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Abstract—Detecting performance anomalies is key to efficiently
utilize network resources and improve the quality of service.
Researchers proposed various approaches to identify the presence
of the types of anomalies including heuristic (e.g., change point
detection) and Machine Learning (ML) models. These models
typically collect socket statistics to decide whether or not a given
traffic is anomalous. Although these models have high accuracy
in the networks that they are trained for, they perform poorly
when transferred to a different network mainly because the
models are heavily dependent on bandwidth and RTT related
metrics such as the number of packets delivered and minimum
round trip time. In this paper, we propose a novel parameter
transformation method to eliminate network dependence of the
ML models thereby increasing the performance of the transfer
learning for anomaly diagnosis models significantly. We finally
validate the findings through experimental evaluations conducted
on simulated and production networks using multiple congestion
control algorithms.

Index Terms—Transfer Learning, Feature Transformation,
Network Anomaly Detection, Random Forest.

I. INTRODUCTION

Performance of data transfers in production networks are
adversely affected due to being exposed to various types of
network anomalies such as packet loss and jitter. Detecting
such anomalies is key to take necessary actions in a timely
manner thereby increase resource efficiency and meet stringent
performance requirements of distributed workflows. Operating
systems provide several performance metrics for active net-
work flows (e.g., number of transmitted packets, lost packets,
average round trip time), which can be used to identify the
presence as well as the type of anomalies.

However, analyzing performance metrics in real-time to
detect and diagnose performance anomalies is beyond the ca-
pabilities of human operators due to high volume and velocity
of input data. Thus, researchers developed automated solutions
to process real-time performance statistics to pinpoint the
root causes of performance anomalies in a timely manner.
Specifically, ML/AI solutions are highly effective as they
can extract complex relationships between a large number
of features to make high-precision predictions compared to
traditional statistical models. However, they often suffer from
poor performance when transferred to new domains, making
it extremely challenging to adopt them in production networks
where labeled data collection is not possible.

In this paper, we develop models for network anomaly diag-
nosis problem that can achieve high accuracy when transferred
to new networks without requiring new data collection. To
achieve this goal, we first identify key features that can be

used to infer the types of anomalies. We then innovate a
feature transformation method to convert domain dependent
metrics (e.g., such as number of retransmitted packets and
average round trip time) to domain independent forms to
enable the transfer of anomaly diagnosis problems across the
networks. Compared to standard normalization (i.e., column-
based normalization) which requires test data features to be
in the same range as in training data features to work as
expected, we normalize the selected features using the other
features of the same data entry. For instance, we divide the
number of retransmitted packet count to total transmitted
packet count reported in the same entry such that it will
indicate retransmission rate, which is not dependent of network
bandwidth. Experimental results show that parameter trans-
formation significantly improves the performance of transfer
learning for anomaly diagnosis ML models. Specifically, while
the accuracy of ML models when transferred to new networks
are below 60% using standard normalization, the proposed
row-based transformation improves the performance to up to
90%.

We further explore the impact of the congestion control
algorithm on the performance of the proposed models. Our
preliminary analysis on TCP Cubic, HTCP, and BBR reveals
that the proposed parameter transformation also results in high
accuracy when applied between different congestion control
algorithms. In summary, we make the following contributions
in this paper:

« We run extensive data collection in multiple emulated
and productions networks to develop supervised machine
learning models that can identify the root causes of per-
formance anomalies of network transfers by processing
socket statistics. We find that these models are over 90%
accurate when they are tested in the network that they
are trained for, but only attain less than 60% accuracy in
different networks.

o We apply feature engineering to only use a subset of
features in the model training and introduce novel pa-
rameter transformation to eliminate domain dependence
for selected features. The results indicate that parameter
transformation is an effective approach to minimize the
domain dependence for the ML models, therefore the
performance of transfer learning improves over 75% in all
networks including production ones. We also investigate
the reasons behind why the performance of transfer
learning is unable to match with domain performance of



the ML models.

« We evaluate the performance of proposed feature trans-
formation for widely used congestion control algorithms
TCP Cubic, HTCP, BBR. We find transfer transfer learn-
ing performs fairly well (above 85% accuracy) across
the congestion control algorithms, thus making it even
simpler to transfer to new networks even if congestion
control algorithms is different.

II. RELATED WORK

Throughput fluctuations are the norm in research networks
where several components of end-to-end data transfers are
shared resources (i.e., storage, DTN, and network). As a result,
system administrators tend to blame resource contention as
the most likely reason for poor transfer throughput. However,
non-congestion-related anomalies, such as faulty equipment,
transient routing changes, and unanticipated impacts of system
configuration changes, occur frequently but go undetected due
to lack of comprehensive monitoring and anomaly detection
solutions. Many universities and research centers use Perf-
Sonar [1] to identify common networking problems such as
decrease in throughput and increase in round trip time. Since
it uses periodic active measurements to measure the network
performance, it is unable to detect anomalies that take place
between measurement intervals.

