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Abstract

In the last decade, there has been increasing interest in topological data analysis, a
new methodology for using geometric structures in data for inference and learning.
A central theme in the area is the idea of persistence, which in its most basic form
studies how measures of shape change as a scale parameter varies. There are now a
number of frameworks that support statistics and machine learning in this context.
However, in many applications there are several different parameters one might
wish to vary: for example, scale and density. In contrast to the one-parameter
setting, techniques for applying statistics and machine learning in the setting of
multiparameter persistence are not well understood due to the lack of a concise
representation of the results.
We introduce a new descriptor for multiparameter persistence, which we call
the Multiparameter Persistence Image, that is suitable for machine learning and
statistical frameworks, is robust to perturbations in the data, has finer resolution
than existing descriptors based on slicing, and can be efficiently computed on
data sets of realistic size. Moreover, we demonstrate its efficacy by comparing its
performance to other multiparameter descriptors on several classification tasks.

1 Introduction

Topological data analysis (TDA) is a new and rapidly evolving branch of computer science and
statistics that provides tools to analyze geometric structures in data using ideas from algebraic
topology. The success of clustering methods and nonlinear dimensionality reduction techniques make
it clear that even crude approaches to leveraging the geometry of data can be very effective. TDA
provides more refined geometric information, and indeed, there have been a variety of successful
applications of TDA, including, among others: graph analysis [CCI+20, ZW19], computational
biology [ACC+20, CR20, GPCI15, HMMB19, KDS+18, RB19], finance [dCBSB17, GGK+18,
GK18] and computer graphics [COO15, LOC14, PSO18].

The standard setup for the use of TDA is a data set given as a finite metric space X (i.e., points and a
distance function) and a continuous function f : X → R. This function can be understood as giving
a parameter that filters X and encodes how the topology changes as the parameter varies. A classical
setting is when X = Rn with the standard Euclidean distance and f is given as the distance to a point
cloud P ⊂ Rn, that is, f(x) = min {‖x− p‖ : p ∈ P}. See Figure 1. Another example is when X
is a graph G and f is a function defined on the nodes of G (see Supplementary Material, Section 4).

The fundamental geometric summary of TDA, the persistence diagram, characterizes the changing
topology of the family of sublevel sets of f , that is, the family {Fα}α∈R = {x ∈ X : f(x) ≤ α}α∈R.
For instance, in the point cloud setting, the sublevel set Fα is the union of balls of radius α centered
on the points of P . See Figure 1. Persistence diagrams are built by increasing α from −∞ to +∞,
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which creates a growing sequence of sublevel sets, called a filtration, and recording the various
topological changes that occur in this process. These changes are eventually summarized into a set of
points in the plane R2, where each point represents a specific topological feature of the data set (e.g.,
a connected component, a cycle, a cavity...), and its coordinates are the parameter values α1, α2 for
which the structure appeared and disappeared in the filtration. Often one views points away from the
diagonal, i.e., which represent topological features that existed at many scales, as encoding robust
geometric information and near-diagonal points as noise.

Figure 1: The filtration of the distance to the point cloud function is a sequence of union of balls with
growing radii. As the radius increases, topological structures appear (e.g., the loop highlighted in red
in the third union) and are eventually filled in. The “birth” and “death” values are the coordinates for
a point in the persistence diagram, colored to indicate their dimension (0 is red, 1 is blue).

A problem with the summaries provided by persistence diagrams is that the space of persistence
diagrams is not a convenient place to do statistics. For example, it is not a vector space, and centroids
are hard to compute and not necessarily unique [TMMH14]. To handle this, a lot of work has gone
into developing frameworks for supporting statistics, and machine learning for persistence diagrams
has been developed in the past few years [AEK+17, BGMP14, Bub15, CCO17, CGLM15, FLR+14,
KHF16, LY18, RHBK15]. However, the use of single-parameter filtrations often misses relevant
information. For instance, in the point cloud setting, the scale filtration does not account for density,
and so can be susceptible to outliers; for example, see Figure 4.

There are various approaches to handling the issue of variation in density in the context of the
statistical frameworks for standard persistence. A more flexible general framework was introduced by
Carlsson and Zomorodian: multiparameter (sometimes called multidimensional) persistence [CZ09].
This formalism encodes multiple filtration directions; the simplest example is the case of bifiltrations,
that is, by filtering X with two parameters, or functions, instead of just one. For example, point cloud
outliers can be detected by simultaneously filtering by scale and density.

