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Abstract— We focus on sensor networks that are deployed in
challenging environments, wherein sensors do not always have
connected paths to a base station, and propose a new data
resilience problem. We refer to it as DRE2: data resiliency in
extreme environments. As there are no connected paths between
sensors and the base station, the goal of DRE2 is to maximize
data resilience by preserving the overflow data inside the network
for maximum amount of time, considering that sensor nodes
have limited storage capacity and unreplenishable battery power.
We propose a quadratic programming-based algorithm to solve
DRE2 optimally. As quadratic programming is NP-hard thus not
scalable, we design two time efficient heuristics based on different
network metrics. We show via extensive experiments that all
algorithms can achieve high data resiliences, while a minimum
cost flow-based is most energy-efficient. Our algorithms tolerate
node failures and network partitions caused by energy depletion
of sensor nodes. Underlying our algorithms are flow networks
that generalize the edge capacity constraint well-accepted in
traditional network flow theory.

Keywords – Data resilience, integer quadratic and linear
programming, network flows, wireless sensor networks.

I. INTRODUCTION

Background and Motivation. Data resilience refers to the
ability of any network to recover quickly and to continue
maintaining availability of data despite of disruptions such
as equipment failure, power outage, or malicious attack. Due
to resource constraint challenges of wireless sensor networks
such as unreplenishable battery power and limited storage
capacity of sensor nodes [35], link unreliability and scarce
bandwidth of wireless medium [41], and the inhospitable and
harsh environments in which they are deployed [6, 7], sensor
nodes are often prone to failure and vulnerable of data loss.
Therefore, how to ensure that collected data reaches the base
station reliably has been an active research since the inception
of sensor network research. This research is usually named
data resilience [20], reliable data transmission [27], or data
persistence [23]. We use data resilience throughout the paper.

However, all the existing data resilience research in tra-
ditional sensor networks assumes that a base station is
always available to collect data, and focuses on how to
encode and transmit data to the base station reliably. In
this paper, we instead study data resilience from a to-
tally different angle – from emerging sensor network ap-

plications wherein a base station is not available to col-
lect the data. Such applications include volcano and seismic
sensor networks [26], underground sensor networks [31],
underwater or ocean sensor networks [9, 28], and volcano
eruption monitoring and glacial melting monitoring [11, 32].

Data nodes:
Storage nodes:

Destination nodes:
Data offloading:

Fig. 1. The network model.

There are two common
features of these sensor
networks. First, they are
all deployed in inaccessi-
ble or inhospitable regions,
or under extreme weather.
Therefore it is not feasible
to deploy data-collecting
base stations with power
outlets in or near the sensor field. Second, as they continuously
collect large volumes of data for a long period of time without
the base stations, sensory data generated thus has to be stored
inside the network first and then being collected when data
mules or mobile sinks visit the sensor field periodically [8, 30].
Lacking human intervention and maintenance due to extreme
environments, these sensing applications must operate more
resiliently and robustly than traditional sensor networks.

Data Resilience Against Sensor Storage Overflow. In this
paper, we focus on data resilience against sensor storage
overflow, wherein some sensor nodes are close to the events
of interest and continuously generate large amounts of sensory
data, thus depleting their storage spaces and can not store any
newly generated data [24, 35]. Our network model is shown
in Fig. 1. We refer to the sensor nodes that have exhausted
their storage spaces as data nodes; the part of data that cannot
be stored locally is referred to as overflow data. Other sensor
nodes that have available storage are storage nodes (sensor
nodes that generate data but still have available storages are
considered as storage nodes).

In order to prevent data loss, the overflow data at the data
nodes must be offloaded to the storage nodes to be preserved,
waiting to be collected by aforesaid uploading opportunities.
Otherwise, data loss occurs and the data resilience is not
achieved. The storage nodes that finally store overflow data
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are destination nodes. We refer to the process that overflow
data is offloaded from data nodes to destination nodes as data
offloading in sensor networks. As it is not known beforehand
when the next uploading opportunity arrives, it is preferred
that the offloaded data being stored in destination nodes for
longest period of time (i.e.. survival time) before they run out
of battery power. Assume that all the sensor nodes have the
same energy depleting rates, data thus should be offloaded to
destination nodes with highest battery power. As each sensor
node has unreplenishable battery power and limited storage
capacity, the challenge is how to design data offloading scheme
that maximizes the survival time for the offloaded data packets.

Contributions. Our contributions are twofold. On the practical
side, we identify, formulate, and solve a new algorithmic
problem in sensor networks called DRE2: data resiliency
in extreme environments. We accurately quantify the data
resilience and formulate the problem (Section III), and design
a quadratic programming (QP)-based algorithm to solve DRE2

optimally (Section IV). As QP is NP-hard and is not scalable,
we design a suite of time-efficient and fault-tolerant heuristic
algorithms (Section V). We show that all algorithms achieve
high data resiliences while a minimum cost flow (MCF)-
based algorithm is most energy efficient (Section VI). MCF is
formulated as an integer linear program (ILP).

