7.3.570

7.1. Attack Scenarios571

To measure the performance of all competing schemes, we use real world publicly available572

datasets [40]. The datasets were constructed by logging CAN traffic through the OBD-II573

port of a real vehicle. This real world datasets were collected during attack free state and574

three different attack scenarios, namely, DoS, impersonation and fuzzy. Particularly, during575

attack free state 2,369,868 messages were generated and collected from the CAN bus. In576

contrast, during the DoS attack scenario, an attack message is injected in every 0.003 sec577

and in total 656,579 messages are injected within CAN bus, where the dominant message578

ID is 0x000. Similarly, during the impersonation attack scenario total 659,990 messages are579

injected at the rate of 0.001 sec by impersonating the drive gear message ID. Finally, during580

the fuzzy attack scenario total 591,990 messages are injected with random message IDs at581

the rate of 0.005 sec to interfere the normal vehicle operations.582
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7.2. Experimental Setup583

We performed all experiments in a specially designed OMNeT++ simulator for CAN [41].584

In CAN bus, we can learn the behavior of a message by inspecting the average number585

of message instances and intervals between successive messages generated from the same586

ECU. Therefore, to identify whether messages originate from the same ECU, we consider a587

naive method [15] while simulating all the schemes. We initially run our intrusion detection588

algorithm on attack free dataset to train COIDS using an active learning technique. To589

speedup the training process, we used an active learning technique [18]. Further, to detect590

an abnormal behavior, COIDS computes ten ARL functions of the mean and variance of591

clock offset. Generally, the ARL function is the estimated number of samples to detect any592

shift in the process mean and subsequently generating an alarm signal. The ARL function593

takes h0 and h1 as inputs and is represented by: ARL “ Ehrtds, where td is the change in594

detection time of the CUSUM method. Similar to [33], we implemented a SCPD technique595

to determine the exact time of attack while simulating the COIDS.596

During simulation, we assume that the values of the various parameters used for the597

CUSUM method as suggested by Olufowobi et al [34]. Specifically, in [34], they have deter-598

mined the optimal parameter setting to detect small changes in the process mean in real time599

for the CUSUM method. For example, they found that hth “ 3 and the value of reference600

parameter of CUSUM method is 0.5σ as the optimal value for detecting any small change in601

real time. Additionally, we set ω “ 0.995 considering the fact that ω` δ “ 1 and δ is a very602

small positive number. While running COIDS, we calculate clock offsets in every 20 received603

messages, i.e., N “ 20. Finally, during simulation, we consider two variants of COIDS. In604

first variant, we set γ “ 1, i.e., at least one ECU is monitoring the CAN bus for detecting605

adversaries. In the second variant, we set γ “ 3, i.e., at least three ECUs are monitoring the606

CAN bus for detecting adversaries. While simulating COIDS, we consider γ as the thresh-607

old value so that in the detection scenario when at least one ECU is monitoring, at least608

one alarm signal is essential to declare an adversary as detected. Finally, while simulating609

C-COIDS and OTIDS, we did not consider the security level.610

7.3. Experimental Results611

In this section, we discuss the performance of both COIDS and OTIDS under three dif-612

ferent attack scenarios mentioned in Section 7.1. Specifically, we first evaluate the validity of613

fingerprinting of the transmitted ECUs based on accumulated clock offset in Section 7.3.1.614

We then present our experimental results under DoS attack scenario in Section 7.3.2. Sec-615

tion 7.3.3 discusses the experimental results under impersonation attack scenario. In Sec-616

tion 7.3.4, we put forward the experimental results under fuzzy attack scenario. Finally, we617

discuss the power efficiency of the COIDS in Section 7.3.5.618

7.3.1. Clock Offset as a Fingerprint619

We first determine the validity of COIDS’s fingerprinting of the transmitted ECUs based620

on accumulated clock offset. Figure 5 shows our simulation results of accumulated clock621

offsets for different messages generated from three ECUs. Specifically, messages {0x153,622

0x164} sent from ECU X, messages {0x4B0, 0x4B1} sent from ECU Y and finally message623

