
Casting a Wide Net: An Internet of Things Testbed
for Cybersecurity Education and Research

Jay Thom, Tapadhir Das, Bibek Shrestha, Shamik Sengupta, Engin Arslan
Department of Computer Science and Engineering, University of Nevada, Reno, USA

1664 N. Virginia street m/s 0171 Reno, NV 89557 775-784-6905
Email: jthom@unr.edu, tapadhird@nevada.unr.edu, bibek.shrestha@nevada.unr.edu,

ssengupta@unr.edu, earslan@unr.edu

Abstract—The last few years have seen an explosive growth
in the Internet of Things (IoT) as billions of new low-powered
devices are connected to the network in every sector, from
household items to sensors, healthcare devices, and industrial
controls. Devices often rely on vertical architectures, with each
type of device requiring a separate platform for control, data
sharing, and storage. New horizontal architectures are needed
to allow sharing of resources between devices to optimize hard-
ware efficiency. In addition, new networking paradigms such as
Software Defined Networking (SDN) are required to efficiently
manage increased delay-sensitive network demand. This broad
range of new technologies and skills make entry difficult for
students and new researchers, and innovative practical testbeds
for IoT systems and SDN will be required for training and
research. We propose an IoT testbed with multiple networking
layers and heterogeneous devices to simultaneously support
networking research, anomaly detection, and security principles
applied specifically to IoT for education and research, providing
a complex yet practical hands-on environment made entirely
of open-source tools and Commercial Off-The-Shelf (COTS)
materials that can be replicated for use by others seeking to
build such a system.

Index Terms—Iot, IIot, Iot Testbeds, Software Defined Net-
works, IoT Security, Cybersecurity.

I. INTRODUCTION

Around the turn of the 21st century, the idea of an Internet of
Things (IoT) began to emerge as a concept; a vision of billions
of devices such as low-powered sensors, cameras, watches,
household devices, cars and even airplanes all connected
simultaneously to the Internet and able to communicate and
share data with one another. Since that early vision IoT has
continued to expand and is considered, by some, to be the
next industrial revolution. Today IoT devices are everywhere,
effectively surrounding us in every aspect of our lives. It has
become apparent that this trend is here to stay, with reports
indicating that there are as many as 22 billion IoT devices
operating worldwide, and we can expect as many as 38.6
billion by the end of 2025 and over 50 billion by 2030 [1].
As pervasive as this technology has become, it is still under
development and is changing the way we view many aspects
of technology, including networking and communications, data
processing and sharing, and power consumption.

One of the areas IoT is finding wide acceptance is in
household devices. The concept of a smart home has become
commonplace, seamlessly integrating multiple household sys-
tems. Features such as temperature controls, security, access

controls, lighting, entertainment, and appliances are network
connected and can be remotely managed. These heterogeneous
systems are linked to their respective control centers using
wireless technologies, but still utilize a largely disjoint ar-
chitecture. This means each set of systems utilize their own
connections to control and data storage servers rather than
working together. Future growth will require more horizontal
coordination, with systems sharing control plane resources to
improve resource efficiency and facilitate data sharing.

Other areas of growth include the Industrial Internet of
Things (IIoT) as manufacturing, healthcare, and military ap-
plications are becoming more distributed. In addition, the
concept of Smart Cities has gained traction, with increased
coordination in public safety systems, transportation, and
traffic controls in an effort to accommodate a growing pop-
ulation. A smart power grid has also been largely imple-
mented, synchronizing power production and utilization for
more effective delivery. The growth of these technologies
raise many questions about IoT devices, their implementation,
networking, data storage, control, and system security. In
addition, rapidly evolving multi-faceted technologies make it
difficult for students and new researchers to gain necessary
experience and engage in research and development.

Many of today’s IoT systems rely on specialized platforms
and application domains, and could greatly benefit from a
more integrated architecture. To address these concerns, IoT
testbeds must be built to allow hands-on experience and
the development of expertise in fields such as programming,
networking, circuits, and micro-controllers [5]. Although there
exists IoT testbeds to address some of these requirements,
they are often very expensive to build and aim to address a
subset of desired functionalities, demanding low-cost environ-
ments that provide multi-use capabilities combining research,
development, testing, and education in a single system are
still needed. This work aims to address this critical gap by
developing a low-cost, flexible, and realistic IoT testbed that
will significantly lower the learning curve for students and new
researchers to participate in IoT research.

