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Abstract

We propose methods for estimating correspondence be-
tween two point sets under the presence of outliers in both
the source and target sets. The proposed algorithms ex-
pand upon the theory of the regression without correspon-
dence problem to estimate transformation coefficients us-
ing unordered multisets of covariates and responses. Previ-
ous theoretical analysis of the problem has been done in a
setting where the responses are a complete permutation of
the regressed covariates. This paper expands the problem
setting by analyzing the cases where only a subset of the
responses is a permutation of the regressed covariates in
addition to some covariates possibly being adversarial out-
liers. We term this problem robust regression without cor-
respondence and provide several algorithms based on ran-
dom sample consensus for exact and approximate recovery
in a noiseless and noisy one-dimensional setting as well as
an approximation algorithm for multiple dimensions. The
theoretical guarantees of the algorithms are verified in sim-
ulated data. We demonstrate an important computational
neuroscience application of the proposed framework by
demonstrating its effectiveness in a Caenorhabditis elegans
neuron matching problem where the presence of outliers in
both the source and target nematodes is a natural tendency.
Open source code implementing this method is available at
https://github.com/amin-nejat/RRWOC.

1. Introduction

Point set registration is one of the central problems in
computer vision that involves the optimization of a transfor-
mation that aligns two sets of point clouds [34, 29]. Point
set registration have been applied in numerous fields includ-
ing but not limited to robotics [39], medical imaging [3], ob-
ject recognition [11], panorama stitching [4] and computa-
tional neuroscience [7]. The types of allowable transforma-
tions and energy functions utilized in the cost function have
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differentiated varying methods [6, 25, 40, 15, 18, 2, 24, 29,
17, 28, 12, 8, 23, 22, 36]. In general, point set registration
methods employ an iterative strategy of solving the trans-
formation and updating the matching which works well in
practice but there are no guarantees for reaching the global
optima [9]. Only a few methods have provided approximate
globally optimal solutions [37, 40]. These methods rely on
severe constraints of the transformation domains, such as
the 3D rotation group SO(3), in order to employ branch and
bound techniques on discretizations.

Theoretical analysis of the recovery guarantees of point
set registration has not been performed for a general num-
ber of dimensions until recently when it was termed as un-
labelled sensing by [32] as a problem with duality con-
nections with the well-known problem of compressed sens-
ing [10]. In this problem, similar to linear regression, the re-
sponse signal is modeled as a linear combination of a set of
covariates. However, the correspondence of the responses
to the covariates is modeled as having been shuffled by an
unknown permutation matrix. For this reason, the prob-
lem has also been termed as linear regression with shuffled
labels [1], linear regression with an unknown permutation
[27], homomorphic sensing [31] or linear regression with-
out correspondence (RWOC) [16], the latter of which will
be used to refer to the problem herein. Although RWOC is,
in general, an NP-hard problem [27], there have been sev-
eral advances in recent years to propose signal to noise ratio
(SNR) bounds for recovery of the permutation matrix and
the regression coefficients [27, 33]. Conversely, the same
works have also analyzed the SNR and sampling regime by
which no recovery is possible.

Nevertheless, the computer vision community has at-
tempted to solve the point set registration problem through
consideration of outliers and missing correspondences,
which are typically encountered in real-world applications.
A common technique used in point set registration to robus-
tify the optimization against outliers is to employ random
sampling consensus (RANSAC) subroutines [14, 30, 35].
The main advantages of RANSAC are that the randomiza-
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tion procedure employed can severely reduce the computa-
tional cost of an otherwise combinatorial search.

Motivated by applications in computational neuro-
science such as matching the neuronal populations of
Caenorhabditis elegans (C. elegans) across different ne-
matodes, we aim to unify the ideas presented in RWOC
literature and robust point set registration methods to pro-
vide provably approximate solutions to the RWOC prob-
lem in the presence of outliers and missing measurements
commonly encountered in fluorescence microscopy data.
Robustly and automatically matching and identifying neu-
rons in C. elegans could expedite the post-experimental data
analysis and hypothesis testing cycle [7, 20, 26, 38].