However, working with multiparameter persistence is substantially more difficult. Analogues of
persistence diagrams can be defined in restricted settings for some specific bivariate and multivariate
functions [BCB18, BLO20, CKMW20, CO19] and metrics between them have been defined, as well
as algorithms for their computation [KN19, KLO19]. But in general there is no simple summary of
a multiparameter persistence diagram and the integration with statistics and machine learning is still
unsettled. Existing approaches for statistics in the context of bivariate functions [CFK+19, Vip20]
are defined by slicing, that is, by considering persistence diagrams associated to linear combinations
of the coordinates of the bivariate function, which is known to be limited since it is equivalent to an
incomplete summary of multiparameter persistence called the rank invariant [CZ09].

In this article, we provide a more refined numerical invariant of multiparameter persistence:

• We introduce the Multiparameter Persistence Image, a compact descriptor which inte-
grates information across slices by tracking changes in adjacent slices. We also investigate
empirically the stability of this invariant in the face of perturbations of the slices.

• We show how to efficiently compute this descriptor using any black box matching algorithm,
and provide more details for the vineyards algorithm [CSEM06] that we use in experi-
ments. We also provide open-source implementation for our descriptor and for the other
approaches [CFK+19, Vip20], in a public Python package [Car20].

• We demonstrate in several experiments classification experiments that the multiparameter
persistence image has performance comparable to or superior to existing summaries.
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2 Background

In this section, we briefly introduce the basics of single and multiparameter persistent homology
as well as the vineyard algorithm [CSEM06] we will use to compute our descriptor. We refer the
interested reader to e.g., [EH10, Car14, Oud15] for a more complete introduction to persistence.

Single-parameter persistent homology. Let X be a topological space and f : X → R be a continu-
ous function. The family {Fα}α∈R of sublevel sets of f , where Fα := {x ∈ X : f(x) ≤ α}, induces
the following growing sequence of subspaces of X , for any parameters α1 ≤ α2 ≤ · · · ≤ αn, called
a filtration: Fα1

⊆ Fα2
⊆ · · · ⊆ Fαn

. Topological spaces connected by continuous maps induce
vector spaces connected with linear transformations via the homology functors Hk, for k ∈ N. We do
not explicitly review the definition, but simply recall that each element in a basis of a vector space
Hk(Fα) should be thought of as a k-dimensional topological feature of Fα (such as a connected
component, a branch, a loop, a cavity, etc.), and that the linear map vi : H∗(Fαi) → H∗(Fαi+1)
provides a correspondence between the features of Fαi and Fαi+1 . Such a sequence of vector spaces
connected with linear maps is usually called the persistence module of f , denoted M(f).

An essential property of persistence modules is that they can be canonically decomposed into a direct
sum of simple modules:

M(f) '
⊕
i∈I

I(αbi , αdi), (1)

where I(αb, αd), αb ≤ αd, denotes the interval module between αb and αd, which contains vector
spaces of dimension 1 connected by identity maps between αb and αd, and vector spaces of dimension
0 everywhere else. An interval module intuitively represents a topological feature of X that appeared
(was born) at parameter αb and disappeared (died) at parameter αd in the filtration.

A common way of representing decomposition (1) is to either use the values αbi and αdi as coordinates
of 2D points, which leads to a set of points in the plane called the persistence diagram dgm(f),
or, equivalently, as endpoints of intervals, which leads to a multiset of intervals called the barcode
bcd(f). Persistence diagrams and barcodes can be equipped with a distance called the bottleneck
distance dB , which is computed by finding a partial matching which minimizes the difference between
matched bars (and penalizes unmatched bars according to their length). Moreover, there is a standard
distance that is commonly used to compare persistence modules, called the interleaving distance
dI . These two metrics turn out to be the same, i.e., dI(M(f),M(g)) = dB(bcd(f), bcd(g)). The
metric lets us express the most important property of persistent homology, namely that it is stable
with respect to this distance: dI(M(f),M(g)) ≤ ‖f − g‖∞, for any two continuous functions
f, g : X → R satisfying very mild hypotheses.