II. RELATED WORK

A number of testbeds have been offered recently to facilitate
IoT research and development. They are presented here by
category:



A. Home IoT Testbeds

In [2], Yamin et. al. introduce build it, break it, fix it phi-
losophy, where students are expected to design and construct
an automated home IoT environment with an emphasis on
secure design principles. An exercise is held during a two-
day boot camp where students are separated into two groups,
each constructing its own secure environment. The groups
are tasked with attacking the opposing teams’ environment
to identify security weaknesses. Several constraints for the
proposed environment are given, such as mandatory door
locks, a simple user interface, cloud data storage, security
alerts, etc. Pre- and post-event surveys are given to reinforce
the principles learned. This type of approach is beneficial in
that students play dual roles of maker and breaker, which is
not normally provided by cybersecurity exercises.

Another approach to teaching home IoT systems is pre-
sented in [3], where a smart home environment consisting
of a security system, air conditioning system, entertainment
system, lighting system, and smart appliances is provided. The
environment is constructed using a miniature doll house fitted
with devices and sensors connected through a home controller
which in turn communicates with a central management sys-
tem via web sockets. The smart home server communicates
in the same way with other clients such as a smart phone, a
smart home assistant, etc. simulating a realistic environment
for students to interact with.

The development of a multi-dimensional IoT testbed and
associated challenges are described in [4]. The construction
of a realistic and controlled environment is detailed, which
supports multiple communication protocols, data processing,
gateway operations, cloud integration, node deployment, and
security concerns. This platform allows for interactive teaching
of IoT concepts and practice-based education using Commer-
cial Off-The-Shelf (COTS) components.

A free and remotely-accessible platform AssIUT is de-
scribed in [5]. Unlike other testbeds that involve hundreds to
thousands of IoT devices and servers to conduct advanced re-
search experiments, AssIUT is built to accommodate students
and novice researchers. A system of layers is defined, sepa-
rating IoT concepts into groups for more effective learning.
Layers are defined as Things layer (Layer 0) which contains
IoT devices to be connected; Sensor layer (Layer 1) which
involves sensors, actuators, etc.; Nodes layer (Layer 2) that
includes processing nodes; Communication layer(Layer 3) that
contains communication modules; and Cloud layer(Layer 4)
that encapsulates large cloud platforms. Users can remotely
log into a control portal and write/compile their own software
solutions and upload binaries to an Arduino micro controller
on reserved IoT nodes in a Software Defined network. A guide
including experimental examples is included to facilitate the
process. The AssIUT framework depends on custom hardware
devices connected via wireless services (WiFi, LoRa, Zigbee,
and 3G/4G Cellular networks) to form a software defined
network, which is in turn dependent on cloud services. While
very useful, it does not incorporate physical (wired) or virtual

Ethernet networks, and lacks the tangible element provided by
the testbed proposed in this paper. In addition, our testbed also
emphasizes IoT and network security, a feature not present in
AssIUT.

B. Security-Specific Testbeds

The design and implementation of an automated IoT se-
curity testbed is developed in [6]. The system automatically
tests devices for vulnerabilities based on device type. Two
basic device-types are described; those that host a website
for interaction as in a web camera, and those that advertise
their state to a remote server and receive instructions back to
make changes, as in a smart light bulb. This categorization
is then used to implement an automated device testing and
vulnerability detection framework by analyzing communica-
tion patterns of devices. The system exposes devices to the
Internet, and automatically disable network access when an
anomalous communication behavior is detected.

ISAAC [7] is a realistic cyber-physical testbed system
designed to facilitate learning and research specifically for
IIoT. Recognizing that both complexity and real time interac-
tions in many cyber-physical systems cannot be reflected by
simulations alone, ISAAC provides a controlled environment
for testing device resiliency to attack. The system is adaptive
and re-configurable, and provides both evaluation as well as
teaching opportunities.

Some of the problems associated with the heterogeneous
nature of IoT are addressed in [8]. The authors develop a
security testbed framework capable of evaluating devices of
different types by incorporating machine learning techniques
to perform standard and advanced security testings, effectively
detecting compromised IoT devices.