0x5A0 sent from ECU Z. We notice from the plot that all accumulated clock offsets are624

linear in time. Here, it is worth mentioning that the slope of the plot is representing the625

estimated clock offset. Interestingly, the plot shows that for the same message source the626

value of the clock offset is almost same. For example, messages {0x153, 0x164} sent from627

ECU X, exhibited almost the same clock offset range between 0 and 1.08 sec in Figure 5.628

Likewise, messages {0x4B0, 0x4B1} sent from ECU Y, exhibited almost the same clock offset629

range between 0 and 0.70 sec. These experimental results indicate that COIDS can use clock630

offset to distinguish ECUs, and hence can be used as the fingerprints of the respective ECUs.631
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Figure 5: Accumulated clock offsets determined by COIDS in our experimental evaluation setting.

7.3.2. Defense Against DoS Attack632

To evaluate the capability of COIDS for defending DoS attack on the CAN bus at a633

desired security level, we program ECU Z as the attacker, which injects periodic messages634

from t “ 2.5 sec at 0.003 sec intervals with message ID 0x000, i.e., the highest priority635

message. Further, we program ECU X as the victim ECU and ECU Y as the monitoring636

ECU running COIDS.637

Figure 6(a) shows how the value of accumulated clock offset changes in the absence and638

presence of DoS attack. The plot shows that as soon as ECU Z mounts DoS attack, the639

value of accumulated clock offset suddenly changes in the positive direction. Due to this640

sudden shift, the change hypothesis, h1, of CUSUM method suddenly increases and exceeds641

its threshold hth “ 3, i.e., detects an intruder.642

We measure the effectiveness of detecting DoS attack for all competing schemes consid-643

ering the average detection rate as the performance metric. We plot the average detection644

rate in Figure 6(b). While simulating, we considered the number of ECUs as 20 and number645

of malicious ECUs as 5. We also considered that at any instant of time any one of the 5646

malicious ECUs is chosen for injecting messages at the rate of 0.05 sec. Figure 6(b) shows647

that all schemes are successful in detecting DoS attack after a certain time. In all schemes,648

we observe that the average detection rate increases with the increase of time. We also ob-649

serve that C-COIDS has the highest detection rate, whereas COIDS, γ “ 3 has the lowest650

detection rate. It is due to the different number of votes that are required to finally convict651

an ECU as malicious.652

We plot the intrusion detection time by varying the time in Figure 6(c). The plot reveals653

that C-COIDS detects the injected message ID 0x000 in a very short delay, in fact, almost654

in real time compared to other schemes. Similar to C-COIDS, COIDS, γ “ 1 also shows a655

similar kind of plot as in both cases at least one ECU is sufficient for declaring adversaries.656

The possible reason for this very short delay is the inclusion of SCPD technique. Precisely,657

we observe that the first injection of message ID 0x000 was at 2.5 sec, while C-COIDS and658

COIDS, γ “ 1 signaled the intrusion detection alarm at td “ 2.704 sec and td “ 2.711 sec,659

respectively. This indicates that the delay of detecting DoS attack is 0.204 sec and 0.211660

sec for C-COIDS and COIDS, γ “ 1, respectively. It means that the delay in detecting661

DoS attack is slightly more in COIDS, γ “ 1 compared to C-COIDS. This is mainly due662

to the stricter requirement for γ “ 1 in COIDS compared to C-COIDS. All these results663

indicate that both C-COIDS and COIDS, γ “ 1 are most suitable for security sensitive664

applications, where in-vehicle network cannot tolerate intruders. Now, if we notice the plot665

of OTIDS, the intrusion detection alarm is generated at td “ 3.346 sec, i.e., delay of 0.846 sec.666

In summary, the performance of C-COIDS and COIDS, γ “ 1 have significantly improved667
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Figure 6: DoS attack - Variations in accumulated clock offset, intrusion detection rate and intrusion detection
instant.

compared to OTIDS. It is primarily due to the inclusion of SCPD technique and an active668

learning technique. Finally, the plot of COIDS, γ “ 3 shows the maximum delay of detecting669

intrusion. A possible reason is that stricter security level requires more alarm signals from670