1.1. Main contributions

The main contributions presented in this paper are the in-
troduction of randomized algorithms for the recovery of the
regression coefficients in the RWOC problem that takes into
account noise, missing data, and outliers. Hsu et al. [16]
provide algorithms for the noisy case without generative as-
sumptions; their algorithm takes into account square per-
mutation matrices, which assumes that the entire signal is
captured in the responses and does not take into account
any missing correspondences or outliers. Unnikrishnan
et al. [32, 33] provide combinatorial existence arguments.
Tsakiris et al. [31] provide an algorithm that takes into ac-
count missing correspondences or outliers but not both. Our
method is designed for the practical purpose of matching
point clouds that may have noisy measurements, missing
correspondences, and outliers. Missing data can be thought
of as outliers in the source point set, but they can have dif-
ferent interpretations. For example, if the goal is to register
an image onto an already existing atlas, then the parts of
the atlas that are not present in the image are called missing
data. The assumption is that the atlas contains a complete
set of objects while the image could be missing some parts
for reasons such as incomplete field of view, mutant defects,
individual differences, etc. This is undoubtedly the case in
the application domain of neuron tracking and matching in
biological applications where structures of interest might be
missing from the field of view or other unrelated confound-
ing biological structures might exist and potentially be cap-
tured by the detection algorithms. Specifically, we demon-
strate the efficacy of the proposed method in the identifica-
tion and tracking of in-vivo (C. elegans) neurons where it
is possible that some neurons are missing and adversarial
objects that might be confused as neurons are present.

In summary, our contributions are four-fold:

1. We introduce the notion of “robust” regression with-
out correspondence (tRWOC) that models missing
correspondences between responses and covariates as
well as completely missed associations in the form of
outliers and missing data. In contrast with standard
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point set registration methods, we further consider the
case of adversarial outliers.

2. We introduce a polynomial-time algorithm to find
the exact solution for the one-dimensional noiseless
rRWOC and the approximate solution in the noisy
regime.

3. We introduce a randomized approximately correct al-
gorithm that is more efficient than pure-brute force ap-
proaches in multiple dimensional rRWOC.

4. We demonstrate the computational neuroscience appli-
cation of our approach to point-set registration prob-
lems in the context of automatically matching and
identification of the cellular layout of the nervous sys-
tem of the nematode C. elegans.

1.2. Paper organization

In section 2, we introduce our statistical regression
model (rRWOC) that accounts for permuted correspon-
dences, outliers, and noise. We then demonstrate the added
computational complexity of recovery of rRWOC in con-
trast with simple linear regression and RWOC in a one-
dimensional case in section 3.1. In section 3.2, we pro-
vide a randomized algorithm for the rRWOC problem in
multiple dimensions with convergence bounds. Lastly, in
section 4.1, we verify the theoretical recovery guarantees
in simulated experiments and in section 4.2 show the neu-
roscience application of the proposed algorithms in the C.
elegans neuron matching problem.

2. Regression model

First, we introduce notation. Let X =
[x1|%2| ... |[xm]T € R™*4and Y = [yilya]...|ya)T €
R"™*4 denote two d-dimensional point sets consisting of m
and n points, respectively. Let us call X the reference or
source set. Let Y denote the target set which may contain
outliers and missing correspondences. Note that the points
in X that are missing correspondences in Y can be seen as
outliers in the source set, hence justifying our claim that we
model outliers in both the source and target sets.