On the theory side, the underlying enabler of our techniques
is flow networks that are delicately converted from the sensor
network. These flow networks make possible to identify the
convoluted relationship between energy consumption of sensor
nodes and the flows of data offloading in DRE2. We find
that in our flow networks, the relationship between flows
and capacities on network edges are significantly different
from those well established in traditional network flow theory.
In particular, we uncover a new relationship wherein the
capacity of an edge must be greater than or equal to the
linear combination (i.e., weighted sum) of the flows on this
edge. In contrast, the well-known edge capacity constraint
of flow networks only mandates that the edge capacity is
greater than or equal to the number of flows on an edge. Such
generalized edge capacity constraint uniquely arises from our
data resilience problem and to the extend of our knowledge
has not been identified in any of the existing literature. With
this generalization, we are able to apply QPs and ILPs on the
flow networks to solve DRE2 optimally and energy-efficiently.

II. RELATED WORK
Quadratic programming is the technique of optimizing a

quadratic objective function with linear equality and inequality
constraints [12, 13], and is one of the simplest forms of non-
linear programming. It has been used in sensor network re-
search to solve several important problems such as localization
[10, 22], variational data assimilation problem for Lagrangian
sensors [10], and optimized transmission for parameter estima-
tion [36]. In contrast, we use this technique to solve a totally
different problem. We believe our work is the first one to use
quadratic programming to achieve optimal data resilience in
sensor networks deployed in challenging environments.

Data resilience has been an active research since the incep-
tion of sensor network research. Ghose et al. [16] achieved
resilience by replicating data at strategic locations in the sensor
network. Ganesan et al. [14] constructed disjoint multipaths to
enable energy efficient recovery from node failures. Recently,
network coding techniques are used to recover data from
failure-prone sensor networks. Albano et al. [5] proposed in-
network erasure coding to improve data resilience to node
failures. Kamra et al. [21] proposed to replicate data compactly
at neighboring nodes using growth codes that increase in
efficiency as data accumulates at the sink. As wireless sensor
netowrks utilize sleeping mechanisms to conserve energy,
which causes data availability problem, Xu et al. [38] proposed
a dataset synchronization protocol in named data networking
to achieve data resilience. However, all these research adopts
the traditional sensor network model wherein base stations are
always available near the networks, therefore do not target the
data resilience problem studied in this paper.

In sensor network where the base stations are absent, data
resilience is achieved by preserving data inside the network,
with two lines of work. The first line is a sequence of
system research [25, 37, 40] that designed cooperative sensor
storage systems to improve the network storage utilization.
The other line of work is our own research. We instead took an
algorithmic approach and solving a variety of data offloading
problems with different objectives in sensor networks from
minimizing the total energy consumption [6, 35], maximizing
the total priorities of preserved data [39] or the minimum
remaining energy of destination nodes [19], replicating data
packets in the events of node failures [6, 34], to overcoming the
overall storage overflow [33]. However, none of them attempts
to maximize the data resilience defined in this paper.

III. PROBLEM FORMULATION OF DRE2

Network Model. We model a sensor network as an undirected
graph G(V,E), where V = {1, 2, ..., n} is the set of n nodes,
and E is the set of m edges. Two nodes are connected if
their distance is within the sensor nodes’ transmission range.
There are l data nodes denoted as Vd = {1, 2, ..., l}. Data node
i ∈ Vd has di number of overflow data packets, each has size
of k bits. The rest n − l nodes are storage nodes V − Vd =
{l+1, l+2, ..., n}. We denote the total a =

∑l
i=1 di overflow

data packets as D = {D1, D2, ..., Da}. Let the data node of
Dj be dn(j) ∈ Vd. Let mj be the available free storage space
at storage node j ∈ V − Vd, meaning that j can further store
mj data packets. We assume that a ≤

∑n
j=l+1mj ; otherwise,

data loss is inevitable and data resilience is not achieved. We
leave the more general question of under which conditions that
not all the data packets can be offloaded as a future work.

Augmented Energy Model. We augment the well-known first
order radio model [18] for wireless energy consumption. When
node u sends a k-bit data packet to its one hop neighbor node v
over their distance lu,v meters, the transmission energy spent
by u is Etu(v) = εelec ∗ k + εamp ∗ k ∗ l2u,v , the receiving
energy spent by v is Erv = εelec ∗ k. Here εelec = 100nJ/bit
is the energy consumption per bit on the transmitter circuit



3TABLE I
NOTATION SUMMARY

Notation Description
V The set of n data nodes
Vd Vd = {1, ..., l} is the set of l data nodes, and

V − Vd = {l + 1, l + 2, ..., n} is the set of storage nodes
di Number of overflow data packets from data node i ∈ Vd
mj Storage capacity of storage node j ∈ V − Vd
D D = {D1, D2, ..., Da} is the set of a overflow data packets
dn(j) The data node of Dj ∈ D
Ei Initial energy level of sensor node i
E
′
i Remaining energy level of sensor node i after data offloading

Et
u(v) Transmission energy spent by u to transmit one packet to v

Er
v Receiving energy spent by v to receive one data packet

Es
v Storing energy spent by v to store one data packet

r Data offloading function
Pj The offloading path of data packet Dj ∈ D
σ(i, j) Node i’s successor node in Pj

yi,j Node i’s energy cost of offloading data packet Dj

ξ(i) Number of data packets stored at storage node i
xi,j The amount of flows on edge (i, j) in flow networks for

QP and ILP
G′ G′(V ′, E′) is the flow network used for QP
G′′ G′′(V ′′, E′′) is the flow network used for ILP

and receiver circuit, and εamp = 100pJ/bit/m2 is the energy
consumption per bit on the transmit amplifier.