ECUs to declare the detection of an adversary. Particularly, in COIDS, γ “ 3, there is a671

requirement of at least 3 ECUs to generate alarms for deciding an adversary.672

7.3.3. Defense Against Impersonation Attack673

To evaluate the capability of COIDS for defending impersonation attack on the CAN674

bus, we program ECU Z as attacker and impersonating ECU W. We assume that ECU Z675

impersonating message ID 0x2C0, i.e., drive gear message and injecting periodic message676

from t “ 2.5 sec at 0.001 sec intervals. Further, we program ECU X as the victim ECU and677

ECU Y as the monitoring ECU running COIDS.678

Since the attacker ECU Z is impersonating ECU W, so it sends the injected message at679

the same frequency as sent by the ECU W. To identify the originating ECU for the message680

ID 0x2C0, we initially evaluate the probability mass function of the interval of message ID681

0x2C0, before and after the attack was mounted. We plot only the significantly large values682

of the PMF before and after the attack in Figure 7(a). Figure 7(a) shows the abnormal683

deviation of PMF plot from the mean. This is due to the mistimed impersonation attack.684

Particularly, we observe from the plot that the mean of the PMF before and after the attack685

is 0.75 and 0.58, respectively.686

We plot the changes of accumulated clock offset in the absence and presence of imper-687

sonating attack in Figure 7(b). It is interesting to show that in presence of impersonation688

attack the value of accumulated clock offset changes in the positive direction. It is because689

for an impersonating ECU it is difficult to control the arrival of response for a message690

within a particular time. As a matter of this significant change in accumulated clock offset,691
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the changed hypothesis, h1, exceeds its threshold hth “ 3, i.e., COIDS declares detection of692

an intruder.693

Similar to DoS attack, we measure the effectiveness of detecting the impersonation attack694

for all competing schemes, considering the average detection rate as performance metric.695

Figure 7(c) shows the average impersonation attack detection rate for all schemes. While696

simulating, we considered the same experimental setup as a DoS attack. Figure 7(c) shows697

that all schemes are successful in detecting impersonation attack after a certain time. The698

plot also shows that C-COIDS outperforms the other schemes in terms of average detection699

rate. Specifically, we notice that C-COIDS has the highest detection rate, whereas COIDS,700

γ “ 3 has lowest detection rate. It is mainly due to the different number of votes that are701

required to finally convict an ECU as malicious.702

Now, if we compare the performance of all schemes, C-COIDS and COIDS, γ “ 1 signif-703

icantly outperforms COIDS, γ “ 3 and OTIDS. It is because both C-COIDS and COIDS,704

γ “ 1 exploits the accumulated clock offset for detecting the intruder as well as includes the705

SCPD technique to reduce intrusion detection time and at least one alarm signal is required706

to declare an adversary as detected, whereas OTIDS exploits the time interval of message.707

It is quite clear that due to the intelligent attacker, time interval of message may not change.708

However, it is difficult for an intelligent attacker to keep unchanged accumulated clock off-709

set. As far as the detection time is concerned in Figure 7(d), C-COIDS and COIDS, γ “ 1710

exhibit similar plot patterns and detect impersonation attack at 2.736 sec and 2.741 sec,711

respectively. Hence, the delay of detecting impersonation attack is 0.236 sec and 0.241 sec712

in C-COIDS and COIDS, γ “ 1, respectively. It means, similar to DoS attack, the delay713

in detecting impersonation attack is slightly more in COIDS, γ “ 1 compared to C-COIDS.714

This is primarily due to the stricter requirement for γ “ 1 in COIDS compared to C-COIDS.715

Conversely, OTIDS and COIDS, γ “ 3 detects impersonation attack at 3.472 sec and 3.687716

sec, respectively. Thus, the delay of detecting impersonation attack is 0.972 sec and 1.187717

sec in OTIDS and COIDS, γ “ 3, respectively. Interestingly, we notice from Figure 7(d) that718

the detection time increases with the increase in security levels, i.e., γ. It is due to the fact719

that a higher security level signifies a stricter IDS, where more alarm signals are required720

from ECUs to finally convict an activity or ECU as malicious. Summarily, C-COIDS and721

COIDS, γ “ 1 outperform both OTIDS and COIDS, γ “ 3 in terms of quick impersonation722

attacker detection. Alternately, in C-COIDS and COIDS, γ “ 1 have the least intruder723

tolerance capability than the other schemes.724

7.3.4. Defense Against Fuzzy Attack725

In this section, we evaluate the capability of COIDS for defending fuzzy attack. We726

program ECU Z as attacker randomly injecting message IDs 0x2C0 and 0x5A2 at every727

