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Abstract—The Industry 4.0 paradigm has changed the way
industrial systems with hundreds of sensor-actuator enabled
devices, including industrial internet of things (IIoT), cooperate
and communicate with the physical and human worlds. Given the
intricacy, the diagnostics of such systems is extremely important.
While anomaly detection is a valid approach to avoid unplanned
maintenance or even complete breakdown, its effective realization
in IIoT requires the design and implementation of frameworks
for efficient monitoring, data collection, and analysis. Most of the
existing anomaly detection techniques provide only a diagnosis of
the fault without taking into account the uncertainty. Moreover,
the lack of ground truth data (which is a typical problem in
the industrial context), make their implementation even more
challenging. This paper proposes an anomaly detection technique
built on top of an industrial framework for the data collection
and monitoring. Specifically, we address the lack of labeled
data by designing a semi-supervised anomaly detection algorithm
that exploits Bayesian Gaussian Mixtures to assess the working
condition of the plant while measuring the uncertainty during the
diagnosis process and we implement the proposed framework on
a real-life IIoT testbed, namely a scale replica assembly plant.
Experimental results demonstrate that our anomaly detection
algorithm is able to detect the plant working conditions with
99.8% of accuracy, and the semi-supervised approach performs
better than a supervised one.

Index Terms—Industry 4.0, IIoT, Anomaly Detection, Bayesian
Gaussian Mixtures.

I. INTRODUCTION

The advancement of information and communications tech-
nology (ICT) and smart sensing capabilities have revolu-
tionized the industrial sector [1]. Indeed, the interconnected
network of smart devices equipped with sensors and actuators
enable the industrial systems interact with the physical and
human worlds [2]. This paradigm shift involving Industrial
Internet of Things (IIoT) is referred to as Industry 4.0 [3].

In Industry 4.0, effective fault diagnosis (assessment of
working conditions) is extremely important because timely
detection of a condition or event, which is not normal (i.e.,
anomalous), can avoid unplanned/unwanted system mainte-
nance or even complete breakdown that could be very ex-
pensive. Undoubtedly, efficient diagnostics depends on the
implementation of underlying frameworks for data collection,
monitoring, and analysis. In an IIoT scenario, the hetero-

geneity of sensors and their communication protocols as well
as the absence of labeled ground truth data pose significant
challenges for the design and implementation of effective
diagnostic systems.

For efficient realization of IIoT frameworks, the edge and
cloud computing offer key enabling technologies [4]. Specif-
ically, edge computing helps implement simple operations
like preliminary on-board analysis. Although edge devices are
resource-constrained, they can provide desired results very
quickly, which make them suitable for monitoring industrial
processes that typically work at a high frequency rate. Simi-
larly, cloud computing helps store and keep track of the sys-
tem’s historical data and perform complex operations (in-depth
analysis, execution of algorithms) that require higher compu-
tational power as compared to edge devices. The cloud also
plays an important role in controlling and coordinating IIoT
device operations in smart industrial plants. Moreover, AI and
machine learning techniques not only improve (autonomous)
decisions [5] by reducing uncertainty, but also develop smart
applications for better diagnostics and maintenance.

In this paper, we propose an anomaly detection technique
that we built on top of an IIoT framework for efficient data
collection and monitoring of a real industrial plant. To design
and implement the software architecture, we leverage an Open-
Stack module Stack4Things (S4T), a cloud based platform
that controls and orchestrates the IoT devices without caring
about their location, network configuration or technology [6].
In order to address the lack of data, which is typical for the
industrial context, we tackled the anomaly detection problem
as a semi-supervised approach and we exploited the Bayesian
theory to model the uncertainty during the diagnosis process.

Our novel contributions are summarized as follows.
i) To assess working conditions of a real industrial testbed

while addressing the lack of labeled ground truth data,
we propose a semi-supervised machine learning based
anomaly detection algorithm that exploits the Bayesian
theory to model uncertainty in the diagnosis process.

ii) Based on Stack4Things, we implemented an IIoT frame-
work, called Industrial Stack4Things (IS4T) for monitor-
ing, data collection and labelling of an industrial plant.



iii) We created a scale replica of an industrial assembly plant
and use it as a testbed for experimentation to validate the
performance of the proposed anomaly detection technique
and IIoT framework in a real setting.