Let the set of indices Z = {i1,...,ij71} C [n] de-
note the indices of y; which are inliers. Conversely, let
O ={o1,...,0/0} C [n] denote set of indices of y; which
are outliers. By construction, these sets are a disjoint parti-
tion of the entire index set of target points: Z|J O = [n] and
IO = . Let IT € P™*™ denote a possibly unbalanced
permutation matrix where there are at most min{n,m}
ones placed such that no row or column has more than a
single one. All other entries are zeroes. Let (i) denote
the location of the one in the ¢th row of the permutation
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Figure 1. Demonstration of various problem settings of regression without correspondence. A: Full set of hidden correspondences between
source and target multisets. B: Missing correspondences in the target set. C: Unstructured outliers in the target set. D: Adversarial outliers
in the target set — this setting imposes a theoretical ceiling of 50% outliers in the target set. However, in practice, more than 50% ratio of

unstructured outliers can be handled.

matrix IT. Next, let 3 € R?*? denote the regression coeffi-
cients and € ~ N (0, vI) denote zero-mean Gaussian noise.
Lastly, let U[C] denote the uniform distribution within some
closed convex set C. Given these definitions, we can define
the robust regression without correspondence (rRWOC)
model as

Yi; = Xn(i)B + € fori; € Z

Yo, ~ U[C] foro; € O (D)

Note that the bias terms in the regression can be modeled
by padding x with a constant column of ones.

In contrast with linear regression, where the sole objec-
tive is to recover the coefficients 3, the two-fold objective
of RWOC is to recover the correct permutation matrix II,
and the regression coefficients 3. To add to the complex-
ity of the problem, the three-fold objective of rRWOC is to
recover the inlier set Z, the permutation II, and the coeffi-

cients (3.

3. Algorithms

To aid in the recovery of the solution in rRWOC, we in-
troduce the following assumption.

Assumption 1 (Maximal inlier set). For point sets X, Y,
there exists a triple {Z*,3", 11"} that is maximal in the
sense that n > |I*| > |T'| such that any other triple
{T',B',II'} is not considered to be the underlying regres-
sion model.

Assumption 1 allows the identifiability of whether a
given hypothetical index set can be considered to be the
true underlying inlier set or not. In practical terms, sup-
pose we generate simulated data with n points in Y of
which k£ > n/2 are outliers generated uniformly and the
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remainder generated with respect to a coefficient 51 such
that Y (7) = X (1) ,BI + ¢Z. There may be cases such that
uniformly generated “outliers”, Y[@], are structured such

that there exists a coefficient 3 and permutation I1° such
that Yo = Xﬂ(@),@o + €9 where Var(e?) > Var(e®).
In this case, ﬁo is identifiable but not verifiable as “cor-
rect.” In practical terms, assumption 1 puts a ceiling on the
maximum proportion of outliers that any regression without
correspondence algorithm can handle. In a simplest exam-
ple, if the target point set consists of two duplicate copies
of rotated and transformed source point set, it is impossible
to identify the correct matching. However, if one of the du-
plicates has less points, then we can invoke the principle of
the maximal inlier set to identify the correct target set. See
figure 1 for a visualization.

Equipped with the rRWOC model and assumption 1, we
now demonstrate the progressive increase in the complex-
ity of recovery of ordinary linear regression, RWOC, and
rRWOC in one-dimension.

3.1. Optimal regressionin d = 1

Linear regression in one-dimension with known cor-
respondences, no offset term and no outliers can be ob-
tained in O(n) time using the univariate normal equa-

tion: Bors = % On the other hand, RWOC in
the one-dimensional case with no noise can be solved in
O(nlog(n)) steps via the method of moments and a sim-
ple sorting operation. Namely, first, the regressor Srwoc
can be estimated using the ratio of the first moments of the

covariates to the responses:

Zr';l Yi
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Algorithm 1 One dimensional robust regression without
correspondence - Exhaustive approach

Algorithm 2 One dimensional robust regression without
correspondence - Randomized approach

Input:Reference set: {z1,...
{y1,..,Yn}, outlier margin: v
Require: k < 5 (number of outliers)

,Tm}, target set:

1: fori=1,...,ndo
22 forj=1,...,mdo
3: Compute 87 =y, /x;
4 Compute linear assignment [21]:
T + argmin|x"7 — II"y|3
HG'P"L Xm
5: Compute hypothetical inliers:

I ={l: |zgia@yB™ —uy| < v}
6: end for
7: end for
§: return (i*,j*) = argmax|Z%|, T* = IV 7", II* =
(4,9)
Hi*,j*’ B* — Zlez* YIT (1)

ez T (1)2

and then the permutation can be recovered using the re-

arrangement inequality [5],
—Ge)? =Y Wi —9)* = O

mln E
i=1

”Hyy — ;9|5 — Mrwoc = H§H@

n

where y(;) denotes sorted y; and %(; denotes sorted
z;Brwoc and I1, and IT; denote the permutation matri-
ces that capture the sorting operations.

