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Abstract—Internet of Things (IoT) technology has made smart
homes more prevalent in everyday lives. However, anomalies in
IoT data may be emblematic of potential cybersecurity risks like
false data injection attacks or physical security risks like house
fires. In this paper, we propose a segmentation based anomaly
detection method that converts unsupervised time-series data into
a supervised format, and then trains a Long-Short Term Memory
(LSTM) neural network to detect anomalies. The LSTM network
is trained to predict un-sound statistical properties, which gets
combined with sound statistical properties, to detect anomalies in
IoT sensor data. Data smoothing using Holt Winters Exponential
Smoothing is also performed, without loss of information, to
improve anomaly detector performance. Using Precision, Recall,
and F-Measure scores as metrics, results show efficient anomaly
detection performance on IoT temperature sensor data. We,
additionally, test performance by varying specific parameters.
Lastly, results also show that performing data smoothing, to a
certain extent, can improve anomaly detection performance over
data that didn’t undergo any smoothing.

Index Terms—Anomaly detection, Internet of Things, Machine
Learning, Robust Statistics

I. INTRODUCTION

With the increased adoption of Internet of Things technol-
ogy (IoT), smart homes have become common in our lives. It
is estimated that by 2025, there will be 481.9 million smart
homes globally [1]. Smart home technology has helped to
make everyday lives smarter, connected, efficient, with the
goal of increased security .

However, smart home technology also comes with security
risks. One risk is cybersecurity attacks which can compromise
user privacy and security. Examples of recent cyberattacks on
smart homes can be seen in [2], [3], [4]. A prominent cyber-
attack performed on IoT devices is the false data injection,
where criminals tend to strategically and maliciously modify
sensor data to corrupt the working functionality of the device.
These attacks tend to go unnoticed, which violate user security
and privacy [5]. Another security risk is the lack of adequate
environmental monitoring for abnormal sensor behavior. Ex-
amples include sudden high temperature and carbon monoxide
levels in the home, which can be indicative of house fires, or
the lights turning on, while the owner is out, which can be
suggestive of a burglary. Proper detection of these anomalous
behavior patterns can protect the smart home from harm.
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Anomaly detection is a continuing research area that is
being studied to provide protection against anomalous sensor
activity in IoT domains like smart cities [6], electric vehicles
[7], IoT network traffic analysis [8] etc. As most [oT de-
vices are commercial off-the-shelf, they lack adequate security
monitoring capabilities. Also, due to their inexpensiveness and
commercial allurement, security is not given much priority [9].
Therefore, 0T devices and smart homes need to be protected
from potentially damaging anomalous behavior.

Another noteworthy problem with IoT sensors is the sub-
jection to sensor noise, which can affect performance. Noise
may be introduced by the actual measurement of the sensor,
or even from random variables during data gathering. This can
degrade anomaly detection performance. Hence, it is critical
to come up with anomaly detection approaches that process
out noise without compromising performance.

In this paper, we propose an anomaly detection method
using a Long-Short Term Memory (LSTM) neural network. An
LSTM is employed as it is a standard architecture that is used
to conduct machine learning analysis for time-series data, due
to its capability of identifying patterns over long sequences.
We use an open source IoT sensor dataset, consisting of
unsupervised sensor data. Our approach first performs data
smoothing on this data to remove inherent noise from the
dataset. Following this, we create a supervised dataset from
the data, that is used to train the model, which is used for
anomaly detection. Our main contributions include:

e Performing data smoothing on our dataset to remove
Sensor noise.

o Converting unsupervised time-series data into a super-
vised format for LSTM training.

e Modeling normal sensor behavior using an LSTM net-
work, using robust statistical properties.

e Mathematically modeling anomalies to check model ef-
ficacy at anomaly detection.

The remainder of the paper is structured as follows: Sec-
tion II provides a history of the related research that has
been conducted in anomaly detection within the IoT domain.
The research scenario and our proposed anomaly detection
approach is shown in Section III. Our experimentation, results,
and analysis are provided in Section IV. Finally, conclusions
are drawn in Section V.