However, this model does not take into account the energy
consumption of storing (or writing) data packets into sensor
nodes. As write operation costs 13.2µJ amount of energy
in Toshiba 128MB flash [4] and we are dealing with large
amounts of sensory data, we assume that energy consumption
for storing data is non-negligible. We augment above first
order radio model with storing energy cost as follows. When
storing a data packet, a storage node v ∈ V − Vd costs
Esv = εstore ∗ k amount of storing energy. Here we assume
that εstore = 100nJ/bit is the energy consumption of storing
one bit onto the sensor storage. Let Eu,v = Etu(v) + Erv ; we
have Ev,u = Eu,v . Note a data node not only transmits all of
its own data packets, but also can receive and transmit (i.e.,
relay) data packets for other data nodes. Meanwhile, a storage
node can receive data packets from other nodes and then either
transmits or stores them. Table I shows all the notations.

Problem Formulation. We define offloading function as r :
D → V −Vd, indicating that data packet Dj ∈ D is distributed
from its data node dn(j) ∈ Vd to its destination node r(j) ∈
V − Vd. Let Pj : dn(j), ..., r(j), referred to as the offloading
path of Dj , be the sequence of distinct sensor nodes along
which Dj is offloaded from dn(j) to r(j). Let σ(i, j) denote
node i’s successor node in Pj . Let yi,j be node i’s energy cost
of offloading data packet Dj , then

yi,j =


Eti (σ(i, j)) i = dn(j),
Eri + Esi i = r(j),
Ei,σ(i,j) i ∈ Pj − {dn(j), r(j)},
0 otherwise.

(1)

When i is the data node of Dj , it costs transmission energy
Eti (σ(i, j)); when it is the destination node of Dj , it costs
both receiving energy Eri and storing energy Esi ; when it is a
relaying node of Dj , it costs both receiving and transmission
energy, the sum of which is Ei,σ(i,j). Otherwise, node i is

not involved in Dj’s offloading thus costs zero amount of
energy. Let Ei denote sensor node i’s initial energy level and
E
′

i its remaining energy level after all the a data packets are
offloaded, respectively. Then, E

′

i = Ei −
∑a
j=1 yi,j , ∀ i ∈ V .

Definition 1: (Data Resilience Levels (DRLs).) Given a
sensor network G with a data packets to be offloaded, its
data resilience level (DRL), denoted as D(G), is defined as
the sum of remaining energy of the destination nodes of all
the a data packet; i.e., D(G) =

∑a
j=1E

′
r(j). It is also the case

that D(G) =
∑n
i=l+1

(
E
′

i × ξ(i)
)
, where ξ(i) is the number

of data packets that are finally stored at storage node i. �
D(G) indicates the network’s best achievable effort to

preserve data packets, as the more energy of a storage node,
the longer time its stored data can survive. The objective of
DRE2 is to find a offloading function r and a set of offloading
paths P = {P1, P2, ..., Pa}, each for one of the a data
packets, such that the DRL of the network is maximized, i.e.,
maxr,P D(G), under the energy constraint of sensor nodes:
E′i ≥ 0, ∀ i ∈ V and the storage capacity constraint of storage
nodes: |{j | r(j) = i, 1 ≤ j ≤ a}| ≤ mi, ∀ i ∈ V − Vd. Note
that in event-driven or real-time scenarios wherein new data
nodes appear periodically (due to new events of interest), we
can apply our algorithms in a time-slotted manner to maximize
the data resilience of their newly generated data packets.

EXAMPLE 1: Fig. 2(a) shows a linear sensor network with
four nodes: 1 and 2 are data nodes, each has two overflow data
packets; 3 and 4 are storage nodes, each has storage capacity
of four and E4 � E3. To achieve maximum DRL, the optimal
solution is to offload all the four data packets to node 4, even
though it costs more energy than offloading to node 3. We use
this example to illustrate our QP and ILP solutions next. �

IV. QUADRATIC PROGRAMMING (QP) SOLUTION

To maximize the DRL of any given instance of DRE2, the
fundamental challenge is to find each data packet’s destination
node as well as its offloading path from its data node to this
destination node. Then we are able to compute the number
of data packets each destination node stores as well as its
remaining energy level, therefore calculating the DRL. In
particular, we need to represent sensor energy levels, data
packets offloaded, and storage capacities utilized such that
they can be computed in a holistic manner – network flow
modeling [29] is particularly suitable for such purpose.

Graph Conversion. To demonstrate the network flow tech-
niques. we first convert the sensor network graph G(V,E) in
Fig. 2(a) to a flow network G′(V ′, E′) in Fig. 2(b).