In the case with outlier elements in y, the problem is
non-trivial, even in one dimension, since sorting does not
allow the identification of outliers!. To solve the one di-
mensional rRWOC, we introduce algorithm 1 which recov-

ers the triplet {Z*, 3%, II" } in an exhaustive fashion.

Proposition 1 (Correctness of Algorithm 1). Suppose there
exist n — k inliers in'y and that k < n/2. Then algorithm 1
yields the correct regression coefficient 3* = [ with proba-
bility 1 for noiseless data and with high probability for noisy
data with an appropriately selected margin parameter v.

Proof. (The full proof is included in supplementary mate-
rial) The overview of the proof is as follows. In the noiseless
case, if j = (i) then 8% = 4 = B*. The projection x 34
maps all reference points to their exact corresponding refer-
ence points. Thus the Hungarian algorithm will yield these
as the assignments since they incur minimal cost. There-
fore, we will have |Z%7| > n — k. The cardinality of inliers
is lower bounded and not equal to n — k since outlier points
may by chance be transformed to points in y as well. Con-
trarily, suppose the transformation 3% for | # 7(i) yields

I'See supplementary material section 5 for a toy example experiment.

Input:Reference set: {z1,...,2m}, target set:
{Y1,---,Yn}, O (probability of success), outlier mar-
gin: v

Require: k£ < 5 (number of outliers)

1: fort=1,...,qdo
2:  Sample i ~ [n] and sample j ~ [m]
3. Compute 8" = y;/z;
4:  Compute linear assignment [21]:
IT’ « argmin||x3* — II7y||3
HG’P’HX’I”
5:  Compute hypothetical inliers:

It = {l: |.’L‘7rt(l)ﬂt —y| <v}
6: end for
7: return t* = arg max|Z!| , T* = 7",
t

H* _ Ht* B* — Zlgz* Y1Tr* (1)
’ ez Trx(1)2

a larger hypothesized inlier set Z%, such that [Z%!| > |Z%
then this means that there are more points in x3%! that are
closer to y than x/3°, contradicting the assumption that
n — k is the maximal inlier set. O

The time complexity of algorithm 1 can be analyzed as
follows. The main computational cost is due to linear as-
signment which incurs a cost of O(max{m,n}?) if [19]
variant is used. Linear assignment is repeated mn times. If
m and n are of the same order, then algorithm 1 has com-
plexity O(n’).

However, if the ratio of inliers to outliers is relatively
high, then it is possible to use randomization procedures
like RANSAC [14, 30] to speed up the algorithm to yield
the correct regression coefficient with high probability. This
is demonstrated in algorithm 2.

Proposition 2 (Correctness of Algorithm 2). Suppose there

are n — k inliers inx and that k < n/2. Inq > %

iterations, algorithm 2 yields the correct regression coeffi-
cient B* = [ with probability 6 € (0, 1) for an appropri-
ately selected margin parameter v.