II. RELATED WORKS

Robust anomaly detection methods are continually being
proposed for improved performance in IoT. [9] attempted to
detect anomalies in a smart home, using a hidden Markov
model (HMM). The method gave promising results, however,
HMMs are prone to not detecting uncommon anomalies
efficiently [10]. Other researchers have employed statistical
approaches [11] [12]. In [11], researchers conducted network
traffic anomaly detection using Principal Component Analysis
(PCA), while in [12], network traffic anomaly detection was
performed using wavelet analysis. However, statistical ap-
proaches are limited as their selected thresholds are usually not
representative of real world threat scenarios. Also, statistical
approaches like PCA and wavelet analysis can’t be used on
time-series data.

Clustering algorithms also tend to be viable approaches
[13] [14]. In [13], the authors proposed CLAPP, which is
a self-constructing feature clustering approach for anomaly
detection, and they used this to conduct intrusion detection.
The work conducted in [14] proposed using a fuzzy clustering
based artificial neural network (ANN) for intrusion detection
in cloud computing environments. Clustering methods can
be used to detect anomalies in time-series data. However,
these approaches depend on the normal state of the system
to make accurate predictions. IoT sensor data, on the other
hand, may change their normal state over time, which may
lead to misclassifications. Also, this could lead to clustering
algorithms getting trapped at a local minima [10].

Another prominent technique for time-series anomaly de-
tection in IoT is deep learning [6], [15], [16]. In [6], the
authors proposed a convolutional neural network (CNN) based
anomaly detector, capable of detecting point, contextual, and
discord anomalies in time-series data. The limitation with this
approach is that CNNs can’t account for the historical value of
a time-series data point, which may be important for anomaly
detection and forecasting. The researchers in [15] proposed
an anomaly detection method by using an LSTM neural net-
work, where the model predicts anomalies depending on error
computation. The authors in [16] propose an supervised LSTM
anomaly detection method where they predict anomalies based
on statistics from the dataset. The limitation on both the above
approaches is that these methods are susceptible to noisy data.
Noise from sensors are a common additive feature to sensor
values, which make misclassfications a high probability.

In contrast to the previously studied techniques, our work
proposes a supervised LSTM, that uses dataset statistics, to
identify anomalies. This is significant as there are limited
studies conducted for supervised anomaly detection in time-
series data. The proposed method also performs data smooth-
ing prior to training, in order to minimize the impact of data
noise on anomaly detection performance, which hasn’t been
investigated.

III. SYSTEM MODEL AND METHODOLOGY

The dataset consists of time-series data from an indoor
environment [17]. The sensor being polled is a temperature

sensor from a single location. The sensor gets polled every 31
seconds. We are considering the temperature readings from
February 28th to March 21st, 2004. We use a time unit i
as a discrete value and a natural number, where i represents
a particular time slot. The temperature sensor readings are
represented by x. The temperature reading at a particular time
unit i is represented as xz;. The goal is to determine if these
temperature readings x; are anomalous or normal. The final
sensor reading time is denoted as E.

The proposed anomaly detection architecture is illustrated in
Fig. 1. The main steps of the proposed approach is highlighted
in the following subsections:

A. Data Smoothing

To ensure that our data is minimally affected by noise,
we perform Holt-Winters Exponential Smoothing [18]. This
method was chosen as it is an eminent method to perform
smoothing on data containing seasonality and trend, which
the target dataset carries. Data smoothing methods that don’t
take seasonality and trend into consideration are avoided
as they may reduce performance. There are three operating
parameters: the data smoothing factor denoted by «, where
0 < a < 1, the trend smoothing factor denoted by [, where
0 < B < 1, and the seasonal change smoothing factor denoted
by ~, where 0 < v < 1. The magnitudes of «, 3 and +, are
inversely proportional to the amount of smoothing performed.
These smoothing constants determine how quickly the weights
of the series decay for the current observation. Values closer
to 1 weigh recent observations heavily, while values closer
to 0 give weight to past observations [19]. « is the primary
variable for data smoothing, as it establishes the most influence
on the level of smoothing. @« = 1 means that the dataset
has not undergone any smoothing, while a = 0 indicates
maximal smoothing. The seasonal period of the time-series
data is symbolized by p. The smoothed data level L; at time
i is given by:

Li = a(wi—SZ-,p)—&—l—a(Li,l —‘rTi,l),Z. = {0, ]., E} (l)
The trend T; of the data at time i is illustrated with:
T,=08(Li— Li—1)+ (1= p)T;—1,i ={0,1,....E} (2)

The trend T; represents the slope of the data trend at time i
[19]. Correspondingly, the seasonal component S; of the data
at time i is provided by:

Si=v(x; — L))+ (1 —7)Si—,,i={0,1,....E} (3

The seasonal component S; symbolizes a weighted average
between the current seasonal index, and the seasonal index
of the same time during the last season [20]. Finally, the
forecasted time-series value x; for the data at time i can be
computed using:

fi=Li 1 +Ti1+Si_,i={0,1,...E} 4)

Using this technique, the time-series data becomes more
representative of the normal state of the sensor, with minimal
interference from noise.
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Fig. 1: Anomaly Detection Architecture

1) Finding optimal data smoothing factor: Data smoothing
should be performed optimally, so minimal information is lost
from the original data. Simultaneously, data smoothing should
also minimize the noise. This makes it important to select the
data smoothing factor « that ensures maximum performance,
while minimizing the information loss from smoothing. The
appropriate « can be selected by abiding to the inequality:

(&)

where M is the mean of the standard deviations of all the
non-smooth data segments. Dataset segmentation is explained
in the following subsection. M can be computed by:
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where x; represents the mean of the sensor values in that
segment. Correspondingly, M’ is the mean of the standard
deviations of all the smooth data segments smoothed by «,
and is computed by:
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where  represents the mean of the sensor values in that
segment. Finally, we introduce A which is the strength of
anomaly, where A > 0. The magnitude of A\ will further sway
the value of the anomalies from the expected sensor value,
meaning that a lower A\ value looks more like normal sensor
data, and is more difficult to detect, than a higher A\ value.
Optimal « is selected when the value of )\ is minimized in 5.

B. Segmentation

Post data smoothing comes the data segmentation module.
In this module, we split the smoothed data into segments of
size K. The goal behind segmentation is to effectively identify
anomalies in a localized context. Each segment is represented
as Seg;, where Seg; = {x;,x;11,.....2x—1} and i represents
the starting time slot for that segment. We also assume the
total number of segments to be N. Every segment gets sorted
in ascending order of their values. Then, the middle 50% of
the segment is extracted. We assume that the middle 50%
contains no anomalies, as they are representative of normal
sensor data. The other 25% on either side may or may not
contain any anomalies. We represent the middle 50% values
of all segments as Seg; m.

C. Statistics Computation

For every single segment Seg;, we must also compute
statistics for that particular segment. In our case, we compute
the M-estimator for every Seg;. M-estimator tends to be robust
when there are anomalies in a dataset, as they use median
in their construction. Median, in comparison to mean, is not
easily swayed by anomalies. This makes them a better fit for
anomaly detection. The M-estimator for a particular segment
can be computed using:

K-1
Zn(%):&j:{o,l, ..... N} (®)
i=0 !

where o (Seg;) represents a function on Seg; which provides
the initial estimate that may be mean or median. The variable
{45, the solution of the equation, represents the M-estimator
of the segment Seg;. Lastly, n represents a real value Huber
function which is denoted by:

b
m) €))

where b is a constant value. The computed statistics are
essential for anomaly detection further down in this process.

n(z) = z.min(1,

D. Deviation computation

We aim to convert our unsupervised dataset into a super-
vised one for training. After we compute the statistics, we
separate the segments into training and testing segments. The
goal is to compute the acceptable deviations d; of each training
segment from the yi; of that segment. The formula to compute
deviations for the training segments is given by:

dj = maz((|p; — min(Segi)|), (ln; — mazx(Segi)|)),

i=1{0,1,....E},j ={0,1,..N} (10)

However, we don’t compute the deviations for the testing
segments. The reason is because the testing segments are
the ones that will contain anomalies, which may negatively
influence direct deviation computation. Hence, we plan to
predict the deviations for each testing segment, from the
middle 50% of the segments.

E. LSTM Network

We are using an LSTM network for training. This network
will be used to predict the deviations for the testing segments.
The inputs to the network are Seg; ,,,, and the corresponding
labels are d;. Fig. 2 illustrates the proposed LSTM.
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Fig. 2: LSTM Network

F. Anomaly Detector

The anomaly detector is responsible for detecting anoma-
lies in the testing segments. An essential component of the
anomaly detection approach is the e, where € > 0. Another
important component of the anomaly detection approach is
the training segment threshold T. These parameters allow
additional control over the anomaly detector to ensure proper
anomaly identification. 7 is computed only on the training
segments, by the following equation:

IS IRVES ST E
B N

T (11

where % represents the mean of the sensor values in that
training segment. Once the deviations of the testing data
are predicted, we combine the deviations and the previously
obtained statistical properties to check if a sensor value is an
anomaly or normal. The anomaly test is presented as:

1 lf(iﬁl > Hj —+ Ede),
if(i’i < pj — Ede),
0 otherwise,

=41 (12)

The above equation is computed to test if a sensor value Z;,
in the testing segment, is equal to 1 (anomaly) or O (normal).