First, it replaces each undirected edge (i, j) ∈ E with two
directed edges (i, j) and (j, i) of capacities +∞. Second, it
splits node i ∈ V into two nodes in-node i′ and out-node i′′

and adds a directed edge (i′, i′′) with capacity of Ei, the initial
energy level of node i. Third, all incoming directed edges of
node i are incident on i′ and all outgoing directed edges of
node i emanate from i′′. Therefore the two directed edges (i, j)
and (j, i) are now changed to (i′′, j′) and (j′′, i′). Fourth, it
connects a super source node s to the in-node i′ of the data
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Fig. 2. (a) shows a linear sensor network G(V,E) with two data nodes 1 and 2, each having two data packets to offload, and two storage nodes 3 and 4,
each having four storage spaces. (b) shows its converted flow network G′(V ′, E′) for QP (A) that maximizes DRLs. (c) shows its converted flow network
G′′(V ′′, E′′) for ILP (B) that finds the minimum energy cost of data offloading. As E4 > E3 and node 4 has enough storage to store all the four data
packets, the set of high-energy storage nodes Vh = {4}.

node i ∈ Vd with an edge of capacity di, the number of data
packets at data node i. Finally, it connects the out-node i′′ of
the storage node i ∈ V − Vd to a super sink node t with an
edge of capacity mi, the storage capacity of storage node i.
We have |V ′| = 2n + 2 and |E′| = 2m + 2n. This graph
conversion technique is used in our previous work [19, 39]
solving other variants of data offloading in sensor networks.

Rationale of above Conversion. The rationale of above con-
version is fourfold. First, as the flows start from s and end
at t in flow network G′, and s connects to in-nodes of
data nodes while t connects to out-nodes of storage nodes,
it “forces” the overflow data packets to offload from data
nodes to storage nodes. Second, with the node-splitting and
the initial energy levels now being capacities of newly created
edges, it guarantees that each node cannot exceed its energy
capacity. Third, with the di and mi now being “encoded” as
the capacities of edges connecting s and i′ (for data nodes)
and i′′ to t (for storage nodes), it makes sure that a data node
cannot offload more overflow data packets than it has and a
storage node cannot store more overflow data packets than
its storage allows. Fourth, and most importantly, the energy
consumption of each node and the DRL can now be accurately
computed using the network flows in G′, as shown below.

Computing the DRL. Let xi,j be the amount of flows on
directed edge (i, j) in G′. Recall that although both data nodes
and storage nodes can receive overflow data packets from other
nodes, a data node must transmit all of them whereas a storage
node can store some of them as long as its storage allows and
transmit the rest. Besides, a data node must transmit all of its
own overflow data packets to others. Fig. 3(a) and (b) visualize
the flows in G′ that go through a data node and a storage node
i respectively. We refer to the edge (i′, i′′) in G′ as sensor node
i’s internal edge, as the amount of flows on (i′, i′′) represents
the amount of “traffic” that goes through i. For data node
i, such traffic includes offloading its own packets, receiving
packets from other nodes, and transmitting packets to others,
as shown in Fig. 3(a). For storage node i, such traffic includes

s xi’,i’’
i’ i’’

(a)	Data	node	i

j’

j’’

xi’’,j’	
(transmit)

xj’’,i’	
(receive)	 t

xi’,i’’

xi’’,t
(store)

i’ i’’

(b)	Storage	node	i

j’

j’’

xi’’,j’
(transmit)

xj’’,i’	
(receive)

xs,i’	
(own)

Fig. 3. (a) Data node i transmits its own data packets as well as data packets
received from other nodes, shown as two thin traffic converging to one thick
traffic at i. (b) Storage node i transmits or stores the data packets received
from others, shown as one thick traffic diverging into two thin traffic at i.

receiving packets from others, transmitting packets to others,
and storing packets into its local storage, as shown in Fig. 3(b).
We have below observations about the flows, their incurred
energy cost, and the flow conservations.
• Observation 1 (for both data and storage nodes). Given

any node i ∈ V and any of its neighboring node j (i.e.,
(i, j) ∈ E)1, the number of data packets i receives from
j is xj′′,i′ , the number of data packets i transmits to j
is xi′′,j′ . Thus, node i’s total receiving energy cost is
Eri ×

∑
j:(i,j)∈E xj′′,i′ and its total transmission energy

cost is
∑
j:(i,j)∈E(E

t
i (j)× xi′′,j′).

• Observation 2 (for data nodes). For any data node i ∈ Vd,
the number of its own data packets that it transmits is
xs,i′ . As the data packets i transmits are either its own or
received from others, we have xs,i′+

∑
j:(i,j)∈E xj′′,i′ =∑

j:(i,j)∈E xi′′,j′ = xi′,i′′ , where xi′,i′′ is the amount of
flow on edge (i′, i′′).

• Observation 3 (for storage nodes). For any storage node
i ∈ V −Vd, the number of data packets it stores is xi′′,t =
ξ(i) (recall ξ(i) is the number of data packets that are
finally stored at storage node i). As the data packets i
receives are either transmitted to other nodes or stored at
i, we have

∑
j:(i,j)∈E xj′′,i′ =

∑
j:(i,j)∈E xi′′,j′+xi′′,t =

xi′,i′′ . The total storing energy cost of i is Esi × xi′′,t.
Therefore the DRL can be represented as below:

1Note that it is not that (i, j) ∈ E′, as all the data nodes, storage nodes,
and neighboring nodes are sensor nodes in G, not in G′.
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D(G) =

n∑
i=l+1

(
ξ(i)× E

′

i

)
=

∑
i∈V−Vd

(
xi′′,t ·

(
Ei − Eri ×

∑
j:(i,j)∈E

xj′′,i′−

∑
j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
− Esi × xi′′,t

))
.