Most existing work proposed solutions to detect the pres-
ence of network anomalies without providing any information
about underlying reasons. For example, Zhang et al. proposed
Principal Component Analysis (PCA) for PerfSonar logs to
identify the feature set that can be used to differentiate
anomalous and normal traffic [2]]. Lakhina et al. used Prin-
cipal Component Analysis (PCA) on link utilization data
(i.e., SNMP) to detect volume-related anomalies [3]. They
proposed a threshold-based detection algorithm to identify
significant variance in residual traffic and distinguish the flows
involved in the anomalous event. Similarly, Rao et al. applied
PCA on TCP performance metrics (captured by Tstat [4])
to extract principal components for normal traffic in high-
speed networks [5]]. Mapping normal and anomalous traffic
into a new space using the first two principal components
revealed a clear distinction between these two groups. They
showed that the features found by normal traffic analysis do
not reflect the behavior of abnormal traffic through which one
can determine whether a given traffic pattern is anomalous.
Ana et al. used Random Forest Regressor to related flow
sizes to TCP performance metrics as captured by Tstat [6].
Once the flow size of transfers is estimated, the it is used
determine if the flow size of a transfer is unexpectedly small
or large, which is finally used to infer anomalies. Dao et al.
implemented a change point detection algorithm using time-
series throughput data [7]. The proposed solution first splits
observed transfer rates into two as base time and congestion
delay. Base time defines the maximum rate of a transfer in
a given network determined by the network connection, the
storage systems, and the CPU of the machines involved in
the transfers. Congestion delay, on the other hand, is the

increase in base time due to network congestion. The base
time of any time range is calculated using minimum quantile
regression, which is then used to estimate transfer completion
time. Then, this value is subtracted from actual transfer time
to find deviation in completion time, which would indicate
congestion. Finally, an anomaly detection signal is triggered
if several transfers in a time range exhibit significant deviation
from estimated completion time.

In the area of anomaly diagnosis, several work proposed
developing supervised machine learning models to detect and
diagnose performance anomalies that scientific workflows are
exposed to such packet loss, duplication, and reordering [8]—
[10]. For example, Tu et al. [10] proposed hyperparameter
optimization for Gradient Boosting (XGBoost) ML model to
detect and diagnose packet loss, duplication and reordering
anomalies using Tstat transfer logs. The results show that
hyperparameter optimization can be executed quickly and lead
to up to 28% gain in F-score compared to “off-the-shelf”
performance. We thus use Gaussian process-based Bayesian
optimization (via python scikit—-optimize library) to dis-
cover the optimal the hyperparameters settings that maximizes
the performance of the models. In a previous work, we applied
Deep Neural Network to process performance metrics (e.g.,
TCP statistics, file system counter, etc.) and diagnose the root
causes of performance anomalies for file transfers, such as I/O
interference, packet loss, packet corruption, and overloaded
end hosts [11]]. Despite yielding high accuracy for the networks
that they are trained for, none of these solutions address
the domain dependence problem as the proposed supervised
learning models are heavily dependent on network settings
such as bandwidth and RTT. In a previous work, we conducted
preliminary analysis on the impact of parameter transformation
on the performance of transfer learning for anomaly diagnosis
models [12]. This work significantly extends the previous
work by (1) we share insights into why and how parameter
transformation improves the performance of transfer learning,
(2) present experimental results for real-world networks, (3)
assess the impact of congestion control algorithms on the
performance of the models both for same network and dif-
ferent network evaluations, (4) we present future directions to
enhance the performance of anomaly diagnosis models such
as reducing the scale of training data collection

III. NETWORK ANOMALY DIAGNOSIS

Network anomalies can lead to severe performance degra-
dation such as decreased throughput and increased network
delay. For example, packet loss anomaly with as small as 0.1%
(i.e., 1 in every 1000 data packets are lost) rate can lead to
5—T7x decrease in throughput. Therefore, it is crucial to detect
and mitigate them in a timely manner to sustain high network
performance and improve the quality of experience for users.
Equally important to anomaly detection is the root cause
analysis since troubleshooting efforts are highly dependent on
the types of anomalies. As an example, packet loss can be
caused by increased network congestion, thus one can apply
traffic engineering to evenly distribute the load over alternate



paths. On the other hand, high packet corruption indicates
faulty cable or network devices that needs to be replaced
to mitigate the issue. Yet, most previous work in this area
only focus the detection of performance anomalies without
providing any information about underlying reason(s), leaving
daunting root cause analysis task to network operators.

