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Abstract

We propose methods for estimating correspondence be-

tween two point sets under the presence of outliers in both

the source and target sets. The proposed algorithms ex-

pand upon the theory of the regression without correspon-

dence problem to estimate transformation coefficients us-

ing unordered multisets of covariates and responses. Previ-

ous theoretical analysis of the problem has been done in a

setting where the responses are a complete permutation of

the regressed covariates. This paper expands the problem

setting by analyzing the cases where only a subset of the

responses is a permutation of the regressed covariates in

addition to some covariates possibly being adversarial out-

liers. We term this problem robust regression without cor-

respondence and provide several algorithms based on ran-

dom sample consensus for exact and approximate recovery

in a noiseless and noisy one-dimensional setting as well as

an approximation algorithm for multiple dimensions. The

theoretical guarantees of the algorithms are verified in sim-

ulated data. We demonstrate an important computational

neuroscience application of the proposed framework by

demonstrating its effectiveness in a Caenorhabditis elegans

neuron matching problem where the presence of outliers in

both the source and target nematodes is a natural tendency.

Open source code implementing this method is available at

https://github.com/amin-nejat/RRWOC.

1. Introduction

Point set registration is one of the central problems in

computer vision that involves the optimization of a transfor-

mation that aligns two sets of point clouds [34, 29]. Point

set registration have been applied in numerous fields includ-

ing but not limited to robotics [39], medical imaging [3], ob-

ject recognition [11], panorama stitching [4] and computa-

tional neuroscience [7]. The types of allowable transforma-

tions and energy functions utilized in the cost function have

differentiated varying methods [6, 25, 40, 15, 18, 2, 24, 29,

17, 28, 12, 8, 23, 22, 36]. In general, point set registration

methods employ an iterative strategy of solving the trans-

formation and updating the matching which works well in

practice but there are no guarantees for reaching the global

optima [9]. Only a few methods have provided approximate

globally optimal solutions [37, 40]. These methods rely on

severe constraints of the transformation domains, such as

the 3D rotation group SO(3), in order to employ branch and

bound techniques on discretizations.

Theoretical analysis of the recovery guarantees of point

set registration has not been performed for a general num-

ber of dimensions until recently when it was termed as un-

labelled sensing by [32] as a problem with duality con-

nections with the well-known problem of compressed sens-

ing [10]. In this problem, similar to linear regression, the re-

sponse signal is modeled as a linear combination of a set of

covariates. However, the correspondence of the responses

to the covariates is modeled as having been shuffled by an

unknown permutation matrix. For this reason, the prob-

lem has also been termed as linear regression with shuffled

labels [1], linear regression with an unknown permutation

[27], homomorphic sensing [31] or linear regression with-

out correspondence (RWOC) [16], the latter of which will

be used to refer to the problem herein. Although RWOC is,

in general, an NP-hard problem [27], there have been sev-

eral advances in recent years to propose signal to noise ratio

(SNR) bounds for recovery of the permutation matrix and

the regression coefficients [27, 33]. Conversely, the same

works have also analyzed the SNR and sampling regime by

which no recovery is possible.

Nevertheless, the computer vision community has at-

tempted to solve the point set registration problem through

consideration of outliers and missing correspondences,

which are typically encountered in real-world applications.

A common technique used in point set registration to robus-

tify the optimization against outliers is to employ random

sampling consensus (RANSAC) subroutines [14, 30, 35].

The main advantages of RANSAC are that the randomiza-
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tion procedure employed can severely reduce the computa-

tional cost of an otherwise combinatorial search.

Motivated by applications in computational neuro-

science such as matching the neuronal populations of

Caenorhabditis elegans (C. elegans) across different ne-

matodes, we aim to unify the ideas presented in RWOC

literature and robust point set registration methods to pro-

vide provably approximate solutions to the RWOC prob-

lem in the presence of outliers and missing measurements

commonly encountered in fluorescence microscopy data.

Robustly and automatically matching and identifying neu-

rons in C. elegans could expedite the post-experimental data

analysis and hypothesis testing cycle [7, 20, 26, 38].

1.1. Main contributions

The main contributions presented in this paper are the in-

troduction of randomized algorithms for the recovery of the

regression coefficients in the RWOC problem that takes into

account noise, missing data, and outliers. Hsu et al. [16]

provide algorithms for the noisy case without generative as-

sumptions; their algorithm takes into account square per-

mutation matrices, which assumes that the entire signal is

captured in the responses and does not take into account

any missing correspondences or outliers. Unnikrishnan

et al. [32, 33] provide combinatorial existence arguments.