C. Software Defined Networking (SDN) Testbeds

Software Defined Networking (SDN) is an important tech-
nology for IoT ecosystem in that it enables the manage-
ment of network nodes through programming rather than
through traditional methods involving node autonomy and
system administration. This potentially provides for greater
bandwidth flexibility and management of large IoT systems.
Several methods have been explored to integrate SDN for IoT
communication. In [9], authors propose SDN as a solution
to consolidate disjoint IoT platforms wherein multiple service
providers can use the same platform to supply services and
share information. This allows for more rapid development
of technology and optimizes utilization of resources. Their
basic motivation for developing this IoT architecture is to
promote the reuse of various resources and to allow the rapid
introduction and deployment of new IoT services and applica-
tions. Their design principles emphasize layered architecture,
openness and programmability, data provisioning and sharing
at different levels, and interoperability.

Guo et. al. explain in [10] how SDN introduces a vehicle
for raising the level of abstraction for network configuration,
enabling the network control plane logic to be decoupled



from the network forwarding hardware thus moving the con-
trol logic and state to a programmable software component;
the controller. However, as networks become large, a single
controller becomes a bottleneck as it is unable to manage all
network elements. They propose a system in which controllers
are layered vertically, with a master controller managing lower
level controllers, and allowing a SDN network to become
large, opening the door for better services to IoT devices.

D. Education-Oriented Testbeds

Numerous IoT testbeds focus specifically on education. [11]
is an extension of aforementioned AssIUT testbed focusing
on providing a platform to conduct student competitions. The
competitions consist of registration, tutorial, missions tackling,
evaluation, and scoring phases. After the announcement of the
competitions, a duration of two weeks is given to teams to
register in an online form. Tutorial sessions were conducted
remotely in the form of video-conference online meetings
to help the teams know more about testbed architecture and
usage. The tutorial sessions included presentations, program
demos, and question sessions from the teams.

Guo et. al. developed an IIoT testbed to allow students
and researchers gain experience in security and smart man-
ufacturing related topics with a focus on securing networked
industrial systems and collecting, analyzing, and visualizing
the machinery data [12]. Its stated purpose is research and
education, forcing an emphasis on flexibility and ease of use.
The platform is designed to be friendly toward the study of
IIoT devices and security, and is made up of low-cost off-the-
shelf components. However, while it addresses fog computing,
it does not provide access to a programmable SDN controller.

As IIoT deals specifically with industrial control systems,
security is crucial for safe operation of these infrastructures.
Since there is a global shortage of qualified personnel with
relevant skills, Celeda et. al. presented KYPO4INDUSTRY,
a testbed that is customized specifically for training and
education in IIoT systems for beginning and intermediate level
computer science students to learn cybersecurity in a simulated
industrial environment [13]. The system is constructed using
open sources software and re-configurable modules to facilitate
hands-on projects in a flipped classroom format.

LICSTER [16] is also a testbed built specifically for training
in industrial control systems. Sauer et. al. describe three
approaches to building effective IIoT testbeds; virtualized,
real-world, and hybrid. Likewise, there are different tasks for
which a testbed can be used. For instance, for security scenar-
ios and attacks on Industrial Control Systems (ICS), a real-
world testbed which utilizes physical processes is preferred,
as it helps students to more fully understand the impact of
different attack vectors on a production environment. This
type of environment can be very expensive to build as it
requires proprietary devices. LICSTER addresses this problem
by providing a low-cost simulated environment using open
source software and commercial off-the-shelf equipment.

E. Other Testbeds

Other frameworks developed for IoT testbeds include Open-
TestBed [14], an open source and open hardware testbed that
can be reproduced by anyone wishing to develop their own
testbed environment. The authors attempt to share enough
detail to allow interested parties to replicate their work, which
includes commercially available state-of-the-art devices, and
can emulate an environment which is representative of the
users specific use case. The system is capable of loading
arbitrary binary images on any device, and can send and
receive serial bytes between them.

Finally, Raglin et. al. present a conceptual framework they
call Smart CCR IoT, an IoT testbed [15]. Their goal is to
design a scalable testbed consisting of IoT-based technologies,
infrastructure, processes, data gathering, and location-specific
information that can emulate a real-time understanding of a
physical environment. The testbed is based on Arizona State
University’s Blue Light Pole system, a network of 700 public
safety devices spread across the Tempe, Phoenix Downtown,
West, and Polytechnic Campuses. The poles provide an emu-
lated IoT network spanning campus, city, and regional scales
capable of disseminating data from sensors, cameras, and other
smart devices. It provides an environment for experimentation
in optimal networking, computing, and storage technologies,
along with techniques for edge computing, software defined
networks, publish/subscribe data models, and emerging wire-
less technologies.