0.005 sec. Further, similar to the two earlier attack scenarios, we program ECU X as the728

victim ECU and ECU Y as monitoring ECU running COIDS.729

We plot the value of accumulated clock offset changes in the absence and presence of730

fuzzy attack in Figure 8(a). The plot shows that as soon as ECU Z mounts fuzzy attack, the731

value of accumulated clock offset suddenly changes in the positive direction. Particularly,732

the plot shows that fuzzy attack mounted at 2.5 sec. Now, due to injection of 0x2C0 and733

0x5A2 messages, the accumulated clock offset abruptly changes from 0.937 sec to 1.367 sec.734

Similar to the earlier two attacks, we measure the effectiveness of detecting impersonation735

attack for all competing schemes considering the average detection rate as the performance736

metric. We considered the same experimental setup as DoS attack while measuring the737

average detection rate. Figure 8(b) shows the average impersonation attack detection rate738

for all schemes. We notice from Figure 8(b) that all schemes are successful in detecting fuzzy739

attack after a certain time. We also notice from the plot that C-COIDS has the highest740

detection rate, whereas COIDS, γ “ 3 has the lowest detection rate. It is mainly due to the741

different number of votes that are required to finally convict an ECU as malicious.742

In Figure 8(c), we observe that the first set of message injections for the spoofing gear is743
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Figure 7: Impersonation attack - Probability mass function of message intervals, variations in accumulated
clock offset, intrusion detection rate and intrusion detection instant.

at 2.5 sec, whereas C-COIDS signals the alarm at td “ 2.719 sec. It means that the detection744

delay of C-COIDS for the gear data injection is 0.219 sec, due to the inclusion of the SCPD745

technique to reduce the intrusion detection time. Like C-COIDS, COIDS, γ “ 1 also show746

similar kind of plot as in both schemes alarm signal from at least one ECU is required to747

declare an adversary as detected. Now, if we compare the performance between C-COIDS,748

COIDS, γ “ 1 and OTIDS, the detection delay of C-COIDS and COIDS, γ “ 1 is much749

less than OTIDS. In particular, OTIDS signals the alarm at 3.392 sec, i.e., delay of 0.892750

sec. Finally, as expected, COIDS, γ “ 3 shows the highest detection delay, particularly,751

p3.603 ´ 2.5q “ 1.103 sec. As explained previously, at higher security level, COIDS is more752

stricter, and thus, requires more alarm signals to convict an ECU as an adversary. It means753

that in COIDS where γ “ 3, has more intruder tolerance capability than in COIDS where754

γ “ 1.755

7.3.5. Power Efficiency756

In this section, through simulation, we show how power consumption is minimized using757

our probability model (see Section 5.1). Here, we first introduce the power model used758

during simulation. In our power model, we determine the power consumption in an ECU759

as a function of its transceiver and controller. Particularly, we assume an ECU embeds760

a Microchip MCP2551 transceiver and a Microchip MCP2515 controller [42], where the761

controller is considered to require constant power irrespective of operating state. According762

to the data sheet of MCP2551 [43], the transmitter consumes more power than the receiver.763

Whereas idle state consumes equal power to that of receiving. Specifically, based on the764

values obtained from the data sheet, the power consumption for transmitting and receiving765

by an ECU in the CAN bus are 177 mW and 105 mW, respectively [42]. Here it is worth766

mentioning that although CAN bus supports a data transfer rate of 1 Mbps, it is unusual to767

use more than 50% of the maximum, due to its collision handling scheme. While measuring768
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Figure 8: Fuzzy attack - Variations in accumulated clock offset, intrusion detection rate and intrusion detection
instant.

the power efficiency, we vary the number of ECUs from 5 to 20. We define the power efficiency769

as the minimum power consumed to provide the desired security level. We performed two770

sets of experiments for evaluating the power efficiency of the various schemes. One set of771

experiments measures power efficiency with varying desired security levels and the second772

one measures power efficiency with varying number of ECUs. Without loss of generality, we773

consider fuzzy attack scenario while performing these two sets of experiments.774