Vineyards. Persistence diagrams and barcodes are computed by constructing a filtration of a simpli-
cial complex built from the data. The general algorithm takes O(n3) time, where n is the number
of simplices, which can grow rapidly in the number of data points and the range of the filtration.
However, if a persistence diagram or barcode has already been computed from a function f , we can
efficiently compute a new one for a perturbation f̃ of f using the vineyard algorithm [CSEM06],
which applies a sequence of O(n) updates of the filtration.

Moreover, this algorithm, that we denote vine, also provides a matching between the bars of bcd(f)

and bcd(f̃): vine(f, f̃) = {bcd(f), bcd(f̃),mf,f̃}, where mf,f̃ is a partial matching, that is, a
1-to-1 matching between a subset of bcd(f) and a subset of bcd(f̃). In favorable cases, this matching
realizes the bottleneck distance.

Multiparameter persistent homology. Similarly to single-parameter persistent homology, a func-
tion f : X → Rd leads to a multifiltration. For any ai, aj ∈ Rd, we use ai ≤ aj to denote that each
coordinate of ai is smaller than the corresponding coordinate of aj . In this case, the sublevel sets
Fa = {x ∈ X : f(x) ≤ a} still satisfy Fai

⊆ Faj
as soon as ai ≤ aj , even though ≤ is only a

partial order in Rd. For any family of parameters a1, . . . , an ∈ Rd, the spaces Fai
and the inclusions

Fai
⊆ Faj

when ai ≤ aj is called a multifiltration of f , which, after applying the homology functor
again, gives raise to the multiparameter persistence module M(f).

Unfortunately, general multiparameter persistence modules do not admit decompositions such as (1),
except in very special cases [BCB18, BLO20, CO19]. However, for any two points ai ≤ aj ∈ Rd, the
line ` : t 7→ (1− t)ai + taj , t ∈ R, defines a filtration {Ft}t∈R with Ft = {x ∈ Rd : f(x) ≤ `(t)},
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since `(t1) ≤ `(t2) for any t1 ≤ t2 ∈ R. The associated barcode, denoted by bcd(f`) can be thought
of as the barcode of the (scalar-valued) function equal to the restriction of M(f) to `, and whose bars
can be plotted along ` in Rd. The collection of such barcodes is referred to as the fibered barcode of
f ; we use the term slicing to refer to the process of computing fibered barcodes. See [LW15] for an
extensive discussion of the fibered barcode.

The interleaving distance of one-parameter persistence generalizes to produce a metric dI on multipa-
rameter persistence modules, also usually referred to as the interleaving distance [Les15], which also
enjoys stability properties in specific cases [BL20]. There is also a matching distance obtained as the
supremum over the weighted bottleneck distances between barcodes in the fibered barcode, which
serves as a lower bound for the interleaving distance.

3 The Multiparameter Persistence Image

Since multiparameter persistence modules cannot be readily used in statistics and machine learning
applications, it is necessary to define a feature map or descriptor for it, that is, an Euclidean vector that
summarizes the multiparameter persistence module. In this section we define our new descriptor, the
Multiparameter Persistence Image. For simplicity, we restrict to the case of 2D persistence modules.

The basic idea of our construction is to select a collection of slices parametrized by lines {`i} such
that there is a natural ordering on the lines, match the barcodes of adjacent lines, and consider the
region in R2 specified by the collection of quadrilaterals with matched endpoints as vertices. In
principle, one can use any black box matching algorithm, e.g., the bottleneck matching, to align the
barcodes. In this work, we restrict to the vineyards algorithm for reasons of efficiency.

Let f be a bivariate function f : X → R2 and let R = [m1,M1]× [m2,M2] ⊂ R2 be the rectangle
defined by the minimum and maximum of each function coordinate: m1 = min(f1),M1 = max(f1),
m2 = min(f2) and M2 = max(f2), where f(x) = (f1(x), f2(x)). We call R the bounding
rectangle of f . We first define the lines on which we are going to compute fibered barcodes.