III. CONTRIBUTIONS

While IoT technologies are on the rise, there is still a wide
gap between state-of-the-art technologies and research/training
environments accessible for many universities. Network test-
beds can be expensive to build, limited in their flexibility,
and difficult to set up. In addition, many of the proposed
test-beds in the literature address limited areas of focus; for
instance, device testing, network research, or education and
training. In addition, none of the previous works address
IoT, virtual and physical networking, SDN, and security in
a single, inexpensive format that can be used for research,
testing, and education simultaneously. It is our aim to provide a
complex and multi-level network test-bed environment for IoT
wherein students and researchers can interact with both virtual
and physical devices in a realistic and easily re-configurable
setting. On one hand, network and traffic optimization can
be performed on a hybrid virtual/physical software defined
network, while concurrently generating and collecting traffic
for research in anomaly detection utilizing machine learning
techniques. The system incorporates both physical and virtual
IoT and IIoT devices to provide real-world data, and also hosts
a number of honeypot devices. This provides the ability to
conduct both research on the development of honeypot stealth
techniques, and also allows for attack and defense training.
Students are able to interact with and probe the system through
access to dedicated gateway devices located throughout the
network. The network provides interaction with both physical
and virtual devices; some actual targets and some honeypots.



Fig. 1: Hybrid physical/virtual network topology

Students are able to practice security techniques (i.e. scanning,
fingerprinting, etc.) across the network, while research on
aspects such as honeypot design, IoT communications, and
development of SDN networks (i.e. controller design and
traffic routing) can be conducted simultaneously.

IV. SYSTEM MODEL

To emulate a realistic IoT environment that can simulta-
neously address research and development, education, and
security, a complex environment incorporating multiple net-
work elements is developed. The network contains multiple
levels, is re-configurable, and addresses Ethernet, wireless,
and software-defined networking architectures. The testbed
utilizes both physical and virtual devices on various plat-
forms, and includes a number of open-source tools such
as OpenvSwitch, KVM/QEMU, Virt-Manager, Linux Bridge-
utils, and several versions of the Linux operating system such
as Debian, Ubuntu, CentOS, and Rasbian. A virtual pfSense
router is incorporated as a network gateway and firewall, and
an OpenDayLight SDN controller using OpenFlow10 manages

Fig. 2: Topology of the virtual Software Defined Network.

the software defined network. A Smart City model utilizing a
Direct Logic programmable logic controller (PLC) is attached
the network, allowing students and researchers to interact with
mechanical elements via the modbus protocol.

A 24-port managed switch connects the test-bed to a wide
area network, which is in turn connected to a server with
5 external Ethernet ports. This host machine supports the
virtual router, and utilizes a 4-port Ethernet card with the
additional ports passed directly to the router; one for the
WAN and three sub nets. In addition, a fourth sub net is
connected to a virtual bridge in the host. Within the firewall a
gateway device is located in each sub net, allowing for internal
network access by students to probe the network and gain
experience with foot-printing techniques. This also provides
students an opportunity to monitor traffic via honeypots, which
are distributed throughout the network.

The three physical ports are connected to external network
elements through managed switches and wireless routers,
while the internal bridge is connected to numerous virtual
machines. The internal bridge supports the virtual SDN. A
diagram of the SDN can be seen in Fig. 2. The physical
network connects several Raspberry Pi hosts with various
operating systems which emulate desktop computers, IoT
devices, and honeypots. In addition, a Smart City model with
a Programmable Logic Controller (PLC) is connected on its
own sub-net, see Fig. 3. A diagram of the network topology
can be seen in Fig. 1.

A. Smart City Controller

To emulate realistic industrial controls, the Smart City
component of the test-bed relies on a Direct Logic PLC which
communicates over the network using the modbus protocol.
The PLC is made up of four modules; networking, digital
input, digital output, and an analog I/O module. To offer
a visual/tangible aspect the PLC controls an electric train,
crossing guards, street lighting, realistic traffic signals, and
a simulated nuclear power plant. The power plant has a heat-



ing unit and temperature set-points managed by a command
and control server, and utilizes a cooling fan and smoke
generator. All functions are accessible through the network,
giving students an opportunity to view functionality remotely,
and to test their skills at both hacking and defending the
infrastructure by sending modbus commands directly to the
smart city and altering its behavior. A graphic user interface
and programming tools are hosted on the command and control
server. The sub net hosting the Smart City also contains
decoy honeypots (Conpot) emulating similar protocols for
both masking the city, and for collecting attack data from the
network.