To address this issue and expedite the troubleshooting pro-
cess, we develop models that cannot only detect the presence
of anomalies but also can predict the underlying reasons.
Specifically, we focus on five network anomaly conditions as
Jitter, packet duplication, packet reorder, packet corruption,
and packet loss. Jitter (aka delay jitter) defines the variation
in end-to-end delay, which can be caused by various reasons
including network congestion, route changes, and faulty hard-
ware [13[]. We create three jitter anomalies as 30%, 50%,
and 60% with respect to base RTT. For example, if base
network delay (i.e., RTT) is 100ms, then 30%, 50%, and
60% jitter rates will cause 30ms, 50ms, and 60ms variation
in observed RTT, respectively. Packet duplication (duplicate
henceforth) anomaly causes some packets to be transmitted
destination multiple times. It can happen when a sender does
not receive an acknowledgement message for some packets
within a specific time duration, so it resends them assuming
that the original packets were not delivered even if they were
indeed delivered. It can also happen because of defective
network devices duplicating some data packets and sending
them along with the original ones. It can be defined as the
percentage of packets duplicated, hence we simulate 20%,
30%, 40% duplication rates.

Packet reorder (reorder henceforth) is among common
network anomalies in which data packets are delivered out
of order. It can happen when networks experience routing
instabilities which causes packets of the same flow to take
different routes and be exposed to different network delays. It
can also occur when multipath routing is used to split flows
to multiple routes to take advantage of available bandwidth
in alternative routes. Similar to the duplicate anomaly, it is
defined as the percentage of packets that are reordered, thus we
simulate three levels as 20%, 30%, and 40%. Packet corruption
(corruption henceforth) causes data packets to be exposed to
multiple bit errors in a way that it cannot be recovered through
available error correction codes such as cyclic redundancy
check (CRC). It happens due to faulty cables and network
devices. As it is a relatively rare anomaly type, we simulate
small percentages as 0.1%, 0.5%, 1%. Finally, packet loss (1oss
henceforth) causes data packets to be dropped due to non-
congestion related events. While packet loss can also happen
due to network congestion, its ratio is typically very small
in congestion cases as most congestion control algorithms
reduce sending rate drastically to alleviate the congestion.
Thus, high packet losses typically take place due to defective
network equipment [14]. To reproduce these anomalies, we
use Linux Network Emulator (netem) [[15] which allows the
emulation of network configurations and common performance
anomalies.

A. Data Collection

We first use Emulab [[16] to create several network set-
tings with various bandwidth and delay values to mea-
sure the performance of anomaly diagnosis models in dif-
ferent network settings. We build a simple network topol-
ogy in which a sender and a receiver is connected via
switch. We configure nine networks using a combination
of three bandwidth (100Mbps, 1000Mbps, 5000Mbps) and
delay (10ms, 30ms, 100ms) values. We refer to these net-
works as <Bandwidth(Mbps)>M<RTT(ms)>ms format.
For example, 5000M10ms refers to the setup where network
bandwidth is 5000 Mbps and Round Trip Time (RTT) is set to
10 ms. We run 200 iPer£3 [17] transfers (each 20 seconds
long) for each anomaly type as well as normal condition.
The different rates of the same anomaly groups (e.g., 0.1%,
0.5%, and 1% packet loss anomalies) are tagged with the
same label. The default congestion control algorithms is set
to TCP Cubic, but Section presents results for different
congestion control algorithms.

As we aim to predict the types of performance anomalies
beyond their presence, simply using transfer throughput is not
sufficient as multiple anomalies lead to throughput degradation
in a similar degree. Thus, we benefit from existing tools that
report several performance metrics regarding to the status of
transfers such as the number of bytes transmitted and the
number of retransmitted packets. For example, Linux utility
Netstat [18] captures a multitude of performance metrics that
can be used to debug performance issues. However, it reports
combined results for all active flows, thus it is not always suit-
able to debug the performance issues of individual flows. Since
we are using dedicated instances for Emulab experiments
and only create one transfer at a time, the values reported
by Netstat can be used to analyze the performance of that
flow. Another Linux utility ss [[19] provides flow-level socket
statistics for active connections [19]]. Finally, Tstat [4] uses
tepdump to inspect active network connections and reports a
large number of performance metrics upon the completion of
flows. Since these tools report a different set of metrics (some
of which may overlap), we captured performance metrics using
all three of them to compare their effectiveness in capturing
the anomalies.