Proof. The success of algorithm 1 relies on the fact that
the exhaustive search eventually hits a tuple (i, j) such that
j = w(¢) which yields the correct regression coefficient.
Therefore, when randomly sampling (i, j) ~ [n] x [m], the
probability of choosing a corresponding pair is 2=~ 1 . The
probability of iterating ¢ times such hat no correct corre-
spondence is selected is (1 — (n — k)/(nm))? = (1 — 9)
where ¢ is the desired success rate. Taking logs yields,

- log(1—4)
4= log(l—(i—k)/(nm)) D
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Algorithm 3 Robust regression without correspondence -
Randomized approach

Input: X = [x1]...|x,]T € R™*? (reference points),
Y = [yi]...|yn]t € R**? (target points), § (probability
of success), v (outlier margin)

Require: k < 5 (number of outliers)

I: fort=1,...,qdo

2. Sample i = (i1, ...,iq) ~ [n]? w/o replacement
3. Sample j = (ji1,...,j4) ~ [m]? w/o replacement
4:  Compute 8" = argﬁrninHXmﬁ - Y%

5. Compute linear assignment via [21]:
I’ + argmin | XB' — ITY||2
Hepm)(n
6:  Compute hypothetical inliers:

It ={l: |xp B — yil2 < v}
7: end for
8: return t* = arg max, |Zt|, Z* = I,
I = th*,ﬁ* < argming || X« (z+)8 — Yz- %

The time complexity of randomized algorithm 2 is
log(1—4) 3
0 (10g(1—(n,—k)/77,2) n ) .
3.2. Randomized approximation algorithm (d > 2)

The exhaustive approach for the d > 2 dimensional case
requires (Z) (Z’) d-subset comparisons of X,Y in order to
guarantee hitting correct (in the noiseless case) or approx-
imately correct (in the noisy case) regression coefficients,
with complexity O(m9n?). However, especially in higher
dimensions, the randomized procedure enables a substan-
tial reduction of iterations to yield a high probability correct
triplet of inlier set, permutation, and regression coefficients.
The randomized algorithm for RWOC in d > 2 is demon-
strated in algorithm 3. Random ordered d-tuples of refer-
ence and target point sets are sampled and are used to align
the remainder of the point set. The number of hypotheti-
cal inliers for each hypothetical correspondence is assessed
by checking whether the transformed reference points are
arbitrarily close to a target point. With high probability, if
correct a d-tuple correspondence is captured, the number of
transformed reference points matching a target point will
be high (Figure 1 top), otherwise it will result in a partial
coverage (Figure 1 bottom).

log(1—4)
)
() ()
covers (3° and I1* and the set of inliers for the noiseless
case with probability (1 — 0) using arbibrarily small v. For
sufficiently small noise variance and appropriately chosen
v, algorithm 3 recovers approximate (3* with high proba-
bility.

Proposition 3. For q >
log | 1—

) , algorithm 3 re-

Proof. Analogous to the analysis of algorithm 2, the prob-
ability of drawing d inliers out of n points with k outliers

n—k
inY is ((jf) ) The probability of matching the drawn in-

d
liers with the d corresponding sampled reference points in
X is L ik Probability that any draw is not going to match

m

"
is 1 — Ak,
() (%)
) (mfk) q )
correctis [ 1 — (m;’(ﬂ) . If we set this to be the prob-
d d
ability of failure (1 — §), we then have the estimate for
the number of draws we need to make as ¢(d,n, m,k) >

log(1 —4)/ log <1 — %) O

The probability that ¢ draws will be in-

The complexity of algorithm 3 can be analyzed as fol-
lows. In each inner loop, the regression coefficient solu-
tion requires O(d®) time, the Hungarian algorithm requires
O(nmd) to compute the input distance matrix and then
O(max{n, m}?) to optimize the permutation matrix. The
rest of the operations are O(d). Therefore, the overall time
complexity is

log(1 — 6)
R cmray

3.2.1 Margin parameter (/) selection

(d® + nmd + max{n, m}3)> RN C))]

Both of the proofs of the noiseless and the noisy cases of
proposition 1 rely on knowledge of the true regression coef-
ficient and the noise variance in order to estimate the margin
coefficient v and output the optimal regression coefficient
with high probability. However, in practice, as in many
RANSAC-like robust regression settings, these parameters
cannot be known apriori, and v is typically determined via
empirical heuristics and or cross-validation [14].

In the noiseless case, an appropriate heuristic is choosing
v arbitrarily small since the correct regression should yield
zero residual. However, for the noisy case, if available, su-
pervised data should be used with known correspondences
to estimate the actual dispersion of point correspondences.