B. Honeypot Devices

One of the goals of the IoT network is to facilitate research
and education in cybersecurity. For this reason numerous
honeypots of varying types are run in the network to act as
decoy devices, and to collect data on attacker activity. Students
are given access to both the honeypots and the gateway device
in the network, and can develop their skills both at scanning
and attempting to gain access to devices, as well as learning to
monitor the activities of potential attackers. Devices are hosted
both virtually on physical and virtual devices in the network,
and also as stand-alone devices hosted on Raspberry Pis.
Cowrie, Conpot, Dionaea, and custom honeypots are operated
to gather SSH attempts, FTP logins, traffic tunneling attempts,
attacker behavior, etc. The goal is to teach students both red-
team and blue-team skills and to expose them to various
security technologies, as well as to conduct active research on
honeypot fingerprinting, device masking, and attack analysis.

C. Software Defined Networks

Traditional networks are typically composed of autonomous
fixed-function network devices. These devices have hard-
wired functionality that doesn’t provide enough flexibility for
satisfying the requirements of modern networks [19]. These
conventional networks have both control and data plane built
into the same device. Software Defined Networking (SDN) on
the other hand takes a different approach wherein the control
and the data planes are decoupled. Networking devices such
as switches and routers implement the data plane which is
controlled by the centralized control plane software typically
known as a controller. Hence, the software based control plane
makes decisions on how the network packets are forwarded
and the networking devices execute the policy set by the con-
trol plane [20]. This approach improves network management,
scalability, programmability, agility, and overall performance
of modern SDN networks.

With flexibility provided by a SDN, the collection of
network information is greatly simplified. Having a central
view of the network helps better understand network status
and activities. This information can be used to improve the
algorithms designed to detect attacks [21]. With agility and
fine-grained control provided by the SDN, responding to de-
tected attacks becomes a simpler task. For example, if a botnet
command-and-control (C&C) communication is discovered by

Fig. 3: Smart City Network

the detection algorithm, the control plane can install policies
in the data plane that can drop packets related to that specific
C&C, effectively terminating the existing communication and
eliminating the threat. Hence, SDN can provide an active
security layer in the network that was not easily realizable
in the traditional networking paradigms.

IoT devices are much more vulnerable than traditional com-
pute devices. The Mirai botnet, which was responsible for the
largest distributed denial of service (DDoS) attack recorded,
was able to amass a large number of IoT devices such as IP
cameras, routers, printers, DVRs etc. [22]. This demonstrates
the presence of critical vulnerabilities in IoT devices which can
be exploited. SDN can be utilized to leverage a global view
of the network to understand the behavior of IoT devices and
and to leverage this to employ attack detection and prevention
mechanisms at the network level. Our proposed IoT test-
bed caters to the goal of understanding the behavior of IoT
devices and build better solutions to actively detect and prevent
security attacks using SDN. Fig. 2 shows the SDN network
currently running in our test-bed which can be customized
according to the simulation requirements.

D. Traffic Analysis and Network Probing

The test-bed provides multiple points where traffic mon-
itoring and data collection can be performed. The use of a
virtual environment provides for a simplified means to probe
the traffic directly in the device or host as required. A device
(either virtual or Raspberry Pi-hosted) is located within each
network segment to act as a gateway device which students
can be given access to. In this way, they are able to gain
a foothold within the network firewall to act as a starting
point for network foot-printing. Using scanning tools such as
nmap or Zmap, students can probe the test-bed to discover
network topology, device types, etc. and to attempt brute-
force attacks or vulnerability exploits on the various elements.
Simultaneously, honeypot devices are able to record some
of this activity, and analysis can be performed on honeypot



logs to learn attacker behavior and to provide research and
development opportunities on honeypot technologies. Skills
and understanding can be gained for both improved device
stealth, as well as skills in device fingerprinting. To test the
setup, university cyber-club students can be given access to
the network from both an offensive and defensive perspective
for exercises in attack and network defense.