IV. SIMULATION AND RESULTS

Our approach was implemented in python, using the tensor-
flow library. The dataset used was the Intel Berkeley Research
Lab Dataset [17], specifically the temperature sensor data
from the first sensor node. Once the network was trained, we
embedded anomalies in the testing data. Then, we performed
experiments to measure the efficiency of our approach.

TABLE I: Performance against positive anomalies

A P R F

0 5.93% 39.13% 10.30%
2 15.67% | 7541% | 25.95%
4 1 21.64% | 99.59% | 35.55%
6 | 7839% | 99.59% | 87.73%
8 | 97.60% | 100.00% | 98.79%
10 | 97.60% | 100.00% | 98.79%
12 | 97.60% | 100.00% | 98.79%
14 | 97.60% | 100.00% | 98.79%
16 | 97.60% | 100.00% | 98.79%
18 | 98.39% | 100.00% | 99.19%

TABLE II: Performance against negative anomalies

A P R F

0 6.71% 45.90% 11.71%
2 11.44% | 82.38% | 20.09%
4 13.65% | 99.59% | 24.01%
6 13.65% | 99.59% | 24.01%
8 1430% | 99.59% | 25.01%
10 | 17.08% | 99.59% | 29.15%
12 | 24.16% | 99.59% | 38.88%
14 | 34.86% | 100.00% | 51.69%
16 | 45.61% | 100.00% | 62.64%
18 | 56.22% | 100.00% | 71.98%

A. Anomaly Generation

To embed anomalies in the testing data, we manipulated
measured sensor values. This manipulation can symbolize a
false data injection or even a physical scenario like a house
fire. Our manipulation included both positively and nega-
tively scaled anomalies, which are referred to as positive and
negative anomalies, respectively, from here on. The positive
anomalies have values more than the expected sensor value.
Correspondingly, the negative anomalies have values less than
the expected sensor value. Positive anomalies are therefore
embedded using:

Ti=2; + T (13)
while negative anomalies are denoted by:
Ti=2; — AT (14)

The positive and negative anomalies are added to the upper
and lower 25% of the segments respectively.

B. Experimentation

In our experiments, we set up the following initial values:
K =16, =0.3,8 = 0.05,7 = 0.05,\ = 6, = 5. As our
dataset hasn’t undergone any fundamental change in values,
and consist of mostly steady data with random noisy fluctua-
tions, the value of «, 3, and ~ should be on the lower end of
the spectrum [19]. The values of A and € are not strict and must
be chosen according to the statistics of the dataset being used:
standard deviation, maximum and minimum values, and range.
For performance metric computation, we are using Precision
P, Recall R, and F-Measure F.

We experiment with our approach to see how effectively
it can detect positive and negative anomalies. Table I shows
performance against positive anomalies with varying A =
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Fig. 3: P, R, F against varying €

{0,2,4...18}. We see that the values of P, R, and F increase
as A increases. This is expected as larger anomalies are more
evident and easier to detect in context of a segment. Table
IT provides the performance against negative anomalies with
varying A. From this table, it also shows that P, R, and F
scores increase as the value of A increase. The approach,
comparatively, slightly under-performs in detecting negative
anomalies, as the dataset is solely filled with positive values
and the value of T is low, compared to the range of the dataset.
Hence, it takes a higher magnitude of A to show effective
performance in detecting negative anomalies.

Subsequently, we showcase the performance of the approach
by varying the parameter e = {0, 1,....16}. Fig. 3 illustrates
the performance of the anomaly detection method as the value
of € is varied. We can see changes in the performance metrics
when the parameter e is gradually increased. An inverse
correlation is noted between the observed P and R. The value
of R is higher at low values of ¢, while the value of P is higher
at high values of e. We also note that the rate of increase in
P and the rate of decrease in R appears to be approximately
the same. The best balance between P and R is observed at
€ = 6, where the F = 0.9.