Tsakiris et al. [31] provide an algorithm that takes into ac-

count missing correspondences or outliers but not both. Our

method is designed for the practical purpose of matching

point clouds that may have noisy measurements, missing

correspondences, and outliers. Missing data can be thought

of as outliers in the source point set, but they can have dif-

ferent interpretations. For example, if the goal is to register

an image onto an already existing atlas, then the parts of

the atlas that are not present in the image are called missing

data. The assumption is that the atlas contains a complete

set of objects while the image could be missing some parts

for reasons such as incomplete field of view, mutant defects,

individual differences, etc. This is undoubtedly the case in

the application domain of neuron tracking and matching in

biological applications where structures of interest might be

missing from the field of view or other unrelated confound-

ing biological structures might exist and potentially be cap-

tured by the detection algorithms. Specifically, we demon-

strate the efficacy of the proposed method in the identifica-

tion and tracking of in-vivo (C. elegans) neurons where it

is possible that some neurons are missing and adversarial

objects that might be confused as neurons are present.

In summary, our contributions are four-fold:

1. We introduce the notion of ”robust” regression with-

out correspondence (rRWOC) that models missing

correspondences between responses and covariates as

well as completely missed associations in the form of

outliers and missing data. In contrast with standard

point set registration methods, we further consider the

case of adversarial outliers.

2. We introduce a polynomial-time algorithm to find

the exact solution for the one-dimensional noiseless

rRWOC and the approximate solution in the noisy

regime.

3. We introduce a randomized approximately correct al-

gorithm that is more efficient than pure-brute force ap-

proaches in multiple dimensional rRWOC.

4. We demonstrate the computational neuroscience appli-

cation of our approach to point-set registration prob-

lems in the context of automatically matching and

identification of the cellular layout of the nervous sys-

tem of the nematode C. elegans.

1.2. Paper organization

In section 2, we introduce our statistical regression

model (rRWOC) that accounts for permuted correspon-

dences, outliers, and noise. We then demonstrate the added

computational complexity of recovery of rRWOC in con-

trast with simple linear regression and RWOC in a one-

dimensional case in section 3.1. In section 3.2, we pro-

vide a randomized algorithm for the rRWOC problem in

multiple dimensions with convergence bounds. Lastly, in

section 4.1, we verify the theoretical recovery guarantees

in simulated experiments and in section 4.2 show the neu-

roscience application of the proposed algorithms in the C.

elegans neuron matching problem.

2. Regression model

First, we introduce notation. Let X =
[x1|x2| . . . |xm]T ∈ R

m×d and Y = [y1|y2| . . . |yn]
T ∈

R
n×d denote two d-dimensional point sets consisting of m

and n points, respectively. Let us call X the reference or

source set. Let Y denote the target set which may contain

outliers and missing correspondences. Note that the points

in X that are missing correspondences in Y can be seen as

outliers in the source set, hence justifying our claim that we

model outliers in both the source and target sets.

Let the set of indices I = {i1, . . . , i|I|} ⊆ [n] de-

note the indices of yj which are inliers. Conversely, let

O = {o1, . . . , o|O|} ⊆ [n] denote set of indices of yj which

are outliers. By construction, these sets are a disjoint parti-

tion of the entire index set of target points: I⋃O = [n] and

I⋂O = ∅. Let Π ∈ Pn×m denote a possibly unbalanced

permutation matrix where there are at most min{n,m}
ones placed such that no row or column has more than a

single one. All other entries are zeroes. Let π(i) denote

the location of the one in the ith row of the permutation
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Figure 1. Demonstration of various problem settings of regression without correspondence. A: Full set of hidden correspondences between

source and target multisets. B: Missing correspondences in the target set. C: Unstructured outliers in the target set. D: Adversarial outliers

in the target set – this setting imposes a theoretical ceiling of 50% outliers in the target set. However, in practice, more than 50% ratio of

unstructured outliers can be handled.

matrix Π. Next, let β ∈ R
d×d denote the regression coeffi-

cients and ǫ ∼ N (0, νI) denote zero-mean Gaussian noise.

Lastly, let U[C] denote the uniform distribution within some

closed convex set C. Given these definitions, we can define

the robust regression without correspondence (rRWOC)

model as

yij = xπ(ij)β + ǫ for ij ∈ I
yol ∼ U[C] for ol ∈ O (1)

Note that the bias terms in the regression can be modeled

by padding x with a constant column of ones.

In contrast with linear regression, where the sole objec-

tive is to recover the coefficients β, the two-fold objective

of RWOC is to recover the correct permutation matrix Π,

and the regression coefficients β. To add to the complex-

ity of the problem, the three-fold objective of rRWOC is to

recover the inlier set I, the permutation Π, and the coeffi-

cients β.

3. Algorithms

To aid in the recovery of the solution in rRWOC, we in-

troduce the following assumption.