V. SIMULATIONS

In the following section simulations are performed on
the test-bed environment to demonstrate functionality and
proof-of-concept. The test-bed is designed to support multiple
experiments simultaneously by students and researchers for
network analysis, security analysis, and education/training.
The following is a detail of such activity.

A. Traffic and Flow Analysis

To showcase the functionality of the developed IoT test-bed,
IoT traffic and flow information within the software defined
network is captured. There are two case scenarios that are
analyzed to highlight the operability of the proposed network:

• When network operations are uninterrupted
• When network operations are interrupted
Interruptions can refer to any network traffic that may

influence normally accepted operations. This can include mul-
tiple traffics flows through the same network device, causing
additional congestion and increased resource sharing. Another
instance of interruption can be device failure, malfunction,
or tampering which can cause variability in network traffic
statistics. For our simulations, a focus is placed on the network
traffic between Host-B and Host-D.

To generate network statistics related to uninterrupted flow,
network flow information is captured from Host-B to Host-
D. During this time there is no other traffic flow occurring
between any other hosts in the entirety of the network. Fig.
4 illustrates the observed uninterrupted network bandwidth,
transferred bytes, packet re-tries, and TCP congestion from
Host-B to Host-D during a predetermined time interval. It
can seen that during uninterrupted network operations, the
bandwidth from host-B to host-D remains between 310 - 361
megabits per second. We also observe that the TCP congestion
remains consistent with packet loss in the transmission, as TCP
congestion window drops whenever there are packet losses.

Along the same lines, network statistics are generated for
interrupted flows. To create the interruption, simultaneously
transfers are performed between host-A and host-C, while
host-B and host-D were also running. Fig. 5 shows the
observed interrupted network bandwidth, transferred bytes,
packet re-tries, and TCP congestion from host-B to host-
D during a certain time interval. It can seen that during
interrupted network operations, the bandwidth from host-B to
host-D is reduced to between 128 - 231 megabits per second,
less than half of uninterrupted network statistics. It can also
be observed that TCP congestion remains consistent with the
packet loss in the transmission, as TCP congestion window
drops whenever there are packet losses.

Fig. 4: Bandwidth Captured from Host B to Host D during
uninterrupted operation

Fig. 5: Bandwidth Captured from Host B to Host D during
interrupted operation

Two metrics are gathered to measure the network flow
performance between the interrupted and uninterrupted flows:
throughput and round trip time. To capture the throughput,
network traffic is captured and analyzed under the two case
scenarios. The results are shown in Fig. 6. It can be seen
that introducing the additional flow reduced the throughput
below 50% of that of the uninterrupted flow. In fact, the mean
throughput measured for the uninterrupted flow was 306.13
Mb/s, while that of the interrupted flow was 122.46 Mb/s.

Another metric that was gathered was the round trip time
for the network packets under interrupted and uninterrupted
flows. Both simulations were run for a period of 50 seconds.
This interval was chosen as it provided an adequate time
for generalization of the network activity under both circum-
stances. The data gathered is illustrated in Fig.7. From this,
we noted that there were ≈52,000 network packets transferred
during the uninterrupted case, while the packets dropped to
≈23,000 during the interrupted case. This demonstrates that
the uninterrupted flow was able to transmit more network
packets than the interrupted flow. This is because of the
reduced throughput and congestion on the network. Also, it
is noted that the magnitude of the round trip times are lower
in the uninterrupted circumstance than that of the interrupted.



This can also be attributed to the congestion on the network.
In fact, the mean round trip time on the uninterrupted flow
was measured to be 0.079 ms while that of the interrupted
measured 0.127 ms.

B. Network Foot-printing and Honeypot Detection

By granting a user (student) access to a gateway machine in-
side of the test-bed firewall, it is possible to practice techniques
for discovering network topology and makeup with the help of
scanning tools such as nmap or Zmap and potentially discover
vulnerable hosts or services on specific ports. In this case the
objective is to identify honeypots that have been placed on
the network, namely Cowrie honeypots that will be running
SSH and FTP on ports 22 and 23. By running the Zmap
command: zmap –interface=ens3 -p 22 10.0.4.0/24 –output-
file=targets.txt or the nmap command: nmap -p- 10.0.4.0/24 a
list of hosts can be assembled for further analysis. Honeypots
can be fingerprinted in a number of ways by identifying key
attributes, in particular those associated with default settings
included with the Cowrie installation. One such feature is
the key exchange algorithms presented by a host during the
SSH handshake. By using the -v flag (for verbose, or debug
a listing of available algorithms is given to allow hosts to
agree on a suitable algorithm. The default algorithms available
in Cowrie by default under the kex-input-ext-info: server-
sig-algs tag are rsa-sha2-256 and rsa-sha2-512. For a non-
honeypot SSH installation this list is typically (although not
necessarily always) longer, containing several possible key-
exchange algorithms. This short list is one possible means of
fingerprinting a potential instance of a Cowrie honeypot.