Figure 9(a) depicts the average power consumption of various schemes with varying775

desired security levels. While simulating, we consider the number of ECUs connected through776

CAN bus as 20. For all three schemes, the power consumed by IDS is increasing linearly777

with the increase in security level, i.e., γ. It is obvious that to maintain a higher value of778

γ, comparatively more power needs to be consumed. However, the power saving in COIDS779

is clearly visible and quite significant. It is because, in both C-COIDS and OTIDS, ECUs780

are active all the time, irrespective of γ, resulting in significant power consumption. On the781

contrary, in COIDS, power consumption is significantly reduced by minimizing the active782

time duration of ECU based on the devised multiplayer cooperative game model. We notice783

from Figure 9(a) that the average power consumption in COIDS is 33.05% and 37.21%784

reduced compared to C-COIDS and OTIDS, respectively. Therefore, the results reveal that785

a significant amount of power is saved during the entire lifetime of the vehicle.786

We next evaluate the power efficiency by varying the number of ECUs, and the results787

are plotted in Figure 9(b). While simulating, we set γ “ 3 for all three schemes. We notice788

from the plot that the power consumption increases with the increase in number of ECUs789

for all three schemes. However, the power consumption in both C-COIDS and OTIDS is790

significantly more than COIDS. It is obvious as previously explained that, in C-COIDS and791

OTIDS, ECUs are active all the time, resulting in considerable power consumption. On792

the contrary, in COIDS, most of the ECUs remain in the idle state, resulting in significant793
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Figure 9: Average power consumption of different competing schemes.

power conservation. In Figure 9(b), we observe that COIDS reduces the average power794

consumption by 31.57% and 35.09% compared to C-COIDS and OTIDS, respectively. Here,795

again, we observe that the use of our designed multiplayer cooperative game model results796

in significant saving of power.797

8. Conclusion798

We present COIDS, a new anomaly based IDS for the in-vehicle network. COIDS mon-799

itors the intervals of periodic messages and exploits them to estimate the clock offset of800

the transmitter ECUs’ clock for fingerprinting ECUs. COIDS then leverages the derived801

fingerprints to construct a baseline of ECU’s normal clock behavior using an active learn-802

ing technique. Based on the baseline of normal behavior, COIDS detects any abnormal803

deviation in clock offset via the CUSUM method. Further, to determine the exact time of804

intrusion, COIDS uses SCPD. As COIDS incessantly runs on every hardware-constrained805

ECU, we present the minimization of the active time duration of COIDS in an ECU as an806

optimization problem. We next devise a multiplayer cooperative game model where the main807

objective of the COIDS is to monitor the neighboring ECUs at a desired security level for808

detecting anomalous activities, whereas the secondary objective of the COIDS is to conserve809

power as much as possible. To attain these objectives, each ECUs has to cooperatively810

participate in monitoring its neighbors with a minimum probability. The evaluated results811

show that COIDS outperforms the state-of-the-art IDS, OTIDS under three most potential812

attacks on CAN, i.e. DoS, impersonation and fuzzy. The experimental results show that813

COIDS is not only effective in defending all these three attacks, but also ensures intrusion814

detection almost in real time. Further, the results show that our devised cooperative game815

model significantly improves the power efficiency of the ECU without compromising the per-816

formance. In the future, we intend to design a secure authentication scheme for ECUs on817

the legacy CAN bus by exploiting the covert channels. Further, we seek to investigate the818

performance of the COIDS under more sophisticated attacks, like cloaking attack [13].819

References820

[1] V. H. Le, J. D. Hartog, Z. Zannone, Security and privacy for innovative automotive821

applications: A Survey, Computer Communications 132 (2018) 17–41.822

[2] S. Halder, A. Ghosal, M. Conti, Secure over-the-air software updates in connected823

vehicles: A survey, Computer Networks (2020) 107343.824

23



[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,825

A. Czeskis, F. Roesner, T. Kohno, Comprehensive experimental analyses of automotive826

attack surfaces, in: Proc. of USENIX Security Symposium, 2011, pp. 77–92.827

[4] L. Constantin, Researchers hack Tesla Model S with remote attack, Accessed on April828