B. Feature Selection

Tstat, Netstat, and ss report up to 150, 64, and 29 met-
rics, respectively. Since most of them either not consistently
reported or have fixed values, we first apply feature selection
before training ML models as follows: We randomly select
20% of gathered transfer logs to train a Random Forest clas-
sifier. In the training phase, Random Forest model calculates
a significance score for each input parameter to quantify their
impact on the classification of anomalies. We choose features
whose combined importance score is more than 95% of sum
of all features’ importance scores. We repeat this process ten
times using a different subset of the transfer logs to identify
a set of features that are consistently selected in each of the
ten repetitions. At the end, we select 14 features for Tstat, 7
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Fig. 1. Performance comparison of ML models for network anomaly diag-
nosis problem. The results are average of nine networks created in Emulab.

features for Netstat, and 7 features for ss data to train ML
models.

C. Model Training

We train several supervised ML classifiers using the data
collected in Emulab. Out of many we evaluated, we only
report the performance of Random Forest (RF), Decision Tree
(DT), XGBoost (XGB), Neural Network (NN), Support Vector
Machine (SVM) models as others (e.g, Recurrent Neural
Network (RNN), Convolutional Neural Network (CNN), and
Long Short Term Memory (LSTM)) either fail to obtain
competitive results or require extensive manual work to find
the optimal model architecture. As an example, CNN is able
to perform slightly better (2 — 3%) compared to Random
Forest model, but finding the right neural architecture (e.g., the
number of hidden layers, the number of dropout layers, etc.)
is a time-consuming process, thus we focus on ML models
whose training cost is reasonable. We leverage scikit-optimize
library to optimize the hyperparameters of the selected models.
Specifically, it finds the number of trees and tree depth for
RF, tree depth for DT, the number of layers, neuron count per
layer, activation function, solver method, and learning rate for
NN. For XGB, it tunes learning rate, number of estimators,
max depth, minimum child weight, gamma, regularization
parameter (alpha), subsampling, and colsample_bytree ratio.
We also apply standard normalization on the dataset after
splitting data into training and test groups using 80% — 20%
split ratio. Please note that test dataset normalization uses the
same scaling metrics (i.e., average and standard deviation) that
are calculated during the normalization of training dataset to
avoid data leakage.

We first train a separate model for each of nine networks
with different bandwidth and RTT settings. The trained models
are then evaluated using the test dataset of the same network.
To evaluate the performance of ML models, we adopt 5-fold
cross validated F-score (also referred as F-measure) value
which is an harmonic mean of precision (i.e., the number
of true positive results divided by the number of all positive
results) and recall (i.e., number of true positive results divided
by the number of all samples that should have been identified
as positive) values [20].
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Fig. 2. Performance of XGBoost models for transfer learning.

D. Model Evaluation

Figure [I] presents an average F-score for the nine network
settings we created in Emulab. We observe that SVM attains
the lowest performance for all three datasets whereas NN, DT,
RF, and XGB models all attain high (92 —97%). Among them,
XGB performs the best (96 — 97% F-score) when trained with
Netstat and ss datasets. In terms of the type of the dataset, all
models achieve higher and more stable performance using the
ss dataset. Specifically, while the performance of XGB clas-
sifiers ranges between 87% and 98% using Tstat dataset, its
performance stays within 95% and 99% using ss dataset. This
can be attributed to the fact while we can query ss multiple
times to capture the performance statistics of a specific time
duration (e.g., t = 5s), Tstat reports metrics only once at the
end of transfers. This in turn leads to increased noise in the
data as reported values are affected performance fluctuations
that happen during startup and tear-down periods. Similarly,
the models have nonegligible fluctuations when trained with
Netstat data which can be explained due to lack of per-flow
reports and absence of RTT related metrics. Therefore, we use
ss data for the rest of the analysis.

As it is time consuming to gather training data for a variety
of network settings, we explore the performance of the ML
models in diagnosing errors when they are tested in different
network settings. The ability to transfer anomaly detection
and diagnosis models to new networks is a key to increase
the adoption of ML solutions since it may not be possible
to gather training data in all networks, in particular in shared
production ones. Therefore, we evaluate the performance of
XGB classifiers that are trained with a data collected in one
network to diagnose errors in another network. As we trained
a separate model for each of nine settings created in Emulab,
we test each of these models in the other eight networks to
evaluate their performance. To give an example, the model
trained for 100M10ms network is evaluated in all other eight
network settings (i.e., 100M30ms, 100M100ms, 1000M10ms,
etc.) to measure if it’s still able to diagnose the root causes of
the performance anomalies.