(2)

QP Formulation. As D(G) is a concave quadratic expression,
DRE2 can be represented using below QP formulation (A):

(A) max D(G) (3)
s.t.
xs,i′ = di, ∀i ∈ Vd (4)
xi′′,t ≤ mi, ∀i ∈ V − Vd (5)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ = xi′,i′′ , ∀i ∈ Vd (6)

xi′,i′′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ Vd (7)

∑
j:(i,j)∈E

xj′′,i′ = xi′,i′′ , ∀i ∈ V − Vd (8)

xi′,i′′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t, ∀i ∈ V − Vd

(9)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
≤ Ei, ∀i ∈ Vd (10)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
+

Esi × xi′′,t ≤ Ei, ∀i ∈ V − Vd (11)

Eqn. 4 mandates that to achieve data resilience, data node
i must be able to offload all its di number of data packets
into the network. Inequality 5 shows the storage constraint
of storage nodes. Eqns. 6 and 7 show the flow conservation
for in-node and out-node of each data node, respectively.
The combination of these two equations shows that the total
number of packets transmitted by a data node equals the
number of its own offloaded packets plus the number of its
received packets (Observation 2). Eqns. 8 and 9 show the
flow conservation for in-node and out-node of each storage
node, respectively. The combination of them shows that the
total number of packets received by a storage node equals
the number of packets transmitted by it plus the number of
packets stored locally by it (Observation 3). Inequalities 10 and
11 represent the energy constraint of data nodes and storage
nodes respectively. Note that data nodes consume energy when
receiving and transmitting data packets while storage nodes
consume energy when receiving, transmitting, and saving data
packets (Observations 1 and 3).

Generalized Edge Capacity Constraint. For either a data
node or a storage node i and its corresponding internal

edge (i′, i′′), although Inequalities 10 and 11 enforce energy
constraint on i, they do not reveal the relationship between
xi′,i′′ , the amount of flows on edge (i′, i′′), and Ei, the
capacity of this edge. Their relationship does not simply follow
the traditional edge capacity constraint xi′,i′′ ≤ Ei, that the
amount of flows on an edge is less than or equal to the
capacity on that edge. Before exploring such relationship for
data nodes and storage nodes, we first define generalized edge
capacity constraint as below. We will then show another forms
of Inequalities 10 and 11 indeed exhibit such generalized edge
capacity constraint.

Definition 2: (Generalized Edge Capacity Constraint.)
In a flow network, given any edge (u, v), let f(u, v) and
cap(u, v) denote its amount of flows and capacity respectively.
The generalized capacity constraint is defined as

∑f(u,v)
k=1 ak ≤

cap(u, v), where ak is the weight for the kth flow on the edge.
When ak = 1 for all the flows, it becomes f(u, v) ≤ cap(u, v),
the traditional edge capacity constraint. �

For a data node i with xi′,i′′ flows going through it, we
need to figure out which node each flow goes to in order to
compute the incurred energy of this flow (note that energy cost
of receiving a packet does not depend on where the packet is
from while energy cost of transmitting a packet depends on
where the packet goes to). As the number of i’s own offloaded
data packet is xs,i′ , the number of data packets it relays (i.e.,
receives and then transmits) is xi′,i′′ − xs,i′ . Assume the QP
(A) has computed that the kth flow, 1 ≤ k ≤ xi′,i′′ , goes
to node γ(k). Then the energy cost of i to offload its own
xs,i′ data packets is

∑xs,i′

k=1 E
t
i

(
γ(k)

)
, and the energy cost of

i to relay the rest xi′,i′′ − xs,i′ packets is
∑xi′,i′′

k=xs,i′+1

(
Eri +

Eti (γ(k)
)
. Therefore Inequalities 10 is changed to:

xs,i′∑
k=1

Eti
(
γ(k)

)
+

xi′,i′′∑
k=xs,i′+1

(Eri + Eti
(
γ(k)

)
) ≤ Ei. (12)

Similarly, Inequalities 11, which is for a storage node i with
xi′,i′′ flows going through it and xi′′,t of them going to t (i.e.,
i stores xi′′,t data packets), is changed to

xi′′,t∑
k=1

(Eri + Esi ) +

xi′,i′′∑
k=xi′′,t+1

(Eri + Eti
(
γ(k)

)
) ≤ Ei. (13)

Theorem 1: Eqns. 12 and 13 show that edges (i′, i′′) in G′

follow generalized edge capacity constraint.
Proof: For Eqn. 12, let ak = Eti

(
γ(k)

)
when 1 ≤ k ≤ xs,i′ ,

and ak = Eri + Eti
(
γ(k)

)
when xs,i′ + 1 ≤ k ≤ xi′,i′′ , then

Eqn. 12 becomes
∑xi′,i′′

k=1 ak ≤ Ei, which is the generalized
edge capacity constraint following Definition 2. Similarly, for
Eqn. 13, let ak = Eri + Esi when 1 ≤ k ≤ xi′′,t, and ak =
Eri + Eti

(
γ(k)

)
when xi′′,t + 1 ≤ k ≤ xi′,i′′ , then Eqn. 13

becomes
∑xi′,i′′

k=1 ak ≤ Ei.
Corollary 1: There exists a special energy model under

which Eqns. 12 and 13 demonstrate traditional edge capacity
constraint where the number of flows on an edge is less than
or equal to the edge capacity.
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Proof: Let ak = 1, ∀k for Eqns. 12 and 13, we get
Eti
(
γ(k)

)
= Eri + Eti

(
γ(k)

)
= Eri + Esi = Eri + Eti

(
γ(k)

)
.