Assumption 1 (Maximal inlier set). For point sets X, Y,

there exists a triple {I∗,β∗,Π∗} that is maximal in the

sense that n ≥ |I∗| ≥ |I ′| such that any other triple

{I ′,β′,Π′} is not considered to be the underlying regres-

sion model.

Assumption 1 allows the identifiability of whether a

given hypothetical index set can be considered to be the

true underlying inlier set or not. In practical terms, sup-

pose we generate simulated data with n points in Y of

which k > n/2 are outliers generated uniformly and the

remainder generated with respect to a coefficient βI such

that Y[I] = Xπ(I)β
I + ǫI . There may be cases such that

uniformly generated ”outliers”, Y[O], are structured such

that there exists a coefficient βO and permutation ΠO such

that Y[O] = Xπ(O)β
O + ǫO where Var(ǫI) ≥ Var(ǫO).

In this case, βO is identifiable but not verifiable as ”cor-

rect.” In practical terms, assumption 1 puts a ceiling on the

maximum proportion of outliers that any regression without

correspondence algorithm can handle. In a simplest exam-

ple, if the target point set consists of two duplicate copies

of rotated and transformed source point set, it is impossible

to identify the correct matching. However, if one of the du-

plicates has less points, then we can invoke the principle of

the maximal inlier set to identify the correct target set. See

figure 1 for a visualization.

Equipped with the rRWOC model and assumption 1, we

now demonstrate the progressive increase in the complex-

ity of recovery of ordinary linear regression, RWOC, and

rRWOC in one-dimension.

3.1. Optimal regression in d = 1

Linear regression in one-dimension with known cor-

respondences, no offset term and no outliers can be ob-

tained in O(n) time using the univariate normal equa-

tion: βOLS =
∑n

i
yixπ(i)∑
n
i
x2
πi

. On the other hand, RWOC in

the one-dimensional case with no noise can be solved in

O(n log(n)) steps via the method of moments and a sim-

ple sorting operation. Namely, first, the regressor βRWOC

can be estimated using the ratio of the first moments of the

covariates to the responses:

βRWOC =

∑n
i=1 yi

∑n
i=1 xi

(2)

2839



Algorithm 1 One dimensional robust regression without

correspondence - Exhaustive approach

Input:Reference set: {x1, . . . , xm}, target set:

{y1, . . . , yn}, outlier margin: ν
Require: k < n

2 (number of outliers)

1: for i = 1, . . . , n do

2: for j = 1, . . . ,m do

3: Compute βi,j = yi/xj

4: Compute linear assignment [21]:

Πi,j ← argmin
Π∈Pn×m

‖xβi,j −ΠTy‖22
5: Compute hypothetical inliers:

Ii,j = {l : |xπi,j(l)β
i,j − yl| ≤ ν}

6: end for

7: end for

8: return (i∗, j∗) = argmax
(i,j)

|Ii,j | , I∗ = Ii∗,j∗ , Π∗ =

Πi∗,j∗ , β∗ ←
∑

l∈I∗ ylxπ∗(l)∑
l∈I∗ x

π∗(l)2

and then the permutation can be recovered using the re-

arrangement inequality [5],

min
Π

n
∑

i=1

(yi − ŷπ(i))
2 =

n
∑

i=1

(y(i) − ŷ(i))
2 = (3)

‖Πyy −Πŷŷ‖22 −→ ΠRWOC = ΠT
y Πŷ

where y(i) denotes sorted yi and ŷ(i) denotes sorted

xiβRWOC and Πy and Πŷ denote the permutation matri-

ces that capture the sorting operations.

In the case with outlier elements in y, the problem is

non-trivial, even in one dimension, since sorting does not

allow the identification of outliers1. To solve the one di-

mensional rRWOC, we introduce algorithm 1 which recov-

ers the triplet {I∗,β∗,Π∗} in an exhaustive fashion.

Proposition 1 (Correctness of Algorithm 1). Suppose there

exist n− k inliers in y and that k < n/2. Then algorithm 1

yields the correct regression coefficient β∗ = β with proba-

bility 1 for noiseless data and with high probability for noisy

data with an appropriately selected margin parameter ν.

Proof. (The full proof is included in supplementary mate-

rial) The overview of the proof is as follows. In the noiseless

case, if j = π(i) then βi,j = yi

xj
= β∗. The projection xβi,j

maps all reference points to their exact corresponding refer-

ence points. Thus the Hungarian algorithm will yield these

as the assignments since they incur minimal cost. There-

fore, we will have |Ii,j | ≥ n− k. The cardinality of inliers

is lower bounded and not equal to n− k since outlier points

may by chance be transformed to points in y as well. Con-

trarily, suppose the transformation βi,l for l 6= π(i) yields

1See supplementary material section 5 for a toy example experiment.