Cowrie can be set to respond to login attempts by reading
from a default list of username and password combinations,
although in most cases (by default) it is set to accept any
combination of username and password after a pre-set random
number of attempts. The goal is to give the appearance of
security, but ultimately it is desirable to allow an attacker to
access the honeypot. Typically an SSH installation will be

0 10 20 30 40 50
Time interval

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (M

b/
s)

Uninterrupted
Interrupted

Fig. 6: Measured Throughput between Interrupted and Unin-
terrupted flows

0 5000 10000 15000 20000 25000
Number of transmitted packets

0

10

20

30

40

50

Ro
un

d 
Tr

ip
 T

im
e 

(m
s)

Interrupted

(a) Interrupted Traffic Flows

0 10000 20000 30000 40000 50000
Number of transmitted packets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ro
un

d 
Tr

ip
 T

im
e 

(m
s)

Uninterrupted

(b) Uninterrupted Traffic Flows

Fig. 7: Round Trip Times for Network Traffic Flows

given a good password, will not allow root logins, and will
often block login attempts for a certain amount of time after
three failed entries. By brute-forcing suspected instances of
Cowrie based on what is returned in the key-exchange stage of
the handshake it is possible to successfully log into a honeypot.

Cowrie is capable of logging all activities received, and
keeps track of the various attack-command types such as
successful and failed login attempts, usernames and passwords
for each attempt, file downloads, system commands, etc. By
examining these logs it is possible to learn attacker behaviors,
and to discover some of the activities an attacker is conducting
prior to, during, and after an attack. These logs are stored
in .json format and are easily parsed either with user-defined
script, or by using tools such as the ELK stack for storing,
parsing, and displaying log information. An example of a
Cowrie honeypot indicating a failed login attempt can be seen
in Fig. 8. In this example the user www attempted to log in
with the password 123123 unsuccessfully. This is very useful



Fig. 8: Cowrie .json log segment showing a failed login attempt on a honeypot.

for helping students to understand the makeup of a cyber
attack, and to view real-time attacks while they are in progress.
In a honeypot exposed to the Internet these attacks often
come in a near-continuous stream from bots (and occasionally
live attackers) seeking to compromise exposed servers and
IoT devices. By making these tools accessible in a testbed
environment, they can be used for instruction and training, and
can prepare students for deploying and analyzing honeypots
and honeypot data in the real world.

A second honeypot deployed in our testbed is the Conpot
honeypot, which emulates a number of IIoT devices on ports
supporting device-specific services and protocols. Access to
these devices allows researchers and students to develop
techniques for fingerprinting devices, and also for learning to
mask their presence in an effort to learn as much about an
attacker as possible before they determine they are dealing
with a honeypot and not a real device.

VI. CONCLUSION AND FUTURE WORK

In this paper a testbed for education and research was
presented which utilizes open-source tools and COTS ma-
terials to emulate a real-world IoT environment. It is de-
signed to accommodate multiple users performing research
and analysis on IoT device networking and security. It can
simultaneously serve as a training ground for students learning
to understand attacker behavior by scanning and footprinting
network environments, identifying honeypot devices through
fingerprinting, and using these devices to better understand
attacker behavior. It provides a complex multi-layer network
topology, a software defined network, and numerous physical
and virtual devices emulating both real and decoy machines.
In the future additional devices will be added to allow for
development of efficient and secure IoT environments, and will
help students and new researchers develop the necessary skills
to maneuver these new technologies. It can also be expanded
to provide access for research to industry partners and the
education community to stimulate interest in IoT development
and security awareness.

ACKNOWLEDGMENT

This research is supported by the National Science Founda-
tion (NSF) Award #2019164.