Thus Eri = 0 and Eti
(
γ(k)

)
= Esi = 1; that is, receiving

a packet costs zero energy while transmitting and saving a
packet each costs one unit of energy.

Intuitively, Corollary 1 gives a special and simplified energy
model where every node on a data packet’s offloading path
(including the data node, any intermediate relaying node,
and the destination node) costs one unit of energy. This
corresponds to the traditional edge capacity constraint where
one amount of flow consumes one unit of edge capacity. By
generalizing this widely used constraint in flow network, our
work augments the existing network flow model and could
have a potential impact on its related theory.

Solving QP. QP can be solved by the classic Wolfe’s modified
simplex method [13], which is based on solving a system
of linear relations subject to complementarity conditions.
There are many production QP solvers such as CGAL [1]
and CPLEX [2]. We adopt CPLEX due to its performances.
Besides, CPLEX can improve the efficiency of QP by allowing
gap tolerance to find a feasible solution quickly (more in
Section VI). As QP is NP-hard [15], we next design two time-
efficient heuristic algorithms below and show via experiments
that they perform close to the optimal QP solution.

V. HEURISTIC ALGORITHMS

To maximize DRLs, an intuitive solution is to offload data
packets to nodes with initial high energy levels, defined below.

Definition 3: (High-Energy Storage Nodes.) High-energy
storage nodes, denoted as Vh, are the set of storages nodes with
the highest initial energy levels that can store all the a data
packets. More formally, we sort the n−l storage nodes V −Vd
in non-ascending order of their initial energy level: Ev1 ≥
Ev2 ≥ ... ≥ Evn−l

. Then the top k+1 nodes {v1, ..., vk, vk+1}
where

∑k
i=1mvi < a ≤

∑k+1
i=1 mvi is Vh. �

We design two algorithms below that center around how to
offload data packets to Vh in an energy-efficient manner.

Network-Based Algorithm. For each high-energy storage
node i ∈ Vh, Algo. 1 finds mi data packets that are closest to
i (in terms of energy consumption) and offloads them to i via
the currently available shortest path. This takes place until all
the a data packets are offloaded. It takes O(n2).

Algorithm 1: Network-Based Algorithm.
Input: A sensor network G with mi, Ei, data packets D;
Output: D(G);
1. Compute Vh = {v1, ..., vk, vk+1};
2. for (1 ≤ i ≤ k)
3. Find the mi data packets that are closest to vi and

offload them to vi via the current shortest path
between each data packet and vi;

4. Update the energy levels of all the nodes on the path;
5. end for;
6. Offload each of the a−

∑k
i=1mvi data packets to vk+1

via the current shortest path and update the energy levels;
7. Compute D(G) =

∑n
i=l+1

(
E
′

i × ξ(i)
)
;

8. RETURN D(G).
Minimum-Cost-Flow (MCF)-Based Algorithm. Although
Algo. 1 saves energy by offloading data packets to their closest
nodes in Vh, it does not consider global energy minimization
in data offloading. Below we design Algo. 2 that minimizes
total energy consumption in data offloading. It is a MCF-
based algorithm [29] applied on another properly converted
flow network G′′(V ′′, E′′) from the sensor network G(V,E).
In MCF, each edge in the flow network has a capacity and a
cost and the goal is to minimize the total cost of the flows.
Graph Conversion. The conversion from G to G′′ is similar
to the one of converting G to G′ in Section IV including the
node splitting, the edge connectivity, and the edge capacities,
however with two differences. First, the super sink t only
connects to the out-nodes i′′ of the high-energy storage node
i ∈ Vh, as we focus on offloading data packets to Vh.
Second, we assign the costs of all directed edge (i′′, j′) as
Ei,j = Eti (j) + Erj , the sum of node i’s transmitting energy
to j and node j’s receiving energy, the costs of directed edges
(j′′, i′) as Ej,i = Etj(i)+E

r
i , the sum of node j’s transmitting

energy to i and node i’s receiving energy, and the costs of all
other edges as zeros.
MCF ILP Formulation. With above transformation, the sensor
network G(V,E) in Fig. 2(a) is now converted to a flow
network G′′(V ′′, E′′) in Fig. 2(c). Let xi,j and ci,j be the
amount of flows and cost on edge (i, j) ∈ E′′, respectively.
Below shows the MCF ILP formulation (B) that minimizes
the total cost in G′′(V ′′, E′′).