The rest of the paper is organized as follows. Section II reviews
related works and Section III describes the scale replica
industrial plant testbed. Section IV provides a brief description
of the IIoT framework we realized for data collection and
monitoring. Section V presents the anomaly detection algo-
rithm built on top of the IIoT framework to assess the working
conditions of the industrial plant and detect anomalies. Section
VI summarizes the experimental results. Finally, Section VII
concludes the paper with directions of future research.

II. RELATED WORK

A recent survey [3] described the challenges and future
directions in Industry 4.0. In the following, we summarize ex-
isting works highlighting their differences from our approach.

In [7], a performance evaluation of two architectures is pre-
sented for industrial IoTs, called full-cloud and edge-cloud, on
top of which is performed an anomaly detection scheme based
on the Long Short Term Memories (LSTM). This approach
consists of a single soft power line communication (PLC)
to communicate with the IIoT computer using only Message
Queue Telemetry Transport (MQTT) protocol. However, in a
real industrial scenario, the number of communication pro-
tocols adopted by heterogeneous sensors can be quite large.
Our proposed framework is designed to work with different
communication protocols, making it suitable for Industry 4.0.

A Dirichlet Process Gaussian Mixed Model is proposed in
[8] for fault detection in multi-mode processes. Although good
results were obtained from a wastewater treatment plant, this
work does not provide insights into fault detection uncertainty.
In contrast, we demonstrate the feasibility of our anomaly
detection scheme in a real scale replica industrial plant.

An IoT framework proposed in [9] monitors chemical
emissions in an industrial plant. It consists of three layers:
a lower layer of ZigBee nodes, a middle layer of long range
(LoRa) nodes, and an upper layer providing connection to the
Internet to store sensory data in an SQL-database. However,
in an industrial setting, the interference due to a variety of
devices can be very high; hence the use of only wireless
communication protocols may result in a significant data loss.

In [10] is presented a causal-polytree anomaly detection
framework for Supervisory Control and Data Acquisition
(SCADA) systems, which uses a naive Bayes classifier for
anomaly detection, preventing the system from malicious
attacks. In this approach, the data acquisition and anomaly
detection are integrated. Whereas, the synergy between data
collection and anomaly detection makes our proposed frame-
work more suitable for industrial applications.

III. SCALE REPLICA ASSEMBLY PLANT

The IIoT testbed used for design and testing of our anomaly
detection technique consists of a scale replica of an assembly

plant for transportation of car pieces (see Fig. 1), equipped
with two motors and six belts for transport of a mobile cart.

Fig. 1: The IIoT testbed.

We instrumented the IIoT system for monitoring purpose,
both from electrical and mechanical points of view. For the
electrical part, we used a non-invasive current sensor SCT-013
to detect current spikes or power supply malfunctions that can
be related to the system overloading and short-circuits in the
electric network or mechanical stress (i.e., gears friction).

For mechanical part, we used a vibration sensor VTV-122
by IFM electronics and a noise sensor SPQ0410HR5H-B by
Mikroe, to monitor anomalous conditions due to unbalanced
loads or proximity switch malfunctions. Finally, to monitor the
engine’s working conditions, we added a temperature sensor
and a distance sensor to measure the tension of one of the rub-
ber belts, preventing severe engine damages due to excessive
strains. Since it is not possible to directly access the inside
of the engines, we used a TS2229 sensor. On the other hand,
the belt tension is measured using state-of-the-art VL53L0X
distance sensor manufactured by STmicroelectronics

As mentioned, in a large scale industrial plant the hetero-
geneity of sensors using different communication protocols
(i.e., 4-20ma, I2C, SPI, etc.), poses a major challenge due to
the requirement of managing the sensors separately. (This is
true even for our small IIoT testbed consisting of 5 sensors).
This motivated us to build an efficient IIoT framework that
will not only simplify the data collection process, but also
serve as an abstraction layer between the embedded boards
interacting with the sensors and the data acquisition system.