The results as presented in Figure [2] indicate that despite
yielding over 97.8% accuracy when the XGB models are
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Fig. 3. Distribution of retransmission values (refrans) in training (1000M100ms) and test (5000M30ms) networks for packet loss anomaly. The proposed
transformation method improves the similarity of data distribution between training and test dataset despite having different bandwidth and RTT settings.

TABLE I
SS METRICS USED TO TRAIN PREDICTION MODELS
Feature Name Base Metric Importance Score
minrtt rtt_avg 0.21
rtt_std rtt_avg 0.07
ssthresh cwnd 0.12
dsack_dups segs_out 0.16
retrans segs_out 0.19
notsent segs_out 0.08
reord_seen segs_out 0.16

tested in networks that they are trained for, their performance
degrades severely when they are transferred to new networks
as the average F-score of all nine models is 58% with some
returning less than 30% F-score. This is mainly due to the
difference in the range of parameters in different network
settings. For example, maximum RTT value of 20ms in a
network with average RTT of 10ms is a sign of jitter anomaly.
On the other had, the same maximum RTT value of 20ms
will be classified as normal when average RTT of the network
is 20ms. Standard normalization does not resolve the issue
as it does not change the distribution of the test dataset. It
is also not feasible to normalize training and test datasets
independently since that requires test dataset to contain all
anomaly types and be available altogether, an assumption that
cannot be guaranteed. Except RF classifier which yields only
slightly higher (2 — 3%) performance than XGB, we observe
similar or worse transfer learning performance when using
other ML models (e.g., Neural Network) or dataset types (i.e.,
Tstat and Netstat). It is therefore evident that transfer learning
does not work for network anomaly diagnosis when a target
network has different bandwidth and RTT values compared to
training network.

IV. TRANSFER LEARNING

As original models do not perform well when transferred to
new networks due to bandwidth and RTT difference between
the training and test networks, we investigate ways to either
eliminate or transform the domain-dependent features. For

example, the number of transmitted bytes is proportional to
network bandwidth, thus using it when training a model
adversely affects the performance of the model when it is
transferred. One possible option is to only use the metrics
that are not dependent to network bandwidth and RTT such
as maximum segment size and MTU value. However, this
leads to significant performance decrease as most important
features are dependent to bandwidth and RTT. Thus, we
explore the possibility of transforming the features to network
independent forms. For instance, we can divide the number of
packets retransmitted to the number of packets transmitted to
transform it to retransmission rate, which is not directly related
to the absolute value of bandwidth. Similarly, average RTT
can be transformed to RTT-independent form by dividing it to
maximum RTT value of the transfer. By extending this idea,
we convert all 7 features of ss dataset into network independent
forms as shown in Table[l] In a nutshell, we divide RTT-related
metrics to average RTT value (i.e., rtt_avg), packet count
metrics to total transmitted packets (i.e., segs_out). Note that
the base metrics are not among the 7 metrics selected after
the feature selection due to having low impact on classifying
the anomalies. As a result, we did not eliminate any of the
metrics, but rather transformed them to bandwidth and RTT
independent forms.

Figure [3] demonstrates the impact of the proposed feature
transformation. It shows the normalized value of retrans (the
number of retransmitted packets) parameter when packet loss
anomaly is injected with 0.1%, 0.5%, and 1% ratios. We first
normalize the values of packet loss for network A, then use
the same normalization metrics (i.e., average and standard
deviation) to normalize the network B to simulate a scenario
where a model is trained using training data from network
A and tested with data from network B. Note that the same
packet loss rates are introduced in both networks, thus similar
outcomes are expected in terms of transmission rates. How-
ever, when regular standardization is applied, trans values do
not overlaps as expected due to difference in absolute values.
On the other hand, when it is transformed using the proposed
transformation technique, the values from both network fall
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Fig. 4. Performance of Random Forest and XGBoost models for transfer learning experiments in Emulab after applying feature transformation.

into the same range, letting ML models to distinguish the types
of anomalies in new network settings.

Figure [A(a)| presents the F-score of the XGBoost models
after applying the proposed feature transformation. While its
performance of transfer learning was on average 58% (with
as low as 20% in some cases) when the input parameters are
used in the raw format, the proposed feature transformation has
improved the performance to 84% with the lowest performance
of 63.85%. As XGB is known for its overfitting issues , we
also evaluate the performance of the RF models in Figure #(b)}
Clearly, the RF models obtain higher and more stable perfor-
mance then XGB models with average and lowest F-scores of
88% and 75.63%, respectively. We therefore present the results
of RF models in the rest of the paper as they outperform the
XGB models in transfer learning experiments significantly in
exchange of only slightly (2—3%) lower performance for same
network experiments.