Next we analyze the effect of data smoothing on the
performance of the anomaly detection approach, by varying
a = {1,0.6,0.2}. Fig. 4 illustrates the P, R, and F values,
when the data has undergone no smoothing (o = 1), moderate
smoothing (o = 0.6), and intense smoothing (o = 0.2). We
see that R values are nearly similar across all cases. However,
both the P and F scores are lowest when there is no data
smoothing performed. In comparison, P and F scores are
higher in the scenario where the data has undergone intense
smoothing. The highest P and F scores are recorded when the
dataset has passed through moderate smoothing. From this we
can see that data smoothing, to a moderate extent, increases
anomaly detection efficiency. Intense smoothing or higher can
lead to a decrease in performance.

Finally, we analyze the impact of the data-smoothing factor
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Fig. 5: Effect of data smoothing factor o on anomaly strength A\ under
varied P, R, F conditions

« to the detectability of the anomaly strength \. This is studied
by varying the value of o = {1.0,0.8,0.6,0.4,0.2,0.01}. We
assume that the detection approach, trained on a dataset that
has been smoothed with «, can efficiently detect anomalies
of a certain strength A, if it achieves a certain baseline
performance for P, R, and F. We examine four scenarios:

1) P>0.6,R>0.6, F>0.6.
2) P>0.7, R>0.7, F>0.7.
3) P>0.9,R>0.9, F>0.9.
4) P>0.95 R >0.95 F > 0.95.

the Fig. 5 shows the impact of a and the kind of anomaly
strength \ it can efficiently detect, as we increase the expec-
tation for the baseline performance of P, R, and F. From the
figure, we observe that the anomaly detector exhibits similar
behavior across all four scenarios. Values of \ increase, for
every «, as we go from scenario 1 to 4. This is to be expected,
as we are increasing the expectation of baseline performance
for P, R, and F. In scenarios 1,2,3, and 4, we notice that when



there is no data smoothing performed (o = 1), the anomaly
detector can effectively detect higher A anomalies of 8,89,
and 10, respectively.

The performance of the anomaly detector improves between
0.8 < a < 04, in all four situations. The best anomaly
detection performance in scenario 1 and 3 was o = 0.6
as it yielded the least A values of 4 and 5, respectively. In
scenario 2 and 4, the best performance was observed when
0.8 < a <04 as it efficiently detected anomalies of A value
5 and 6, respectively. However as data smoothing continued
to increase, we noticed that the performance of the anomaly
detector decreased across all scenarios. In scenarios 1,2,3, and
4, a dataset smoothed with a@ = 0.2 yields A values of 6,6,7,
and 7, respectively. Correspondingly, a = 0.01 effectively
detected anomalies of A values of 5,6,6, and 6, respectively.

Therefore, we can demonstrate that non smoothed data will
only help the anomaly detector effectively detect anomalies
of higher A, but do not perform optimally when there are
harder to detect anomalies. We observe that data smoothing
helps increase anomaly detection efficiency, specifically with
harder to detect anomalies. This efficiency is best when the
data is smoothed with 0.8 < « < 0.4. In certain scenarios,
this efficiency is shown to be maximum when o = 0.6.
However, excessive data smoothing (o < 0.4) is detrimental to
performance as it eliminates many essential data points, which
lead to incorrect forecasting. Also, the presence of anomalies
in the dataset disrupt performance on excessively smoothed
data. The results and analysis presented are not a generalized
solution, and the location of optimal data smoothing might
change depending on the dataset being used. Optimal « should
be computed using 5.

V. CONCLUSION

In this paper, we proposed an anomaly detection approach
that was applied to IoT time-series data. This technique
converted unsupervised data to a supervised format, for train-
ing. Our approach included a segmentation based method
to effectively detect anomalies in a localized context. Data
smoothing was also performed to increase anomaly detection
efficacy. We measured performance from various perspectives:
regulating parameters, anomaly strengths, while using P, R,
and F. Results showed that the proposed approach performed
better as anomaly strength A increased for both positive and
negative anomalies. It also showed that P and R inversely
correlated to one another as ¢ increased, and € = 6.0 yielded
the best F score. Results also highlighted that the best P, R,
and F scores were achieved by data that had been moderately
smoothed (0.8 < o < 0.4), compared to intensely smoothed
or non-smoothed data. This provided better anomaly detection
performance, specifically on harder to detect anomalies, over
a dataset that had undergone excessive smoothing or none at
all.
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