Algorithm 2 One dimensional robust regression without

correspondence - Randomized approach

Input:Reference set: {x1, . . . , xm}, target set:

{y1, . . . , yn}, δ (probability of success), outlier mar-

gin: ν
Require: k < n

2 (number of outliers)

1: for t = 1, . . . , q do

2: Sample i ∼ [n] and sample j ∼ [m]
3: Compute βt = yi/xj

4: Compute linear assignment [21]:

Πt ← argmin
Π∈Pn×m

‖xβt −ΠTy‖22
5: Compute hypothetical inliers:

It = {l : |xπt(l)β
t − yl| ≤ ν}

6: end for

7: return t∗ = argmax
t

|It| , I∗ = It∗ ,

Π∗ = Πt∗ , β∗ ←
∑

l∈I∗ ylxπ∗(l)∑
l∈I∗ x

π∗(l)2

a larger hypothesized inlier set Ii,l, such that |Ii,l| > |Ii,j |
then this means that there are more points in xβi,l that are

closer to y than xβi,j , contradicting the assumption that

n− k is the maximal inlier set.

The time complexity of algorithm 1 can be analyzed as

follows. The main computational cost is due to linear as-

signment which incurs a cost of O(max{m,n}3) if [19]

variant is used. Linear assignment is repeated mn times. If

m and n are of the same order, then algorithm 1 has com-

plexity O(n5).

However, if the ratio of inliers to outliers is relatively

high, then it is possible to use randomization procedures

like RANSAC [14, 30] to speed up the algorithm to yield

the correct regression coefficient with high probability. This

is demonstrated in algorithm 2.

Proposition 2 (Correctness of Algorithm 2). Suppose there

are n− k inliers in x and that k < n/2. In q ≥ log(1−δ)

log(1−n−k
mn

)

iterations, algorithm 2 yields the correct regression coeffi-

cient β∗ = β with probability δ ∈ (0, 1) for an appropri-

ately selected margin parameter ν.

Proof. The success of algorithm 1 relies on the fact that

the exhaustive search eventually hits a tuple (i, j) such that

j = π(i) which yields the correct regression coefficient.

Therefore, when randomly sampling (i, j) ∼ [n]× [m], the

probability of choosing a corresponding pair is n−k
n

1
m . The

probability of iterating q times such hat no correct corre-

spondence is selected is (1 − (n − k)/(nm))q = (1 − δ)
where δ is the desired success rate. Taking logs yields,

q = log(1−δ)
log(1−(n−k)/(nm))
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Algorithm 3 Robust regression without correspondence -

Randomized approach

Input: X = [x1| . . . |xm]T ∈ R
m×d (reference points),

Y = [y1| . . . |yn]
T ∈ R

n×d (target points), δ (probability

of success), ν (outlier margin)

Require: k < n
2 (number of outliers)

1: for t = 1, . . . , q do

2: Sample i = (i1, . . . , id) ∼ [n]d w/o replacement

3: Sample j = (j1, . . . , jd) ∼ [m]d w/o replacement

4: Compute βt = argmin
β

‖X[j]β −Y[i]‖2F
5: Compute linear assignment via [21]:

Πt ← argmin
Π∈Pm×n

‖Xβt −ΠY‖2F
6: Compute hypothetical inliers:

It = {l : ‖xπt(l)β
t − yl‖2 ≤ ν}

7: end for

8: return t∗ = argmaxt |It|, I∗ = It∗ ,

Π∗ = Πt∗

I∗ ,β∗ ← argminβ ‖Xπ∗(I∗)β −YI∗‖2F

The time complexity of randomized algorithm 2 is

O

(

log(1−δ)
log(1−(n−k)/n2)n

3

)

.

3.2. Randomized approximation algorithm (d ≥ 2)

The exhaustive approach for the d ≥ 2 dimensional case

requires
(

n
d

)(

m
d

)

d-subset comparisons of X,Y in order to

guarantee hitting correct (in the noiseless case) or approx-

imately correct (in the noisy case) regression coefficients,

with complexity O(mdnd). However, especially in higher

dimensions, the randomized procedure enables a substan-

tial reduction of iterations to yield a high probability correct

triplet of inlier set, permutation, and regression coefficients.

The randomized algorithm for rRWOC in d ≥ 2 is demon-

strated in algorithm 3. Random ordered d-tuples of refer-

ence and target point sets are sampled and are used to align

the remainder of the point set. The number of hypotheti-

cal inliers for each hypothetical correspondence is assessed

by checking whether the transformed reference points are

arbitrarily close to a target point. With high probability, if

correct a d-tuple correspondence is captured, the number of

transformed reference points matching a target point will

be high (Figure 1 top), otherwise it will result in a partial

coverage (Figure 1 bottom).