REFERENCES

[1] Steward, J. (2021, April 21). 21+ Internet of Things Statistics, Facts
and Trends for 2021. Findstack. https://findstack.com/internet-of-things-
statistics/.

[2] Yamin, Muhammad Mudassar, et al. ”Make it and break it: An IoT
smart home testbed case study.” Proceedings of the 2nd International
Symposium on Computer Science and Intelligent Control. 2018.

[3] Nguyen, Trung, et al. ”A miniature smart home testbed for research and
education.” 2017 IEEE 7th Annual International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER).
IEEE, 2017.

[4] Alsukayti, Ibrahim S. ”A Multidimensional Internet of Things Testbed
System: Development and Evaluation.” Wireless Communications and
Mobile Computing 2020 (2020).

[5] AbdelHafeez, Mahmoud, and Mohamed AbdelRaheem. ”AssIUT IOT:
A remotely accessible testbed for Internet of Things.” 2018 IEEE Global
Conference on Internet of Things (GCIoT). IEEE, 2018.

[6] Waraga, Omnia Abu, et al. ”Design and implementation of automated
IoT security testbed.” Computers and Security 88 (2020): 101648.

[7] Oyewumi, Ibukun A., et al. ”Isaac: The idaho cps smart grid cybersecu-
rity testbed.” 2019 IEEE Texas Power and Energy Conference (TPEC).
IEEE, 2019.

[8] Siboni, Shachar, et al. ”Security testbed for Internet-of-Things devices.”
IEEE transactions on reliability 68.1 (2019): 23-44.

[9] Li, Yuhong, et al. ”A SDN-based architecture for horizontal Internet of
Things services.” 2016 IEEE International Conference on Communica-
tions (ICC). IEEE, 2016.

[10] Guo, Zhengxin, et al. ”An implementation of multi-domain software
defined networking.” (2015): 5-5.

[11] AbdelHafeez, Mahmoud, Ali H. Ahmed, and Mohamed AbdelRaheem.
”Design and Operation of a Lightweight Educational Testbed for
Internet-of-Things Applications.” IEEE Internet of Things Journal 7.12
(2020): 11446-11459.

[12] Guo, Terry, et al. ”IoT Platform for Engineering Education and Re-
search (IoT PEER)–Applications in Secure and Smart Manufacturing.”
2018 IEEE/ACM Third International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE, 2018.

[13] Čeleda, Pavel, et al. ”Kypo4industry: A testbed for teaching cyber-
security of industrial control systems.” Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 2020.

[14] Munoz, Jonathan, et al. ”OpenTestBed: Poor Man’s IoT Testbed.”
IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2019.

[15] Raglin, Adrienne J., et al. ”Smart CCR IoT: Internet of Things Testbed.”
2019 IEEE 5th International Conference on Collaboration and Internet
Computing (CIC). IEEE, 2019.

[16] Sauer, Felix, et al. ”LICSTER–A Low-cost ICS Security Testbed for
Education and Research.” arXiv preprint arXiv:1910.00303 (2019).

[17] Akbari, Iman. ”SDN part 1: What is Software-defined
Networking (SDN) and why should I know about it?” from
Technology Networks, Technology Networks, 20 Aug. 2019,
www.technologynetworks.com/informatics/articles/a-new-dawn-for-
security-vulnerabilities-in-hpc-322974.

[18] Akbari, Iman. “SDN Part 2: Building an SDN Playground on the
Cloud Using Open VSwitch and OpenDaylight.” Medium, Medium,
13 June 2019, medium.com/@blackvvine/sdn-part-2-building-an-
sdn-playground-on-the-cloud-using-open-vswitch-and-opendaylight-
a0e2de029ce1.

[19] Benzekki, Kamal, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti
Elalaoui. ”Software-defined networking (SDN): a survey.” Security and
communication networks 9.18 (2016): 5803-5833.

[20] Kreutz, Diego, et al. ”Software-defined networking: A comprehensive
survey.” Proceedings of the IEEE 103.1 (2014): 14-76.

[21] Bhunia, Suman Sankar, and Mohan Gurusamy. ”Dynamic attack detec-
tion and mitigation in IoT using SDN.” 2017 27th International telecom-
munication networks and applications conference (ITNAC). IEEE, 2017.

[22] Antonakakis, Manos, et al. ”Understanding the mirai botnet.” 26th
USENIX security symposium (USENIX Security 17). 2017.