It is important to note that transforming the features before
training the RF classifiers causes a slight performance degra-
dation when the models are evaluated in the same network that
they are trained for. The performance of the RF models (i.e.,
F-score) are on average 97% before applying the parameter
transformation (as shown in ss column Figure |I|), whereas
it decreases to 94% after the parameter transformation. We
believe that this is a reasonable trade-off compared to consid-
erable gain achieved for transfer learning performance.

Despite the significant improvement, transfer learning per-
formance still falls behind the same network performance by
around 10 — 15%. This can be attributed to the difference in
distribution of some features. Figure[5]shows the average value
of dsack_dups (duplicate selective acknowledgement) pa-
rameter for duplicate and Reorder anomaly classes as observed
in each of nine network settings. Reported dsack_dups
value is higher in the case of duplicate anomaly compared
to reorder anomaly in each network. However, its value for
reorder anomaly overlaps with its value in duplicate anomaly
in different networks, which confuses the models when they
are transferred to new networks. As an example, its average
value is 0.28 for reorder anomaly (after the parameter trans-
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Fig. 5. Comparison of transformed dsack_dups feature for different anomaly
types Emulab. Although its value is always smaller for reorder anomaly
compared to duplicated anomaly in each network, this does not hold true
across the network, thus causes performance issues for transfer learning.

formation) in 1000M30ms which is significantly smaller than
its value for duplicate anomaly in the same network. However,
its value is higher than compared to duplicate anomaly in
1000M10ms network for which the value of dsack_dups
is around 0.21. Consequently, even if the transformed value
of dsack_dups is always higher for duplicate anomaly
compared to reorder anomaly in each network, this does not
hold true across the networks, causing some reorder anomaly
cases to be categorized as duplicate anomaly when models
are transferred. Since transfer learning requires features to
follow a similar distribution in training and test datasets to
work well [22], [23]}, such differences in some features across
the networks adversely affect the performance of the models
when transferred to new settings.

A. Impact of Congestion Control Algorithm

Although TCP Cubic is the most commonly deployed
congestion control algorithm (CCA), researchers have been
working to develop alternative solutions to overcome the
limitations of Cubic such as slow convergence in long fat
networks and poor performance in the presence of random
packet losses. As an example, Google introduced BBR in
2016 to for improved resilience to random packet losses and
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Fig. 7. Retransmission rate (retrans) is an important metric to distinguish
Corrupt and Loss anomalies. BBR returns separate range of for it under
the two anomaly type, thus the anomaly diagnosis models attain higher
performance when trained with BBR datasets.

increased overall resource utilization [24f]. Likewise, many
high-speed networks adopt HTCP [25] to enhance transfer
performance in long fat networks. We thus assess the impact
of CCA on the proposed parameter transformation method.
Figure [6] presents an average F-score for transfer learning
experiments (i.e., each of nine RF model are tested using the
data from other eight network settings) when CCA is set to
Cubic, BBR, and HTCP. The reported values are average F-
scores for the nine RF models; i.e., average of all values in
Fig @] except the values on diagonal line. In addition, the figure
reports the performance of the models when they are evaluated
against different CCA. That is, the left most blue line (i.e.,
HTCP) reports the F-score for a model that is trained in one
network setting using Cubic as a CCA and evaluated in other
eight networks when using HTCP as a CCA. Thus, it reports
the performance of the models when both network settings
(i.e., bandwidth and RTT) and CCA are different than the
ones in training data.

It is clear that the RF classifiers yield the best when using
BBR as a CCA. Specifically, BBR trained models achieve
around 92% F-score for transfer learning when the test datasets
are also captured using BBR. In contrast, Cubic and HTCP
models yield 87% and 85% respectively when they are tested
against the datasets that are collected in different network
settings using the same CCA. We realize that the performance
difference is due to variation in the range of some features
when BBR is used instead of Cubic or HTCP. Figure [J]
shows transformed and normalized value of retranmission
rates (retrans) for corrupt and loss anomalies in Emulab
(1000M30ms) for Cubic, HTCP and BBR. Since retrans is

TABLE 11
SPECIFICATIONS OF REAL-WORLD NETWORKS.
ID Source Destination| Bandwidth | RTT
WAN-1 DTNI1 DTN2 40G 10 ms (emu-
lated)
WAN-2 TACC ucC 1G 32 ms
WAN-3 TACC SDSC 1G 58 ms
TABLE III

TRANSFER LEARNING PERFORMANCE FOR CUBIC DATASET

Training Dataset Test Dataset F-measure (%)
Emulab WAN-1 81.9 + 2.8
WAN-1 Emulab 81.1 + 3.7
WAN-2 WAN-3 812+ 1.6
WAN-3 WAN-2 79.8 + 1.8

one of the most important features used to separate these two
anomaly types, its distribution plays a key role in finding the
right class. Clearly, it can easily be used to separate corrupt
and loss anomalies across the networks when using BBR as
there is clear difference in the range of values. On the other
hand, its value overlaps for corrupt and loss anomalies when
using Cubic and HTCP, causing models to misclassify some
loss anomalies as corrupt and vice versa. We aim to conduct
a deeper analysis on why BBR acts differently in the case of
packet corruption in a future work.