Definition 3.1. For any θ ∈ [0, 2π], we let eθ denote the unit vector (cos(θ), sin(θ)). Moreover,
for any x, v ∈ R2, we let `(x, v) denote the line passing through x with direction vector v. Let
LmN = {`((m1,m2), eθi) : θi = (i/N) · (π/2), 0 ≤ i ≤ N} denote N ordered lines going through
the lower left corner of R, LMN = {`((M1,M2), eθi) : θi = (i/N) · (π/2), 0 ≤ i ≤ N} denote N
ordered lines going through the upper right corner of R, and L∆

δ = {`((m1 + iδ,m2), eπ/4) : 0 ≤
i ≤ (M1 −m1)/δ} ∪ {`((m1,m2 + iδ), eπ/4) : 0 ≤ i ≤ (M2 −m2)/δ} denote an ordered set of
evenly spaced lines with the same slope going through R.

LMN LmN(M1,M2) (M1,M2) (M1,M2)

(m1,m2) (m1,m2) (m1,m2)

L∆
δ

f1

f2
δ

Figure 2: Examples of sets of lines used to define the Multiparameter Persistence Image.

From these sets of lines, we can use the vineyards algorithm to produce families of consecutively
matched bars. This is what we call the Vineyard Decomposition of the multifiltration.

Definition 3.2. Let L = {`i}1≤i≤N be one of the three sets of ordered lines of Definition 3.1.

The Multiparameter Vineyard with lines L, denoted by VL(f), is defined as: VL(f) =
vine({f`i}1≤i≤N ), i.e., VL(f) is the list of fibered barcodes and partial matchings
{{bcd(f`i)}1≤i≤N , {mi}1≤i≤N−1}, where mi is a partial matching between the bars of consecutive
fibered barcodes bcd(f`i) and bcd(f`i+1).

Equivalently, the Vineyard Decomposition associated to VL(f), and denoted by DL(f), is defined
as the set of all subsets I = {b`i ,m(1)(b`i),m

(2)(b`i), · · · }, where b`i ∈ bcd(f`i) and m(p)(b`i) =
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mi+p ◦ · · · ◦ mi(b`i) and such that either i = 1 or m−1
i−1(b`i) = ∅. The subsets I are called the

summands of the Vineyard Decomposition.

VL(f)

DL(f)

Figure 3: Example of Multiparameter Vineyard and associated Vineyard Decomposition.

The Vineyard Decomposition can be extended to multivariate functions by using multiple sets of
ordered lines that always start with the same line. For example, in R3, one would sweep the 3D space
with planes that all intersect on a given line. Sweeping each plane with lines, 2D summands can be
computed in each plane and then connected through the common line to generate 3D summands.

To produce a descriptor suitable for machine learning and statistics, we now define the Multipa-
rameter Persistence Image, which is a generalization and adaptation of the Persistence Image for
barcodes [AEK+17].
Definition 3.3. Let R = [a, b]× [c, d] denote a rectangle in the plane R2, and {Pi,j}1≤i,j≤p, p ∈ N∗
denote a grid of points evenly sampled on R, i.e., Pi,j = (a + i(b − a)/p, c + j(d − c)/p). The
Multiparameter Persistence Image of resolution p and bandwidth σ > 0 is the matrix IL,R,p,σ(f) of
size p× p such that

(IL,R,p,σ(f))i,j =
∑

I∈DL(f)

w(I) ·
(
ω(`∗) exp

(
−min`∈I ‖Pi,j , `‖2

σ2

))
, (2)

where ‖Pi,j , `‖ = minx∈`‖Pi,j − x‖, w : DL(f) → R is a weight function, and ω(`∗) is a weight
proportional to the minimum of the entries of the vector parametrizing the line `∗ that achieves

min`∈I ‖Pi,j , `‖2. Typically, we use w(I) =
(

A(I)
(b−a)(d−c)

)q
, where A(I) is the area of the convex

hull of the endpoints of all bars in I and q ∈ N is a user-defined parameter.

Figure 4: Single-parameter persistence fails at recovering the correct topology of a point cloud with
outliers. From left to right: point cloud with outliers colored with density estimates; persistence
diagram associated to the point cloud. Note the multiple blue points in dimension 1 (i.e., representing
cycles) that are far away from the diagonal; Vineyard Decomposition computed with union of
balls and density, the cycle is now detected as a set of long green bars; associated Multiparameter
Persistence Image with resolution p = 200, bandwidth σ = 0.001 and power q = 5.