20, 2020. [Online]: http://www.pcworld.com/article/3121999/security/researchers-829

demonstrate-remote-attack-against-tesla-model-s.html.830

[5] E. Weise, Chinese group hacks a Tesla for the second year in a row, [Online] Accessed831

on April 20, 2020. [Online]: https://eu.usatoday.com/story/tech/2017/07/28/chinese-832

group-hacks-tesla-second-year-row/518430001/.833

[6] C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle, in: Black834

Hat USA, 2015, pp. 1–91.835

[7] S. Nie, L. Liu, Y. Du, Free-fall: Hacking tesla from wireless to can bus, in: Black Hat836

USA, 2017, pp. 1–16.837

[8] J. Liu, S. Zhang, W. Sun, Y. Shi, In-vehicle network attacks and countermeasures:838

Challenges and future directions, IEEE Network 31 (2017) 50–58.839

[9] S. Mazloom, M. Rezaeirad, A. Hunter, D. McCoy, A security analysis of an in-vehicle840

infotainment and app platform, in: Proc. of 10th USENIX Workshop on Offensive841

Technologies, 2016, pp. 1–12.842

[10] A. I. Radu, F. D. Garcia, LeiA: a lightweight authentication protocol for can, in: Proc.843

of European Symposium on Research in Computer Security (ESORICS), 2016, volume844

9879 of LNCS, pp. 283–300.845

[11] B. Groza, S. Murvay, A. V. Herrewege, I. Verbauwhede, Libra-can: Lightweight broad-846

cast authentication for controller area networks, ACM Trans. on Embedded Computing847

Systems 16 (2017) 1–25.848

[12] W. Choi, K. Joo, H. J. Jo, M. C. Park, D. H. Lee, VoltageIDS: low-level communication849

characteristics for automotive intrusion detection system, IEEE Trans. on Information850

Forensics and Security 13 (2018) 2114–2129.851

[13] X. Ying, S. U. Sagong, A. Clark, L. Bushnell, R. Poovendran, Shape of the cloak: Formal852

analysis of clock skew-based intrusion detection system in controller area networks,853

IEEE Trans. on Information Forensics and Security 14 (2019) 2300–2314.854

[14] W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, K. Li, A survey of intrusion detection855

for in-vehicle networks, IEEE Trans. on Intelligent Transportation Systems 21 (2020)856

919–933.857

[15] K. Cho, K. Shin, Fingerprinting electronic control units for vehicle intrusion detection,858

in: Proc. of USENIX Security Symposium, 2016, pp. 911–927.859

[16] B. Groza, P. S. Murvay, Efficient intrusion detection with bloom filtering in controller860

area networks, IEEE Trans. on Information Forensics and Security 14 (2019) 1037–1051.861

[17] M. Kneib, C. Huth, Scission: Signal characteristic-based sender identification and in-862

trusion detection in automotive networks, in: Proc. of ACM Conference on Computer863

and Communications Security (ACM CCS), 2018, pp. 787–800.864

[18] K. Huang, Q. Zhang, C. Zhou, N. Xiong, Y. Qin, An efficient intrusion detection865

approach for visual sensor networks based on traffic pattern learning, IEEE Trans. on866

Systems, Man, and Cybernetics: Systems 47 (2017) 2704–2713.867

24



[19] M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and applica-868

tion, volume 104, Prentice Hall Englewood Cliffs, 1993.869

[20] T. Hoppe, S. Kiltz, J. Dittmann, Security threats to automotive can networks–practical870

examples and selected short-term countermeasures, in: Proc. of International Confer-871

ence on Computer Safety, Reliability, and Security, 2008, pp. 235–248.872

[21] K.-T. Cho, K. G. Shin, Viden: Attacker identification on in-vehicle networks, in: Proc.873

of ACM Conference on Computer and Communications Security (ACM CCS), 2017, pp.874

1109–1123.875

[22] S. U. Sagong, X. Ying, R. Poovendran, L. Bushnell, Exploring attack surfaces of voltage-876

based intrusion detection systems in controller area networks, ESCAR Europe (2018)877

1–13.878

[23] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, T. Chantem, Simple: single-frame based879

physical layer identification for intrusion detection and prevention on in-vehicle net-880

works, in: Proc. of 35th Annual Computer Security Applications Conference, 2019, pp.881