Proposition 3. For q ≥ log(1−δ)

log

(

1−
(m−k

d )
(md )(

n
d)

) , algorithm 3 re-

covers β∗
and Π∗ and the set of inliers for the noiseless

case with probability (1− δ) using arbibrarily small ν. For

sufficiently small noise variance and appropriately chosen

ν, algorithm 3 recovers approximate β∗
with high proba-

bility.

Proof. Analogous to the analysis of algorithm 2, the prob-

ability of drawing d inliers out of n points with k outliers

in Y is
(n−k

d )
(nd)

. The probability of matching the drawn in-

liers with the d corresponding sampled reference points in

X is 1

(md )
. Probability that any draw is not going to match

is 1 − (n−k

d )
(md )(

n

d)
. The probability that q draws will be in-

correct is

(

1 − (m−k

d )
(md )(

n

d)

)q

. If we set this to be the prob-

ability of failure (1 − δ), we then have the estimate for

the number of draws we need to make as q(δ, n,m, k) ≥
log(1− δ)/ log

(

1− (m−k

d )
(md )(

n

d)

)

The complexity of algorithm 3 can be analyzed as fol-
lows. In each inner loop, the regression coefficient solu-
tion requires O(d3) time, the Hungarian algorithm requires
O(nmd) to compute the input distance matrix and then
O(max{n,m}3) to optimize the permutation matrix. The
rest of the operations are O(d). Therefore, the overall time
complexity is

O

(

log(1− δ)

log

(

1−
(m−k

d )
(md )(

n
d)

) (d3 + nmd+max{n,m}3)

)

. (4)

3.2.1 Margin parameter (ν) selection

Both of the proofs of the noiseless and the noisy cases of

proposition 1 rely on knowledge of the true regression coef-

ficient and the noise variance in order to estimate the margin

coefficient ν and output the optimal regression coefficient

with high probability. However, in practice, as in many

RANSAC-like robust regression settings, these parameters

cannot be known apriori, and ν is typically determined via

empirical heuristics and or cross-validation [14].

In the noiseless case, an appropriate heuristic is choosing

ν arbitrarily small since the correct regression should yield

zero residual. However, for the noisy case, if available, su-

pervised data should be used with known correspondences

to estimate the actual dispersion of point correspondences.

4. Numerical results

To verify the theoretical guarantees of the proposed al-

gorithms, simulated data in 3 dimensions was generated in

both noisy and noiseless regimes. Furthermore, iterative so-

lutions of β and Π were obtained to demonstrate the subop-

timality of local minima found using block coordinate de-

scent for this non-convex problem.

The neuroscience application of rRWOC was demon-

strated in the context of point set matching of neurons of

C. elegans worms recorded using fluorescence microscopy

imaging. The matching accuracy with respect to ground
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Figure 2. Left: Recovery rate (colorbar) vs. missing data ratio (y-axis) vs. SNR (x-axis), Middle: Recovery rate (colorbar) vs. outlier ratio

(y-axis) vs. SNR (x-axis), Right: Recovery rate (y-axis) vs. outlier ratio (x-axis), blue: rRWOC, red: ICP, yellow: randomized rRWOC

(δ = 0.9)), purple: randomized rRWOC (δ = 0.6)

Figure 3. 2D projection of 3D fluorescence microscopy image of C.elegans head in Yemini et al. dataset. Superimposed annotation points

denote neuron locations. Outliers are detections that do not correspond to neurons and missing data are undetected neurons.

truth was assessed for rRWOC as well as a robust variant

of the iterative closest point (ICP) algorithm [6] known as

trimmed ICP [9]. We also compared to the state of the art al-

gorithm for regression without correspondence, termed ho-

momorphic sensing (HS) [31].

Computational setup and code: All experiments were

performed on an Intel i5-7500 CPU at 3.40GHz with 32GB

RAM. MATLAB code for 3D versions of algorithm 3 are

included in supplementary material along with sample C.

elegans neuron point clouds.