B. Performance Evaluation in Real-World Testbeds

In this section, we evaluate the performance of the proposed
parameter transformation for transfer learning experiments
in three real-world networks. Table [ lists the locations of
source/destination end points, bandwidth and RTT for these
networks. Two data transfer nodes (DTN1 and DTN2) located
in the same local area network used to collect data in an
isolated environment. We injected 10ms delay to emulate
wide area network behavior. We use Texas Advanced Com-
puting Center (TACC, located in Austin, Texas), University
of Chicago (UC, located in Chicago, Illinois), and San Diego
Supercomputer Center (SDSC, located at San Diego, Califor-
nia) to conduct transfers under different bandwidth and RTT
conditions. Similar to Emulab results, we observe high F-
scores for the models when they are trained and tested in the
same network.

Table [IT]] present the performance of transfer learning across
different testbeds. Since both Emulab and WAN-1 is con-
figured with simulated RTT, we compare them against each
other, Compared to 85 — 90% transfer learning F-score we
obtain when testing models in different networks in Emulab
(Figure |§|), the performance degrades by around 5—10% when
the models are transferred to WAN-1. We notice that this is
due to netem’s inconsistent behavior in different networks.
As an example, injecting 1% packet corruption results in very
close to 1% packet loss ratio in all Emulab transfers whereas it
causes the packet loss rate to fluctuate between 0.5% and 0.8%
for WAN-1 transfers. We leave a deeper analysis on netem’s
performance difference in different networks as a future work.



TABLE IV
A SUBSET OF SS METRICS THAT CAN BE USED TO TRAIN ML MODELS

Base Metric
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Fig. 8. Transfer learning performance comparison between 7 features and 4
features models

Similarly, the performance of transfer learning is around 80%
when tested between WAN-2 and WAN-3 networks. It is
also important to note that WAN-2 and WAN-3 are shared,
production networks, thus potential network interference can
always lead to mislabeled data during data collection phase.

V. DISCUSSION AND FUTURE DIRECTIONS

To the best of our knowledge, this paper makes a first
attempt to develop transferable machine learning models for
network anomaly diagnosis. The results indicate that the pro-
posed novel feature engineering can improve the performance
of transfer learning from around 50 — 60% to over 80%
F-score across all networks. In this section, we investigate
ways to further improve the performance as well as model
explainability.

Model Explainability: As mentioned in Section [[lI-B] we
find that 7 out of 29 features reported by ss tool are sufficient
to capture 95% of the variation in anomaly type (or lack of
it). While RF models yield the best performance, it is not
the best option when it comes to the interpretability. Decision

retrans

minrtt No <=0.002? Yes dsack_dups

<=0.753? <=0.008?
No l—‘—lYes
reord_seen reord_seen
<=0.0001? <=0.02?
No| Yes No Yes No Yes
Corrupt Loss Reorder lJitter Duplicate  Normal

Fig. 9. A visualization of sample decision tree model created using 4 features
of ss dataset.
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Fig. 10. Performance comparison of ML models with respect to training
sample size

Tree, on the other hand, can yield competitive results (95%
vs 97% for same network experiments as shown in Figure |1)
while improving the model explainability significantly. As an
example, the RF models typically consist of 100 trees whose
depth ranges between 5 and 31, making it extremely difficult
to inspect. In comparison, DT models have depth of 4 — 19
when trained with the same dataset, which are, despite being
simpler than RF models, still hard to debug. To further enhance
the interpretability, we assess the impact of reduced feature
set size. Specifically, we train all the models using only 4
of 7 original features based on importance scores as listed in
Table [l The selected features and their updates scores as well
as base metrics used to transform them are given in Table [[V]
Figure [§] presents the transfer learning performance of the
ML models for Emulab dataset (Cubic as a CCA) when they
are trained with fewer features. Surprisingly, the performance
of SVM and NN improved significantly (around 10%) when
some of the features are discarded, which can be the result
of inconsistent distribution of values for discarded features.
The features mentioned in Table [[V] have very consistent and
expected behavioral patterns across the networks. For example,
the value of reord_seen parameter is high in all networks when
the reorder anomaly is injected. Note that tree based models
are more resilient against including somewhat inconsistent
parameters as all major branches in these model are formed
using the most important features, thus the discarded features
are used to classify a small number of samples. Yet, the
performance of DT and RF models, however, suffer slightly
with 1 — 2% loss in F-score. In return, the interpretability of
the DT model improves significantly. We find however that the
performance of the RF and DT models do not decreased when
the feature set size is reduced to 4, thus using simpler models
does not necessarily require performance sacrifice. Figure [0]
illustrates a sample Decision Tree model for one of the Emulab
networks when 4 features are used for training. Such simple
models make it easier to gain insights into the decision-making
logic of the model. For example, we can observe that duplicate
anomaly can be distinguished by looking at the values of
retrans and dsack_dups metrics.