229–244.882

[24] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, R. Poovendran, Cloaking the clock: emu-883

lating clock skew in controller area networks, in: Proc. of ACM/IEEE 9th International884

Conference on Cyber-Physical Systems (ICCPS), 2018, pp. 32–42.885

[25] J. Zhou, P. Joshi, H. Zeng, R. Li, Btmonitor: Bit-time-based intrusion detection and886

attacker identification in controller area network, ACM Trans. on Embedded Computing887

Systems (TECS) 18 (2019) 1–23.888

[26] M. L. Han, B. I. Kwak, H. K. Kim, Anomaly intrusion detection method for vehicular889

networks based on survival analysis, Vehicular communications 14 (2018) 52–63.890

[27] H. Lee, S. H. Jeong, H. K. Kim, Otids: A novel intrusion detection system for in-vehicle891

network by using remote frame, in: Proc. of 15th Annual Conference on Privacy, Security892

and Trust (PST), 2017, pp. 57–5709.893

[28] M. Marchetti, D. Stabili, Anomaly detection of can bus messages through analysis of id894

sequences, in: Proc. of IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1577–1583.895

[29] H. K. Kalutarage, M. O. Al-Kadri, M. Cheah, G. Madzudzo, Context-aware anomaly896

detector for monitoring cyber attacks on automotive can bus, in: Proc. of ACM Com-897

puter Science in Cars Symposium, 2019, pp. 1–8.898

[30] T. Yu, X. Wang, Topology verification enabled intrusion detection for in-vehicle can-fd899

networks, IEEE Communications Letters 24 (2020) 227–230.900

[31] D. Mills, Network Time Protocol (Version 3) specification, implementation and analysis,901

Technical Report, University of Delaware, 1992, pp. 1-92.902

[32] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, H. Kim, A novel approach to detection903

of intrusions in computer networks via adaptive sequential and batch-sequential change-904

point detection methods, IEEE Trans. on Signal Processing 54 (2006) 3372–3382.905

[33] A. G. Tartakovsky, A. S. Polunchenko, G. Sokolov, Efficient computer network anomaly906

detection by changepoint detection methods, IEEE Journal of Selected Topics in Signal907

Processing 7 (2012) 4–11.908

25



[34] H. Olufowobi, U. Ezeobi, E. Muhati, G. Robinson, C. Young, J. Zambreno, G. Bloom,909

Anomaly detection approach using adaptive cumulative sum algorithm for controller910

area network, in: Proc. of ACM Workshop on Automotive Cybersecurity (AutoSec),911

2019, pp. 25–30.912

[35] C. Kiennert, Z. Ismail, H. Debar, J. Leneutre, A survey on game-theoretic approaches913

for intrusion detection and response optimization, ACM Computing Surveys (CSUR)914

51 (2018) 1–31.915

[36] B. Peleg, P. Sudhölter, Introduction to the theory of cooperative games, volume 34,916

Springer Science & Business Media, 2007.917

[37] L. S. Shapley, A value for n-person games, Contributions to the Theory of Games 2918

(1953) 307–317.919

[38] J. Lemaire, Cooperative game theory and its insurance applications, ASTIN Bulletin:920

The Journal of the International Actuarial Association 21 (1991) 17–40.921

[39] S. Halder, M. Conti, S. K. Das, Coids: A clock offset based intrusion detection system for922

controller area networks, in: Proc. of 21st ACM International Conference on Distributed923

Computing and Networking (ACM ICDCN), 2020, pp. 1–10.924

[40] H. Lee, S. H. Jeong and H. K. Kim, CAN Dataset for intrusion detection (OTIDS),925

[Online]: http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset, 2018. Accessed926

on January 15, 2020.927

[41] J. Matsumura, Y. Matsubara, H. Takada, M. Oi, M. Toyoshima, A. Iwai, A simulation928

environment based on omnet++ for automotive can–ethernet networks, Analysis Tools929

and Methodologies for Embedded and Real-time Systems (2013) 1–44.930

[42] K. French, Energy Consumption of In-Vehicle Communication in Electric Vehicles: A931

comparison between CAN, Ethernet and EEE, Ph.D. thesis, Linköping University, 2019.932
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