4. Numerical results

To verify the theoretical guarantees of the proposed al-
gorithms, simulated data in 3 dimensions was generated in
both noisy and noiseless regimes. Furthermore, iterative so-
lutions of 3 and IT were obtained to demonstrate the subop-
timality of local minima found using block coordinate de-
scent for this non-convex problem.

The neuroscience application of rRWOC was demon-
strated in the context of point set matching of neurons of
C. elegans worms recorded using fluorescence microscopy
imaging. The matching accuracy with respect to ground
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Figure 2. Left: Recovery rate (colorbar) vs. missing data ratio (y-axis) vs. SNR (x-axis), Middle: Recovery rate (colorbar) vs. outlier ratio
(y-axis) vs. SNR (x-axis), Right: Recovery rate (y-axis) vs. outlier ratio (x-axis), blue: rRWOC, red: ICP, yellow: randomized rRWOC

(6 = 0.9)), purple: randomized rRWOC (6 = 0.6)

Figure 3. 2D projection of 3D fluorescence microscopy image of C.elegans head in Yemini et al. dataset. Superimposed annotation points
denote neuron locations. Outliers are detections that do not correspond to neurons and missing data are undetected neurons.

truth was assessed for rRWOC as well as a robust variant
of the iterative closest point (ICP) algorithm [6] known as
trimmed ICP [9]. We also compared to the state of the art al-
gorithm for regression without correspondence, termed ho-
momorphic sensing (HS) [31].

Computational setup and code: All experiments were
performed on an Intel i5-7500 CPU at 3.40GHz with 32GB
RAM. MATLAB code for 3D versions of algorithm 3 are
included in supplementary material along with sample C.
elegans neuron point clouds.

4.1. Simulated data

Three dimensional source point set X was generated
by sampling x; ~ N(0,I3) for j = 1,...,J where
J € [20,...,40]. A random transformation (3 was obtained
by computing the QR factorization of a 3 x 3 random gaus-
sian matrix M such that QR = M, taking the orthonor-
mal rotation component Q. This was randomly scaled by
a factor between s [0.5,1.5] so that 3 = sQ. For
k € [1,...,19], 20 — k inlier target points were gener-
ated by transforming a random 20 — k subset of X by 3 and
adding gaussian noise with varying 0?: Yz = X (7)3 + €.
Furthermore, k points in 'Y were randomly uniformly sam-
pled from the convex hull of the 20 — k inlier points:
Yo ~ U[C(Yz)]. This procedure yielded two unordered
multisets, X € R7*3 and Y € R?°%3, Using these un-
ordered multisets as input to rRWOC, the regression coeffi-
cients 3 were estimated. If |3 — B||p < le — 3, the event

was considered a correct recovery, otherwise a failure. The
margin parameter v was set to be v = o. Also, using the
randomized algorithm 3, the success probability parameter
was set to d = 0.9.

This procedure was repeated 100 times for varying k =
1,...,19, varying o2 and varying J = 20, . ..,40 to assess
the empirical recovery rate as a function of outlier amount,
SNR, and missing correspondences in the target, respec-
tively. The recovery rates vs. outlier ratio, and SNR can
be seen in figure 2-middle. The recovery rates vs. missing
data ratio and SNR can be seen in figure 2-left. Lastly, the
comparison of the recovery rate of exhaustive and random-
ized rRWOC versus iterative closest point can be seen in
figure 2-right.

These empirical results demonstrate that for a suffi-
ciently high SNR and outlier ratio of less than 50%, the pro-
posed algorithm yields almost perfect recovery rates. Fur-
thermore, the comparisons with iterative closest point al-
gorithm (ICP) show that rRWOC is much more robust to
outliers than ICP since the inclusion of any outliers results
in failure of ICP to recover the true transformation.