4.1. Simulated data

Three dimensional source point set X was generated

by sampling xj ∼ N (0, I3) for j = 1, . . . , J where

J ∈ [20, . . . , 40]. A random transformation β was obtained

by computing the QR factorization of a 3× 3 random gaus-

sian matrix M such that QR = M, taking the orthonor-

mal rotation component Q. This was randomly scaled by

a factor between s = [0.5, 1.5] so that β = sQ. For

k ∈ [1, . . . , 19], 20 − k inlier target points were gener-

ated by transforming a random 20−k subset of X by β and

adding gaussian noise with varying σ2: YI = Xπ(I)β+ ǫ.
Furthermore, k points in Y were randomly uniformly sam-

pled from the convex hull of the 20 − k inlier points:

YO ∼ U[C(YI)]. This procedure yielded two unordered

multisets, X ∈ R
J×3 and Y ∈ R

20×3. Using these un-

ordered multisets as input to rRWOC, the regression coeffi-

cients β̂ were estimated. If ‖β̂ − β‖F ≤ 1e − 3, the event

was considered a correct recovery, otherwise a failure. The

margin parameter ν was set to be ν = σ. Also, using the

randomized algorithm 3, the success probability parameter

was set to δ = 0.9.

This procedure was repeated 100 times for varying k =
1, . . . , 19, varying σ2 and varying J = 20, . . . , 40 to assess

the empirical recovery rate as a function of outlier amount,

SNR, and missing correspondences in the target, respec-

tively. The recovery rates vs. outlier ratio, and SNR can

be seen in figure 2-middle. The recovery rates vs. missing

data ratio and SNR can be seen in figure 2-left. Lastly, the

comparison of the recovery rate of exhaustive and random-

ized rRWOC versus iterative closest point can be seen in

figure 2-right.

These empirical results demonstrate that for a suffi-

ciently high SNR and outlier ratio of less than 50%, the pro-

posed algorithm yields almost perfect recovery rates. Fur-

thermore, the comparisons with iterative closest point al-

gorithm (ICP) show that rRWOC is much more robust to

outliers than ICP since the inclusion of any outliers results

in failure of ICP to recover the true transformation.

4.1.1 Unstructured vs. adversarial outliers

The evaluation of the compared algorithms in the presence

of unstructured outliers as well as adversarial ones was done

on the fish point cloud dataset. Experimental details are

described in the supplementary material sections 3 and 4.
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Figure 4. Left: A: Unaligned point sets of reference C. elegans neuron positions (red) and target neuron positions (green) B: Alignment

with coherent point drift algorithm [25], C: Alignment with iterative closest point algorithm [9], D: Alignment with proposed algorithm 3.

Right: Margin parameter (ν) estimation in the C.elegans dataset.

Method TP FP FN ACC F1 PREC REC MD

C
.
el

eg
an

s
H

ea
d

rRWOC 135±28 57±23 60±28 0.53±0.15 0.69±0.13 0.70±0.12 0.69±0.14 2.63±0.27

ICP [9] 41±58 151±58 153±59 0.15±0.23 0.21±0.30 0.21±0.30 0.21±0.30 4.18±1.59

CPD [25] 5±2 188±4 190±2 0.01±0.01 0.03±0.01 0.03±0.01 0.03±0.01 11.13±0.34

HS [31] 110±24 70±23 80±23 0.45±0.15 0.60±0.13 0.50±0.09 0.53±0.11 3.2±0.34

C
.
el

eg
an

s
T

ai
l

rRWOC 33±6 10±6 11±6 0.61±0.17 0.75±0.14 0.76±0.14 0.74±0.13 2.14±0.31

ICP [9] 2±1 42±1 43±1 0.02±0.01 0.04±0.02 0.04±0.02 0.04±0.02 7.83±1.66

CPD [25] 3±1 41±1 42±1 0.03±0.02 0.04±0.02 0.04±0.02 0.04±0.02 7.43±1.32

HS [31] 36±4 9±4 10±5 0.65±0.13 0.78±0.12 0.72±0.13 0.82±0.12 1.9±0.32

F
is

h
U

n
st

ru
ct

u
re

d rRWOC 28 ± 13 18 ± 13 27 ± 13 0.42 ± 0.21 0.61 ± 0.29 0.67 ± 0.31 0.56 ± 0.26 0.12 ± 0.01

ICP [9] 2 ± 1 45 ± 1 54 ± 1 0.02 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 0.23 ± 0.05

CPD [25] 1 ± 2 46 ± 2 55 ± 2 0.01 ± 0.03 0.02 ± 0.06 0.02 ± 0.06 0.02 ± 0.05 0.12 ± 0.00

HS [31] 14 ± 0 33 ± 0 42 ± 0 0.17 ± 0.01 0.30 ± 0.02 0.33 ± 0.02 0.28 ± 0.01 0.22 ± 0.00

F
is

h
A

d
v
er

sa
ri

al rRWOC 28 ± 13 18 ± 13 26 ± 13 0.43 ± 0.28 0.62 ± 0.28 0.67 ± 0.30 0.57 ± 0.26 0.14 ± 0.07

ICP [9] 0 ± 18 47 ± 18 55 ± 18 0 ± 0.34 0 ± 0.40 0 ± 0.43 0 ± 0.37 0.30 ± 0.05

CPD [25] 0 ± 0 47 ± 0 55 ± 0 0 ± 0.00 0 ± 0.01 0 ± 0.01 0 ± 0.01 0.10 ± 0.02

HS [31] 15 ± 8 32 ± 8 40 ± 8.5129 0.19 ± 0.11 0.33 ± 0.18 0.36 ± 0.19 0.31 ± 0.17 0.19 ± 0.11
Table 1. Transformation recovery and permutation recovery by rRWOC, ICP, CPD and HS algorithms in the C. elegans and fish dataset.