The key refinement of this construction over predecessors in the literature [CFK+19, Vip20] (see
Section 4) is that we are taking the vineyards matching between bars into account when constructing
the invariant, as opposed to just using the slices.

Complexity. The complexity associated to the Vineyard Decomposition computation is the com-
plexity of the computation of the barcode associated to the first line O(n3) (where n is the number
of simplices) plus the complexity of the vineyard algorithm on the set of lines O(N · n · v), where
N is the number of lines, and v is the maximum number of filtration updates between consecutive
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lines (and goes to 1 when N → +∞). The Multiparameter Persistence Image of resolution p can be
computed in O(p2 ·N ·m), where m is the maximum number of bars of the fibered barcodes.

Stability. Work of Landi [Lan14] shows that the fibered barcode is stable in two senses. First,
given a fixed line ` that has slope neither 0 nor ∞, parametrized by a vector eθ, the assignment
M(f) 7→ bcd(f`) is stable in the sense that for 2D persistence modules M(f) and M(g), we have

dB(bcd(f`), bcd(g`)) ≤
1

ẽ
dI(M(f),M(g)) ≤ 1

ẽ
‖f − g‖∞,

where here ẽ is the minimum of the entries of eθ. Roughly speaking, the fibered barcode is stable
in the interleaving distance with Lipschitz constant determined by the slope of the lines, where the
constant approaches∞ as the slope approaches either 0 or∞. Second, given two lines ` and `′, Landi
also shows that bcd(f`) and bcd(f`′) are interleaved with a constant that depends on the slopes of `
and `′ and again goes to∞ as the lines approach either horizontal or vertical.

The stability properties of the Multiparameter Persistence Image depend on the local stability of the
matched bars in adjacent lines.
Proposition 3.4. Let `1 and `2 be two adjacent parallel lines parameterized by the vector eθ that
are distance δ apart, e.g., consecutive lines in L∆

δ (see Definition 3.1). Suppose that b1 ∈ bcd(f`1)
and b2 ∈ bcd(f`2) are matched bars in the barcodes along `1 and `2 respectively. Given another
2D persistence module M(g) such that dI(M(f),M(g)) < ε, then the change in the area of the
quadrilateral specified by b1 and b2 is bounded by (2δε)/ẽ. Along a path of k parallel lines at most δ
apart, the change in area of the region traced out by the bars is bounded by k · (2δε)/ẽ.

What the preceding proposition shows is that provided that the series of matchings given by the
vineyards algorithm realize the bottleneck metric and are themselves stable under perturbation, any
invariant based on the area of these regions which is weighted appropriately to compensate for the
length of the path (i.e., the number of bars) and the slope of the lines will be stable to perturbation of
the multiparameter persistence module and multifiltration in the interleaving distance or matching
distance. We give precise theorem statements (and proofs) in Supplementary Material, Section 1.

However, the issue of the stability of the matchings itself is a subtle one. In situations where bars
merge and split apart again along the vineyard, the matching can be very sensitive to infinitesimal
changes in the bars. There are two approaches to handling this. One possibility is to average the
images over random perturbations of the input persistence module or the matchings. However, in
practice, we can algorithmically detect whether such instability can occur for a given data set, by
looking at the matchings that the bottleneck distance would produce: if multiple partial matchings
achieve the bottleneck distance, then choosing arbitrarily between them might make the algorithm
lose track of the topological feature. Moreover, we expect this kind of bad behavior to disappear for
some well-behaved classes of multifiltrations [BLO20, CO19].

4 Experiments

In this section, we compare the Multiparameter Persistence Image to two other descriptors that
have recently been proposed for multiparameter persistence, the Multiparameter Persistence Land-
scape [Vip20] and the Multiparameter Persistence Kernel [CFK+19]. In the following, we only
describe their computational approximations for sake of simplicity. See the associated reference for
their precise definitions. Let L denote a set of lines (see, e.g., Definition 3.1).

Multiparameter Persistence Landscape [Vip20]. Let λk : B → Rd denote the usual kth-landscape
vector construction (see [Bub15] for details), which turns a barcode into an Euclidean vector obtained
as a sampling of the piecewise-linear function corresponding to the k-th landscape. The Multiparam-
eter Persistence Landscape of a bivariate function Λk(f) ∈ Rd×|L| is defined as the concatenation of
all landscapes associated to the fibered barcodes {bcd(f`)}`∈L where the lines in L have slope 1,
which is the case when, e.g., L = L∆

δ (see Definition 3.1).