Impact of Congestion Control Algorithm: We notice that
transfer learning experiments mostly fails to distinguish packet
loss and corrupt anomalies when using Cubic as a CCA
(Table [[TI). This is mainly due to the fact that both anomalies
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Fig. 11. Performance of Random Forest models in different evaluation time
for transfer learning.

trigger a similar action (i.e., retransmitting the loss/corrupted
packets) for Cubic, making it hard to find a good feature that
can separate them. We validated this claim by evaluating the
performance of transfer learning experiments after merging
loss and corrupt anomalies into a single category, which
led to the performance of transfer learning to increase over
95% in all networks. Moreover, as shown in Figure {7, BBR
returns more distinct values for retrans feature for loss and
corrupt anomalies, thus leading to higher transfer learning
performance. Specifically, while the performance of transfer
learning across the networks is around 80% when using Cubic
and HTCP, it reaches to 85% for Emulab-WAN1 and 94%
for WAN2-WAN3 experiments. Thus, BBR offers a better
opportunity fit for detecting the six types of anomalies we
targeted in the work.

Training Data Collection: We find that the models obtain
near-optimal performance (over 95% F-score) when they are
trained for each network exclusively. Hence, we explore the
cost of gathering training data for each network. Our data
collection involves running sample transfers for five different
anomalies in three severity levels (e.g., 0.1%, 0.5%, 1%
packet loss rates) in addition to normal transfer scenario. This
requires conducting 16 transfers to gather one data sample
for each category. Since we collected 200 samples for each
category and ran each transfers for 20 seconds to ensure that
they converge to a stable state before we capture the socket
statistics, it took around 18 hours (16 transfer/category x 200
samples/category x 20 seconds/transfer) for each congestion
control algorithm.

In Figure [I0] we assess the impact of per class sample
size on the performance of RF models. Although the original
models used 160 samples to train a model (80% of all 200
samples we collected), we find that 30 samples per label
is sufficient to achieve over 93% F-score and 50 samples
per label can yield near-optimal performance in all networks.
Thus, it is possible to train an RF model by gathering as low as
30 samples per class. We next investigate the impact of transfer
duration on the model performance. In original data collection
process, we ran each transfer for 20 seconds before capturing
the socket statistics to guarantee that transfers are converged.
However, Figure E] shows that 6 seconds is sufficient for
transfers to converge to a stable state, thus one can run each
sample transfer as short as 6 seconds before capturing its

statistics and terminating. Consequently, we claim that one can
gather “sufficient” amount of training data for each network
in 48 minutes (16 transfer/category x 30 samples/category x
6 seconds/transfer) to improve the performance of the ML
models beyond the capabilities of transfer learning. To validate
this claim, we re-evaluated the models using 30 samples from
each category and capturing socket statistics for 6¢h second.
The resulting models achieved almost similar performance
(95 — 97% F-score) in all networks compared to the original
models.

VI. CONCLUSION

There is an increasing trend to leverage ML models to detect
network anomalies as they can outperform the traditional
approaches such as heuristic and statistical methods, however,
existing solutions have two major limitations. First, they can
only determine the presence of anomalies without providing
any detail about underlying reason(s). Second, they cannot
be transferred to different network settings as the models
expect the test networks to have similar bandwidth and RTT
values as in training networks. This paper proposes a novel
feature transformation technique to eliminate the network
dependence of anomaly diagnosis models such that they can
be transferred to new networks. We believe that an ability to
transfer ML models will pave the way for the wide adoption
of ML models in production networks by removing the need
for the training data collection. Experimental results gathered
from both emulated and real-world networks indicate that the
proposed models achieve over 95% accuracy when they are
tested in network that they are trained for. Moreover, they yield
more than 80% accuracy when transferred to new network
settings. We further analyze the impact of the congestion
control algorithms on the performance of transfer learning
experiment and realize that BBR improves the accuracy of
the prediction models due to resulting in more distinguishable
outcomes for different anomaly types.
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