TP = true positive, FP = false positive, TN = true negative, FN = false negative, ACC = accuracy, F1 = F1 score , PREC = precision, REC

= recall, MD = mean distance

In this scenario, we observed that rRWOC and HS both out-

performed ICP, and CPD and performed similarly in the un-

structured outlier scenario. However, in the adversarial out-

lier scenario rRWOC outperformed HS due to explicit mod-

eling of the outliers and missing correspondences where HS

only models one of these two corruptions. The quantitative

results can be found in table 1 as well as in figures 1 and 2

in the supplementary material.

4.2. Neuron matching of C. elegans

For this application, we have used the publicly avail-

able C. elegans fluorescence imaging dataset of Nguyen et

al. [26] found at http://dx.doi.org/10.21227/

H2901H as well as the neuronal position dataset provided

in [38]. The worm C. elegans is a widely known model or-

ganism for studying the nervous system due to the known

structural connectome of the 302 neurons it contains. The

data provided 3D z-stack images of the head of 14 worms

that each consists of approximately 185 to 200 neurons cap-

tured under confocal microscopy using florescent tagged

protein GFP. In figure 3, the depth-colored 2D projection of

an image frame can be seen superimposed with annotation

points delineating the locations of neurons. Figure 3 also

highlights the need for a method of matching and aligning

worm point clouds that is robust to outliers or missing as-

sociations. Here, we define outliers as points where there is

no neuron present and define missing data as neurons with

no detection present.

Of the 14 datasets of the head neurons of C.elegans

worms, random pairs were drawn to be the source and target

point sets. From the remaining worms, the positional co-

variance of each neuron was estimated using the supervised

2843



PLMR

PLML

VA12

PVCR
PQR

VA11

DA9

PVCL

PVPL

VD13
DA8

DD6

VD11

PVR

PHCR

DVA

VD12

PVPR

DVC

PVNR

AS11

PHCL

PVNL

PVQR

PVT

PHBR
PHBL

DVB

PDA
PDB

ALNR
ALNL

PLNL
PHAR

LUAR
PVWL

LUAL

PHAL

PVQL

PLNR

PVWR

PHSO1R
PHSO1L

DA7
10 m

B

0 50 100

ALNL

ALNR

AS10

AS11

DA7
DA8

DA9

DD6

DVA

DVB

DVC

LUAL

LUAR

PDA

PDB

PHAL

PHAR

PHBL

PHBR

PHCL

PHCR

PHSO1L

PHSO1R

PLML

PLMR

PLNL

PLNR

PQR

PVCL

PVCR

PVNL

PVNR

PVPL

PVPR

PVQL

PVQR
PVR

PVT

PVWL

PVWR

VA11
VA12VD11

VD12

VD13

m

0

10

20

30 A

Figure 5. C. elegans neuron identification problem. A: Source point cloud of neuron locations and positional covariances. B: The target

image with outliers (indicated by large non-neuronal green objects) and the resulting neuron identifications.

alignment method of [13]. Since the positional variance

of each neuron was uniquely identified using training data,

we used variable margin parameters for rRWOC such that

νl = max
i=1,2,3

λi(Σl) where Σl is the covariance matrix of the

lth neuron and λi(·) denotes the ith eigenvalue. Random-

ized RWOC (algorithm 3) was deployed with δ = 0.9. The

results were compared with iterative closest point(ICP) [6]

as well as coherent point drift (CPD) [25] algorithms.

The demonstration of the C. elegans application of

rRWOC is seen in figure 5. Here the source point set is

a statistical atlas neuron positions [38] and the target point

set is neuron detections which may be corrupted by non-

neuronal outliers. The outcome is that the detected neurons

are identified correctly using the proposed algorithm.

The recovery rates in terms of recovering the transfor-

mation β∗ as well as the permutation Π∗, are summarized

in table 1. In general, rRWOC was able to recover both the

transformation and permutation better than ICP and CPD,

which tend to be initialization-dependent as well as HS

which is a global method. In all of the experiments, ICP and

CPD were initialized with random rotation. rRWOC and

HS are invariant to initialization since they are not descent-

based methods. HS performs slightly better in the tail of

C.elegans than rRWOC since the tail dataset tends to have

fewer outliers which HS is more sensitive to. Contrarily,

rRWOC does better than HS in the head since there are more

outliers and missing correspondences.