(B) min
∑

(i,j)∈E′′
xi,j × ci,j (14)

s.t.
xs,i′ = di, ∀i ∈ Vd (15)
xi′′,t ≤ mi, ∀i ∈ Vh (16)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ Vd

(17)∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t, ∀i ∈ Vh

(18)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(Eti (j)× xi′′,j′) ≤ Ei,

∀i ∈ Vd (19)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

Eti (j)× xi′′,j′+

Esi × xi′′,t ≤ Ei, ∀i ∈ Vh (20)∑
j:(i,j)∈E

xj′′,i′ =
∑

j:(i,j)∈E

xi′′,j′ , ∀i ∈ V − Vd − Vh

(21)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

Eti (j)× xi′′,j′ ≤ Ei,

∀i ∈ V − Vd − Vh (22)
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Fig. 4. Small-scale comparison by varying di. mj = 5.
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Fig. 5. Small-scale comparison by varying mj . di = 10.

The Constraints 15-20 are similar to those in QP (A), except
that Constraints 16, 18, and 20 are now applied on Vh, as
only high-energy storage nodes Vh can store data packets.
Finally, we add two more constraints viz. Equation 21 and
Inequality 22 to respectively address the flow conservation and
energy constraint of all the storage nodes that are not in Vh.
Algo. 2 below calls ILP (B) as a subroutine:

Algorithm 2: MCF-Based Algorithm.
Input: A sensor network G with mi, Ei, and D;
Output: D(G);
1. Compute Vh = {v1, ..., vk, vk+1};
2. Convert G(V,E) to flow network G′′(V ′′, E′′);
3. Compute ILP (B) on G′′;
4. Compute D(G) =

∑n
i=l+1

(
E
′

i × ξ(i)
)
;

5. RETURN D(G).

Theorem 2: Algo. 2 achieves minimum energy consump-
tion in offloading a data packets to nodes in Vh.
Proof: We give a proof sketch due to space constraint. By
applying MCF algorithm on G′′, it guarantees that all the a
overflow data packets are offloaded to Vh with minimum total
energy cost while respecting the storage and energy constraints
of sensor nodes.

Solving MCF. We implement MCF ILP using CPLEX [2].
MCF can also be solved efficiently and optimally by combi-
natorial algorithms such as scaling push-relabel proposed by
Goldberg [17]. Its time complexity is O(a2 · b · log(a · c)),
where a, b, and c are number of nodes, number of edges, and
maximum edge capacity in the flow network, respectively.

All QP, Network- and MCF-based algorithms are fault-
tolerant as they find the offloading paths in spite of node
failures and network partitions caused by energy depletion of
sensor nodes. We show that our fault-tolerant algorithms still
achieve high DRLs and energy-efficiency in Section VI.

VI. PERFORMANCE EVALUATION

We compare the performance of different algorithms viz.
QP-based (referred to as QP), Network-Based (referred to
as Network), and MCF-Based (referred to as MCF). We
write our own simulator in Java that takes as input the sensor
network instance including the network topology, initial energy
levels of each sensor nodes Ei, the data nodes and their
overflow data packets di, the storage nodes and their storage
capacities mj , and generates various output files that conform
to the format needed for CPLEX execution. We consider both
small scale networks of 50 sensor nodes (10 of them are data
nodes) and large scale of 100 nodes (20 of them are data
nodes). The sensor nodes are uniformly distributed in a region
of 1000m × 1000m. Each data node generates some number
of overflow data packets, each of 512B, that to be offloaded
into the network. For initial energy levels, we consider both
varying model, where different sensors have different initial
energy levels, and uniform model, where all sensor nodes have
the same initial energy levels. Transmission range is 250m. In
all plots, each data point is an average over ten runs, in each
of which a different sensor network instance is generated. For
fair comparisons of different algorithms, however, we use the
same sensor network instance in the same run. The error bars
indicate 95% confidence intervals.

Small-scale Comparison. As QP takes time to run, we com-
pare them in small scale of 50 nodes with 10 data nodes. The
initial energy levels are random numbers in [2000µJ, 4000µJ ].
Fig. 4(a) varies di from 5, 10, 15, to 20 while setting mj as
5. It shows that with the increase of di, the DRLs achieved
by all algorithms increase, as more data packets are now
stored in storage nodes. QP always achieves slightly higher
DRLs than MCF, while MCF higher than Network most of
the time. As QP is optimal and all three perform close, it
demonstrates the efficacy of all three algorithms in achieving
data resilience. Fig. 4(b) shows the total energy consumptions
of three algorithms, among which MCF has the smallest.
QP costs the most energy, though, as it sometimes detours
(instead of following the shortest energy path) from sources
to destinations in order to achieve high DRLs. Fig. 5 varies mj

while fixing di = 10. It shows again that QP achieves highest
DRLs while MCF consumes the least amount of energy.

Gap Tolerance (%) 2 3 5 10 30

Execution Time (sec)
2014.91 826.3 11.98 13.44 15.92
788.8 182.53 8.27 7.89 7.98

1034.27 160.98 22.64 22.8 28.32

TABLE II
INVESTIGATING TOLERANCE GAP OF THE QP IN CPLEX.