Multiparameter Persistence Kernel [CFK+19]. Let K : B × B → R be any kernel between
barcodes (see [CCO17, KHF16, LY18, RHBK15] for examples of possible kernels). The associ-
ated Multiparameter Persistence Kernel between two bivariate functions KK(f, g) is defined as
KK(f, g) = 1

|L|
∑
`∈L w(`) ·K(bcd(f`), bcd(g`)), where w(`) is a weight function that depends

on the slope of ` (in order to guarantee stability).

6



A potential advantage of the the Multiparameter Persistence Image is that both of these invariants
depend only on the fibered barcode; persistence modules with the same fibered barcodes will end up
having the same Multiparameter Persistence Landscapes and Kernels, but different Multiparameter
Persistence Images. See Supplementary Material, Section 2 for an example.

Results. All experiments have been run on an AWS machine with a Xeon Platinum 8175 processor.
Code for computing the descriptors and running the experiments is freely available [Car20].

Time series. Our first series of experiments involve time series classification. Time series analysis,
e.g., periodicity detection, can be applied to the Takens embeddings of the time series [PH15].
However, noise in the series might induced outliers in the resulting point cloud embeddings. Hence,
it is natural to filter based on both distance to the point cloud and density estimates—see Figure 4
and [ACG+18]. We use time series data sets from the UCR archive [DBK+18] with moderate sizes
and lengths; this ensures that the kernel matrices obtained with Multiparameter Persistence Kernel
have reasonable sizes and that the point clouds obtained with the Takens embedding in R3 have a
reasonable number of points. Moreover, we use the train/test split that is suggested for each data set.
See Supplementary Material, Table 1 for a description of the time series classification tasks.

We used L∆
δ (see Definition 3.1) as our set of lines for computing vineyards and fibered barcodes

(in homological dimensions 0 and 1) for each descriptor1, with δ = ((M1 −m1) + (M2 −m2))/N ,
where m1,M1 are the minimum and maximum distances between all points of all point cloud
embeddings, and m2,M2 are the minimum and maximum of the density estimates of all points of
all point cloud embeddings, and N = 200. Density estimation is performed with the Distance-To-
Measure [CFL+18] with parameter m = 0.1.

We compare the accuracies of the Multiparameter Persistence Kernel computed with the Sliced
Wasserstein Kernel between barcodes [CCO17] (reported as “MP-K”), the sum of the first 5 Multipa-
rameter Persistence Landscapes (reported as “MP-L”), and the Multiparameter Persistence Image
(reported as “MP-I”). Resolutions for Multiparameter Persistence Landscapes and Images are 5-fold
cross-validated over the set of values {10, 50}, and the powers and bandwidths of the Multiparameter
Persistence Images and Kernels are also 5-fold cross-validated with values in {0, 1} (power) and
10{−2,−1,0,1,2} (bandwidth). We also compared to accuracies obtained with 1D persistence barcodes
computed along the diagonal of the bounding rectangle and vectorized with the sum of the first
five 1D-persistence landscapes (reported as “P-L”) [Bub15], the 1D persistence image (reported as
“P-I”) [AEK+17], and the persistence scale-space kernel2 (reported as “PSS-K”) [RHBK15]). Resolu-
tions, bandwidths and powers for these descriptors were cross-validated as in the multiparameter case.
Finally, we add the accuracies obtained with Euclidean nearest neighbor (B1), dynamic time warping
with optimized (B2) and constant window width (B3), as provided and explained in [DBK+18]. Our
goal in this experiment is primarily to compare different topological summaries, although it is also
interesting to see the relationship to the state of the art.

All features were trained with an XGBoost classifier, except for MP-K and PSS-K, which were
trained with kernel Support Vector Machines. Results are displayed in Table 1 and computation time
for homological dimension 0 are in Table 2 (homological dimension 1 can be found in Supplementary
Material, Table 2). The Multiparameter Persistence Image clearly outperforms the other techniques
on some data sets (such as ECG200, Plane, SwedishLeaf, MedicalImages), and remain very com-
petitive on the others. It is also clearly faster to compute, since the Multiparameter Persistence Kernel
requires computing several kernel matrices, which is costly and scales poorly, and Multiparameter
Persistence Landscapes requires sorting the landscape values on every sample of every slice. One can
see that multiparameter persistence summaries are clearly superior to the diagonal 1D-persistence
summaries. We also confirmed that the differences in accuracies were not explained only by the
resolutions of the final model selected by cross-validation in Supplementary Material, Table 3, and
provided more details on cross-validation results in Supplementary Material, Table 4.