In such a context, an important feature of our testbed is
the ability to inject manual faults, mostly mechanical, inside
the plant, such as introduce external vibration inside the
structure, change the belt tension, increase the friction of the
gears by acting on the system brakes, and deactivate cart
proximity switch, thus emulating a mechanical problem of the
belts. This feature is instrumental for our machine learning
algorithm to characterize the system behaviour, such as normal
or anomalous operating conditions. Moreover, the possibility
to manually inject the fault gives us the opportunity to build



a labeled dataset in correspondence of the different operating
conditions of the system and resulted to be fundamental for
the validation of the proposed anomaly detection technique.

IV. INDUSTRIAL STACK4THINGS (IS4T) ARCHITECTURE

This section presents IS4T, the IIoT framework adapted for
data collection and telemetry of the industrial plant. Figure 2
depicts the overall architecture consisting of three layers.
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Fig. 2: Proposed IIoT framework.
The first layer is the physical layer closest to the plant

itself. The micro-controllers of different sensor boards perform
computations over electric signals generated by the sensors
that provide measurements to the upper layer. The sensor board
is equipped with a micro-controller unit (MCU) and capable of
managing several sensor interfaces such as I2C, SPI, 4-20mA,
and others. Moreover, owing to different expansion shields, the
board can also work with traditional communication protocols
like Bluetooth Low Energy (BLE) and Wi-Fi, or industry
oriented protocols like MODBUS and CAN.

The second layer, called data collection layer, acts as a
bridge between the edge and the cloud. One of the biggest
challenges here is that the communication protocols and the
format of sensory data from the physical layer can be very
different; this layer has to collect, manage, and organize the
data to make them homogeneous. Moreover, the collected data
are analyzed by an AI engine for early anomaly detection
running on the edge. In case of an anomaly, an alarm is
generated and sent to the operator and the upper layer.

In the third layer, represented by the cloud, a SQL-like
time series database maintains the entire history of the plant
by storing the data coming from the data collection layer.
We decided to adopt InfluxDB1, a non-relational database
particularly optimized for embedded devices due to its very
high read/write speeds. Just like the previous layer, the cloud
is provided with an AI engine, that can perform both the
training and anomaly detection on the collected data thanks
to the higher computing power available.

The gateway board (Arancino.cc2 board) exhibits a double

1https://www.influxdata.com, accessed February 2021
2https://arancino.cc, accessed February 2021

environment made of MCU with a larger number of interfaces
to interact with the external world, and a micro-processing
unit (MPU) provided by a Raspberry compute module that
extends the board capabilities with computing power. The
board also manages wired/wireless communication links with
different sets of boards, and uses the computing module for
early processing of gathered data directly on the edge.

For data visualization, we adopted a tool called Grafana3,
which is integrated with the InfluxDB database by connect-
ing to it and showing the plant monitoring data through a
dashboard. Grafana also notifies the occurrence of an anomaly
inside the plant with an alarm on the dashboard.

The labeling of the data collected through the IS4T frame-
work is accomplished automatically by defining the starting
and ending dates and time and selecting the label representa-
tive for the operating conditions of the system (e.g., working,
proximity switch break, gears friction, etc.). By doing so,
the system automatically generates an insertion query to the
InfluxDB database storing the collected data together with the
associated label. In this sense, the framework introduces a
new level to the data collection process providing a labelling
mechanism which requires a minimal interaction with the
human being and adding more information to the data.

Finally, The IS4T dashboard accessed by a normal web
browser, interacts with the IS4T functionalities.

V. SEMI-SUPERVISED ANOMALY DETECTION TECHNIQUE

This section presents the proposed anomaly detection tech-
nique on the collected data through the IS4T framework and
used to assess the working conditions of the IIoT testbed.

Given diagnosis or prognosis of an IIoT system is an
important task, a viable approach is to equip the system with
alarms that warn the human operator about the operating
conditions. However, the main drawback is that it may be too
late by the time the user is warned [11].

In the context of Industry 4.0, the heterogeneity of a large
number of sensors and protocols poses further challenges to
correlate all the data and determine if the industrial system is
properly working or not. To this end, machine learning based
anomaly detection can be a valid approach [12]. Indeed, a
timely detection of a faulty condition (or event) that is not
considered normal (i.e., anomalous) may avoid catastrophic
consequences such as breakdown, and/or unplanned mainte-
nance [13].