Large-scale Comparison. Next we compare the algorithms in
larger scale of 100 sensors, 20 of them are data nodes. We find
that CPLEX cannot finish computing an instance of QP after
more than 13 hours, thus decide to resort to its gap tolerance
technique to improve its execution time.

Gap Tolerance of the QP. CPLEX [2] can be parameterized
using a percentage value called gap tolerance, wherein
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CPLEX stops once it finds a feasible solution within this
percent of optimal. We first investigate the tradeoff between
the execution time and solution quality of different gap tol-
erance values. Table II records the CPLEX execution time
for different gap tolerances between 2% and 30%, for three
randomly generated networks. As 2% can take more than
half an hour, we choose the next value of 3% as the gap
tolerance for the QP; i.e., for the rest comparisons the QP
always achieves at least 97% of the optimal DRLs.

Fig. 6 compare the three algorithms by varying di from 50,
75, 100, to 125 with mj = 50 and Ei = 2500µJ . We observe
that even with gap tolerance, QP still achieves slightly larger
DRLs with much higher energy cost than the Network and
MCF do, as it focuses on high DRLs and not on the energy
efficiency to achieve them. It also shows that the energy cost of
QP decreases when di increases from 100 to 125. This is rather
counter-intuitive, as offloading more data packets should cost
more energy. Our conjecture is that when there are multiple
routes to offload a data packet without affecting the DRL
achieved, the QP randomly chooses one to save execution
time. When the network has more data packets to offload,
however, choosing such a path randomly could negatively
affect the DRL maximization. As such, the QP chooses more
energy-efficient offloading paths thus decreasing the energy
cost. Fig. 7 varies mj and shows that the difference of DRLs
by different algorithms seem to increase when increasing the
storage capacity. As high energy nodes have more spaces
to store data packets with increasing of mj , the QP, being
optimal, does a better job of utilizing the available spaces in
order to maximize the DRL.

Investigating Fault-Tolerance. Finally we investigate the
fault-tolerance of the three algorithms by finding the resultant
dead nodes (i.e., nodes with depleted energy). We randomly
generate one sensor network of 100 nodes, 20 of them are
data nodes with di = 50. It sets the Ei of all the nodes
as 1200µJ and gradually decreases it while recording the
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Fig. 6. Large-scale comparison by varying di. mj = 50.
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Fig. 7. Large-scale comparison by varying mj . di = 100.
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Fig. 8. Fault-tolerance of three algorithms by varying Ei.
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Fig. 9. Fault-tolerance of three algorithms at Ei = 1200µJ .

number of dead nodes along the way. It stops until at least
one of the algorithms fails to offload all the data packets.
Fig. 8(a) sets mj as 50 and shows that the algorithms can
tolerate up to 11 dead nodes. However, as QP focuses more
on DRLs and less on energy costs, it has more dead nodes
than the other two most of the time. There is an interesting
observation that when decreasing Ei, number of dead nodes
increases in Network and MCF while decreases in QP. This
is understandable for Network and MCF, as less initial energy
levels contribute to more dead nodes in offloading the same
amount of data packets. For QP, however, when Ei gets low, in
order to maximize the DRL, it distributes the data more evenly
into the network, thus resulting in lesser number of dead nodes.
Fig 8(b) decreases mj to 13, at which point the network is
almost full after data offloading. In contrast to Fig 8(a), there
is no dead nodes for Network when Ei is between 1200µJ and
800µJ . When decreasing mj , more storage nodes participate
in the data offloading process, thus energy consumptions per
node gets smaller, resulting in smaller number of dead nodes.
Note that when Ei = 200µJ , Network cannot offload all the
data packets thus does not appear in the plot.

Last, Fig. 9(a) and (b) study the fault-tolerance of algorithms
at Ei = 1200µJ by varying di and mj respectively. It is
interesting to notice that with the increase of mj , the number
of dead nodes increases for both Network and MCF while
decreasing for QP. For Network and MCF, as the number of
destination nodes gets smaller with increase of mj , less num-
ber of them participate in the data offloading process, depleting
their energies more quickly. For QP, with the increase of mj

it can distribute data packets to nodes more evenly (by taking
longer time), thus reducing the number of dead nodes.

VII. CONCLUSION AND FUTURE WORK

We solved a new data resilience problem that uniquely arises
from emerging sensor network applications deployed in the
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extreme environment. We designed a QP-based optimal algo-
rithm and two time- and energy-efficient heuristic algorithms.
Although sensor network research has been around for more
than two decades, data resilience in our network setup has
not been studied in any existing literature. We uncovered a
generalized edge capacity constraint, wherein the consumed
capacity on an edge is the linear combination of its flows.
This generalizes the well-accepted edge capacity constraint
in traditional network flows. One limitation of our approach
seems to be that the network scenario including the data nodes
and their overflow data packets are known beforehand. We
believe this can be overcome by periodically executing our
algorithms whenever new data nodes arise, thus solving the
real-time version of this data resilience problem. As a future
work, we plan to focus on a few specific topologies such as
stars and trees, and investigate if optimal or approximate time-
efficient algorithms exist. Finally, under which conditions such
that not all the data packets can be offloaded and then how
to achieve data resilience for such a fraction of data packets
(i.e., event goodput [3]) remain two relevant new problems.
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