A second series of experiments focused on graph classification (see Supplementary Material, Sec-
tion 4). In this case, we found that all of the multiparameter persistence summaries had essentially the
same performance, and our conclusion is that the fibered barcodes alone already contain all the salient
topological information. Note that the fibered barcodes remain again superior to 1D-persistence.

1We also tried the other sets of lines in Definition 3.1 for the Multiparameter Persistence Kernel and Image,
but did not report the results since changes were not significant.

2In a few tasks where the PSS-K values are infeasible to compute, we did not report accuracy.
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Dataset B1 B2 B3 PSS-K P-I P-L MP-K MP-L MP-I
DistalPhalanxOutlineAgeGroup 62.6 62.6 77.0 76.9 69.8 70.5 67.6 70.5 71.9
DistalPhalanxOutlineCorrect 71.7 72.5 71.7 47.5 67.4 66.3 74.6 69.6 71.7

DistalPhalanxTW 63.3 63.3 59.0 71.5 59.0 56.1 61.2 56.1 61.9
ProximalPhalanxOutlineAgeGroup 78.5 78.5 80.5 75.9 82.0 78.0 78.0 78.5 81.0
ProximalPhalanxOutlineCorrect 80.8 79.0 78.4 78.4 72.2 72.5 78.7 78.7 81.8

ProximalPhalanxTW 70.7 75.6 75.6 61.4 72.2 73.7 79.5 73.2 76.1
ECG200 88.0 88.0 77.0 67.0 74.0 74.0 77.0 74.0 83.0

ItalyPowerDemand 95.5 95.5 95.0 - 64.7 61.1 80.7 78.6 79.8
MedicalImages 68.4 74.7 73.7 51.1 46.2 44.3 55.4 55.7 60.0

Plane 96.2 100.0 100.0 82.9 64.8 82.9 92.4 84.8 97.1
SwedishLeaf 78.9 84.6 79.2 81.0 37.1 38.2 78.2 64.6 83.8
GunPoint 91.3 91.3 90.7 90.6 84.7 80.0 88.7 94.0 90.7

GunPointAgeSpan 89.9 96.5 91.8 - 84.5 87.0 93.0 85.1 90.5
GunPointMaleVersusFemale 97.5 97.5 99.7 - 88.3 87.3 96.8 88.3 95.9
GunPointOldVersusYoung 95.2 96.5 83.8 - 98.7 95.9 99.0 97.1 100.0

PowerCons 93.3 92.2 87.8 - 83.4 76.7 85.6 84.4 86.7
SyntheticControl 88.0 98.3 99.3 50.0 45.7 44.0 50.7 60.3 60.0

Table 1: Classification results for time series.

Dataset MP-K MP-L MP-I
DistalPhalanxOutlineAgeGroup 9227.1 1038.9 217.1
DistalPhalanxOutlineCorrect 36734.6 3492.6 833.7

DistalPhalanxTW 9396.4 577.7 138.4
ProximalPhalanxOutlineAgeGroup 11573.1 759.5 244.5
ProximalPhalanxOutlineCorrect 30822.7 2169.5 497.6

ProximalPhalanxTW 11641.7 375.4 93.4
ECG200 1615.3 1355.6 269.0

ItalyPowerDemand 41918.1 1939.0 417.5
MedicalImages 147668.1 2404.7 599.5

Plane 2036.0 1065.0 249.2
SwedishLeaf 38045.7 3329.3 693.5
GunPoint 1977.0 1685.7 422.1

GunPointAgeSpan 14013.9 3945.6 1078.6
GunPointMaleVersusFemale 14069.9 4058.8 1097.0
GunPointOldVersusYoung 16668.1 5400.9 1388.5

PowerCons 8808.3 3234.8 811.4
SyntheticControl 13340.0 595.1 161.9

Table 2: Computation time (s) for time series in dimension 0.