4.3. Discussion

In this paper, we expanded on the linear regression with-

out correspondence model [33, 1, 16, 27] to account for

missing data and outliers. Furthermore, we provided sev-

eral exact and approximate algorithms for the recovery of

regression coefficients under noiseless and noisy regimes.

The proposed algorithms are combinatorial at worst with

variable dimensions. However, randomization procedures

make the average-case complexity in constant dimension

tractable given enough tolerance for failure. We provided

several theoretical guarantees for exact recovery and run-

ning time complexity. Furthermore, we empirically demon-

strated the recovery rates of the proposed algorithms in sim-

ulated and biological data. A future algorithmic direction is

to employ branch and bound techniques found in [31] to re-

duce the computational complexity of the brute force nature

of the algorithms.

One of the crucial parameters in our algorithm is the

margin parameter of ν that heavily influences the compu-

tation of the inlier sets. In geometric terms, the ν parameter

should correspond to a physical radius such that if a target

point is within that radius relative to a reference point, it is

more likely to be a match than not be one. In the case of

C. elegans where we have access to a statistical atlas that

describes the positional covariance of each neuron (see fig-

ure 5A), we can quantify this radius as the half-width full

maximum (HWFM) of the Gaussian distribution of neuron

positions given by the relation f = σ
√
2 log 2 where σ is

the average neural positional standard deviation. The cross-

validation experiments in figure 4 demonstrate that the op-

timal ν does indeed correspond to this value.

Acknowledgements: We acknowledge the following

funding sources: NSF NeuroNex Award DBI-1707398, The

Gatsby Charitable Foundation, NIBIB R01 EB22913, DMS

1912194, Simons Foundation Collaboration on the Global

Brain.

2844



References

[1] Abubakar Abid, Ada Poon, and James Zou. Linear regres-

sion with shuffled labels. arXiv preprint arXiv:1705.01342,

2017.

[2] Dror Aiger, Niloy J Mitra, and Daniel Cohen-Or. 4-points

congruent sets for robust pairwise surface registration. In

ACM transactions on graphics (TOG), volume 27, page 85.

Acm, 2008.

[3] Michel A Audette, Frank P Ferrie, and Terry M Peters. An

algorithmic overview of surface registration techniques for

medical imaging. Medical image analysis, 4(3):201–217,

2000.

[4] Jean-Charles Bazin, Yongduek Seo, Richard Hartley, and

Marc Pollefeys. Globally optimal inlier set maximization

with unknown rotation and focal length. In European Con-

ference on Computer Vision, pages 803–817. Springer, 2014.

[5] Edwin F Beckenbach and Richard Bellman. Inequalities,

volume 30. Springer Science & Business Media, 2012.

[6] Paul J Besl and Neil D McKay. Method for registration of

3-d shapes. In Sensor Fusion IV: Control Paradigms and

Data Structures, volume 1611, pages 586–607. International

Society for Optics and Photonics, 1992.

[7] Greg Bubnis, Steven Ban, Matthew D DiFranco, and Saul

Kato. A probabilistic atlas for cell identification. arXiv

preprint arXiv:1903.09227, 2019.

[8] Alvaro Parra Bustos, Tat-Jun Chin, Frank Neumann, Tobias

Friedrich, and Maximilian Katzmann. A practical maximum

clique algorithm for matching with pairwise constraints.

arXiv preprint arXiv:1902.01534, 2019.

[9] Dmitry Chetverikov, Dmitry Svirko, Dmitry Stepanov, and

Pavel Krsek. The trimmed iterative closest point algorithm.

In Object recognition supported by user interaction for ser-

vice robots, volume 3, pages 545–548. IEEE, 2002.

[10] David L Donoho et al. Compressed sensing. IEEE Transac-

tions on information theory, 52(4):1289–1306, 2006.

[11] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan

Ilic. Model globally, match locally: Efficient and robust 3d

object recognition. In 2010 IEEE computer society confer-

ence on computer vision and pattern recognition, pages 998–

1005. Ieee, 2010.

[12] Olof Enqvist, Klas Josephson, and Fredrik Kahl. Optimal

correspondences from pairwise constraints. In 2009 IEEE

12th international conference on computer vision, pages

1295–1302. IEEE, 2009.

[13] Georgios Dimitrios Evangelidis and Radu Horaud. Joint

alignment of multiple point sets with batch and incremen-

tal expectation-maximization. IEEE transactions on pattern

analysis and machine intelligence, 40(6):1397–1410, 2018.

[14] Martin A Fischler and Robert C Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.
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