4.1.1 Unstructured vs. adversarial outliers

The evaluation of the compared algorithms in the presence
of unstructured outliers as well as adversarial ones was done
on the £ish point cloud dataset. Experimental details are
described in the supplementary material sections 3 and 4.
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Right: Margin parameter () estimation in the C.elegans dataset.

[ ] Method | TP FP FN ACC F1 PREC | REC | MD

, | IRWOC | 135£28 | 57223 | 6028 | 0.53£0.15 | 0.69=0.13 | 0.70£0.12 | 0.69£0.14 | 2.63=0.27
53 [ ICP[9] | 41£58 | 151£58 | 153£59 | 0.15£0.23 | 0212030 | 0212030 | 0212030 | 4.18£1.59
°= [CPD[25] | 5+2 | 188%4 | 190£2 | 0.01£0.01 | 0.03£0.01 | 0.03£0.01 | 0.03£0.01 | 11.13£0.34
HS[31] | 110£24 | 70423 | 80+23 | 0.45£0.15 | 0.60£0.13 | 0.50£0.09 | 0.53+£0.11 | 3.2£0.34

. | IRWOC | 33%6 | 106 11£6 0.61£0.17 | 0.75£0.14 | 0.76£0.14 | 0.74=0.13 | 2.14=0.31
5= [ ICP[9] | 2£1 | 42%1 43+1 0.02£0.01 | 0.04£0.02 | 0.04£0.02 | 0.04£0.02 | 7.83£1.66
=" [CPD[25] | 3%l | 41l 2] 0.03£0.02 | 0.04£0.02 | 0.04£0.02 | 0.04£0.02 | 7.43£1.32
HS[31] | 36X4 | 9+4 10£5 0.65£0.13 | 0.78£0.12 | 0.72£0.13 | 0.82£0.12 | 1.9+0.32
3 | (RWOC |28+13 | 18+13 | 27+13 | 0.42=+0.21 | 0.61 £0.29 [ 0.67 = 0.31 | 0.56 = 0.26 | 0.12 = 0.01
52 [ ICP] | 21 | 45+1 | 54+1 | 0.02£0.01 | 0.04£0.02 | 0.05+0.02 | 0.04 £0.02 | 0.23 £ 0.05
=2 [ CPD[25] | 1£2 | 462 | 55+2 | 0.01=£0.03 | 0.02£0.06 | 0.02£0.06 | 0.02 = 0.05 | 0.12 £ 0.00
[ HS[31] | 14£0 | 33£0 | 42£0 | 0.7=001 | 030 £0.02 | 0.33 £0.02 | 0.28 £ 0.01 | 0.22 £ 0.00
= | IRWOC [28£13 [18£13| 26+13 | 0.43 £0.28 | 0.62 = 0.28 | 0.67 = 0.30 | 0.57 = 0.26 | 0.14 = 0.07
25 [ ICP[9] | 0£18 [47+£18| 55+18 | 0£034 | 0£040 | 0£043 | 0£037 | 030=0.05
“2 [CPD[25] | 0£0 | 47£0 | 55£0 0£000 | 0£001 | 0£001 | 0£001 |0.10£0.02
HS[31] | 158 | 32+8 | 40£8.5129 | 0.19£0.11 | 033 £0.18 | 0.36 £0.19 | 031 £0.17 | 0.19 £ 0.11

Table 1. Transformation recovery and permutation recovery by rRWOC, ICP, CPD and HS algorithms in the C. elegans and f£1ish dataset.
TP = true positive, FP = false positive, TN = true negative, FN = false negative, ACC = accuracy, F1 = F1 score , PREC = precision, REC
=recall, MD = mean distance

In this scenario, we observed that rRWOC and HS both out-
performed ICP, and CPD and performed similarly in the un-
structured outlier scenario. However, in the adversarial out-
lier scenario rRWOC outperformed HS due to explicit mod-
eling of the outliers and missing correspondences where HS
only models one of these two corruptions. The quantitative
results can be found in table 1 as well as in figures 1 and 2
in the supplementary material.