Immunofluorescence images. Our second experiment deals with quantitative immunofluorescence
images. The data is a set of pairs of images, where each pair consists of imaging data from a piece of
human tissue from a patient suffering from breast cancer. The pixel intensities in an image denote
the abundance of cells from one of two types: immune cells or cancer. That is, in one image cancer
cells are bright, and in the other image immune cells are. These pixel intensities were obtained by
injecting biomarkers in the tissue that would brighten the cells of the specified type. Moreover, the
pixels of the two images are in correspondence since they represent the same location on the human
piece of tissue. See [ACC+20] for more details.

Figure 5: From left to right: immune brightness, cancer brightness, Multiparameter Persistence Image
in dimension 1, Multiparameter Persistence Landscape in dimension 1. Note how the bright spots of
immune cells correspond to the dark spots of cancer cells.
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Analysis of these images is usually done by looking at the nearest neighbor distance distributions,
that is, for each cancer pixel (i.e., pixel whose brightness is above a manual threshold in the cancer
image), compute the distance to its nearest immune pixel, and vice-versa. This gives two empirical
distributions, whose means and variances can be used as features for classification [GMH+18,
SBSO16]. However, this approach is known to be unstable (due to the use of nearest distances),
requires manual thesholding, and only represents the local neighborhoods around the cell without
looking at relationships at larger spatial scales.

Since the two images are in correspondence, we can regard the brightness information as providing
a pair of filter functions—this setup lends itself to analysis using multiparameter persistence. The
classification task was to distinguish patients that were alive at the latest follow-up after diagnosis
from those who passed away, based on the images. We used the same parameters as detailed in the
previous experiments (since all 1D-persistence summaries led to the same results, we provided only
one score, reported as “P”), and added a column “NN-F” for the performance of nearest neighbor
distribution features fed to an XGBoost classifier. Results were averaged over 5 folds of the full 688
patients and are provided in Table 3. One can see that multiparameter persistence (and in particular
the Multiparameter Persistence Image) provides a striking improvement in survival prediction over
either the standard method or 1D-persistence.

NN-F P MP-K MP-L MP-I
67.2 ± 1.0 71.1 ± 1.1 77.6 ± 2.3 76.5 ± 2.7 79.1 ± 2.2

Table 3: Classification results for immunofluorescence data.

Stability. We conclude with an empirical study of the stability of the Multiparameter Persistence
Image with respect to slice perturbations. We perturbed the endpoints of the slices for an arbitrary
time series in ECG200 with random noise of increasing amplitude, and looked at the ratio between
the 1-norm of the difference between the perturbed and clean, i.e., with no noise, Multiparameter
Persistence Images, and the (normalized) noise amplitude. We also checked the accuracies on
ECG200. It is clear from Figure 6 that the stability ratio looks constant and even starts to decrease
when the noise amplitude is large enough, clearly showing that Multiparameter Persistence Images
are empirically stable. This is also observed in the accuracy, which actually increases when noise
amplitude is small before slowly decreasing as well. This also indicates that optimizing over the
endpoints of the lines is another potential way of increasing the performance of models.

Figure 6: Empirical illustration of Multiparameter Persistence Image stability

5 Conclusion and future work

In this article, we introduced the Multiparameter Persistence Image, a compact descriptor for
multiparameter persistence which is easily computable, robust to noise, and can be used for machine
learning and statistics. Experiments demonstrated that its refined discriminating capability enables it
to match or outperform other methods on a variety of tasks, most notably predicting survival from
images of cancerous tumors. In future work, we plan to study the relation between the multiparameter
persistence module decomposition into interval modules (when it exists) and the one produced by the
Vineyard Decomposition. Another next step is to extend our descriptor for multiparameter persistence
to larger numbers of filter functions.
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Broader Impact

Multiparameter persistence descriptors are sorely needed to enhance the reach and usability of
topological data analysis, since many applications require understanding and encoding multiple
filtrations at once. We believe that proposing an efficient descriptor that encodes strictly more
information than just the union of all 1D-persistence diagrams associated to slices, and enabling the
community to use it with an easy-to-use Python package, can have a significant impact and is an
important contribution to data science and topological data analysis. In particular, we hope that our
work helps to make topological methods within machine learning more accessible to practitioners.
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