4.2. Neuron matching of C. elegans

For this application, we have used the publicly avail-
able C. elegans fluorescence imaging dataset of Nguyen et
al. [26] found at http://dx.doi.org/10.21227/
H2901H as well as the neuronal position dataset provided
in [38]. The worm C. elegans is a widely known model or-
ganism for studying the nervous system due to the known

structural connectome of the 302 neurons it contains. The
data provided 3D z-stack images of the head of 14 worms
that each consists of approximately 185 to 200 neurons cap-
tured under confocal microscopy using florescent tagged
protein GFP. In figure 3, the depth-colored 2D projection of
an image frame can be seen superimposed with annotation
points delineating the locations of neurons. Figure 3 also
highlights the need for a method of matching and aligning
worm point clouds that is robust to outliers or missing as-
sociations. Here, we define outliers as points where there is
no neuron present and define missing data as neurons with
no detection present.

Of the 14 datasets of the head neurons of C.elegans
worms, random pairs were drawn to be the source and target
point sets. From the remaining worms, the positional co-
variance of each neuron was estimated using the supervised
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Figure 5. C. elegans neuron identification problem. A: Source point cloud of neuron locations and positional covariances. B: The target
image with outliers (indicated by large non-neuronal green objects) and the resulting neuron identifications.

alignment method of [13]. Since the positional variance
of each neuron was uniquely identified using training data,
we used variable margin parameters for IRWOC such that
v = igll%)f?,)\i(zl) where Y; is the covariance matrix of the

[th neuron and X;(-) denotes the ith eigenvalue. Random-
ized RWOC (algorithm 3) was deployed with 6 = 0.9. The
results were compared with iterative closest point(ICP) [6]
as well as coherent point drift (CPD) [25] algorithms.

The demonstration of the C. elegans application of
rRWOC is seen in figure 5. Here the source point set is
a statistical atlas neuron positions [38] and the target point
set is neuron detections which may be corrupted by non-
neuronal outliers. The outcome is that the detected neurons
are identified correctly using the proposed algorithm.

The recovery rates in terms of recovering the transfor-
mation 3 as well as the permutation IT*, are summarized
in table 1. In general, rRWOC was able to recover both the
transformation and permutation better than ICP and CPD,
which tend to be initialization-dependent as well as HS
which is a global method. In all of the experiments, ICP and
CPD were initialized with random rotation. rRWOC and
HS are invariant to initialization since they are not descent-
based methods. HS performs slightly better in the tail of
C.elegans than rRWOC since the tail dataset tends to have
fewer outliers which HS is more sensitive to. Contrarily,
rRWOC does better than HS in the head since there are more
outliers and missing correspondences.

4.3. Discussion

In this paper, we expanded on the linear regression with-
out correspondence model [33, 1, 16, 27] to account for
missing data and outliers. Furthermore, we provided sev-

eral exact and approximate algorithms for the recovery of
regression coefficients under noiseless and noisy regimes.
The proposed algorithms are combinatorial at worst with
variable dimensions. However, randomization procedures
make the average-case complexity in constant dimension
tractable given enough tolerance for failure. We provided
several theoretical guarantees for exact recovery and run-
ning time complexity. Furthermore, we empirically demon-
strated the recovery rates of the proposed algorithms in sim-
ulated and biological data. A future algorithmic direction is
to employ branch and bound techniques found in [31] to re-
duce the computational complexity of the brute force nature
of the algorithms.

One of the crucial parameters in our algorithm is the
margin parameter of v that heavily influences the compu-
tation of the inlier sets. In geometric terms, the v parameter
should correspond to a physical radius such that if a target
point is within that radius relative to a reference point, it is
more likely to be a match than not be one. In the case of
C. elegans where we have access to a statistical atlas that
describes the positional covariance of each neuron (see fig-
ure SA), we can quantify this radius as the half-width full
maximum (HWFM) of the Gaussian distribution of neuron
positions given by the relation f = o+/2log2 where o is
the average neural positional standard deviation. The cross-
validation experiments in figure 4 demonstrate that the op-
timal v does indeed correspond to this value.
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