Although anomaly detection is a viable solution, the major-
ity of the proposed techniques do not consider the uncertainty
of the diagnosis process. In the industrial scenario, where
the generation of false alarms can be very expensive in
terms of time and money, we believe that the uncertainty
characterization will result in a better and more intelligent
anomaly detection scheme [1]. Bayesian theory is a powerful
tool to model the uncertainty.

Another challenge is the lack of ground truth (i.e., anoma-
lous) data essential for validation of anomaly detection. The

3https://grafana.com, accessed February 2021



absence of historical databases or the use of intermittent data
recording techniques result in poor labeled datasets. Semi-
supervised learning can address this issue as it can work with
a small number of labeled data samples (e.g., the number of
labeled samples range between 10% and 20% of the total
dataset) during the training phase. However, this technique
assumes data continuity (i.e., close datapoints share the same
label) and data clustering (i.e, datapoints that share the same
label are likely to form a cluster).

A. Data Collection

The possibility to manually inject faults on the scale replica
industrial plant helps to observe our system when subject to
mechanical stress. Using our IIoT framework, we collected
a dataset of 20, 008 samples under three different operating
conditions: a normal one during which the mobile cart of the
industrial plant can move back and forth, and two anomalous
conditions during which the plant was subject to a mechanical
stress induced by simulating the break of the cart proximity
switch (referred to as Anomaly 1), or increasing the friction
of the gears (referred to as Anomaly 2).

The following methodology was adopted for data collection.
We collected data under normal operating condition for about
one hour. Then, we injected the first fault (i.e., Anomaly 1) and
collected the data for two and half hours. To avoid an excessive
mechanical stress, we returned to data collection under normal
working condition for one hour. Finally, we injected the second
fault (i.e., Anomaly 2) and collected the data for another hour.

Since the injected anomalies generate a mechanical stress,
we selected only a subset of the available sensors to perform
the anomaly detection. In particular, those sensors were chosen
that exhibited a visible change in the trend so far as the three
system operating conditions are concerned.

Fig. 3 depicts the raw data measurements gathered from
vibration, the three phases of the current (only one is showed
in the plot for a better visualization), and distance sensors.
Despite their high variability, it is possible to notice three
distinctive trends that allowed us to discriminate between the
normal and anomalous conditions. For data pre-processing, we
applied a time overlapping sliding window and extracted the
maximum, minimum, mean, and standard deviation for each
of the above signals (except for the current, which is a periodic
signal; hence we extracted only the maximum value). The
sliding window width has been fixed empirically to the value
of 400 samples. At the end of this procedure, we obtained the
final labeled dataset of 19, 177 samples.

This dataset had 12, 103 anomalies and 11 features con-
sisting of distance maximum, minimum, mean, and standard
deviation values; current first phase, second phase and third
phase maximum values; vibration maximum, minimum, mean,
and standard deviation values. Fig. 4 depicts these 11 features
that exhibit a smoother trend. Finally, in order to maintain
each of the above mentioned features in the same range values,
we applied a normalization process using a min-max scaling
technique.

B. Semi-supervised Bayesian Gaussian Mixtures

In this subsection, we provide a detailed description of the
proposed anomaly detection technique.

Given the aim is to cluster and separate normal and
anomalous datapoints, let us model the uncertainty during
the diagnosis process using Bayesian statistics. Specifically,
we attempt to characterize the uncertainty and measure a
degree of belief (i.e., the probability) as a combination of
what happens before and after checking the evidence. For
this purpose, Bayesian Gaussian Mixtures (BGM) help cluster
a set of datapoints while measuring the level of uncertainty.
Compared to traditional clustering algorithms (e.g., K-Means),
the BGM can be considered as a more generalized approach
because it assumes clusters as ellipsoids with different sizes
and orientations in space. Due to its probabilistic nature,
the algorithm performs a soft clustering by computing the
probability that a datapoint belongs to a generic cluster instead
of making a direct assignment (hard clustering). Such a feature
allows us to measure the level of uncertainty (respectively,
confidence) in the diagnosis of datapoints.

From a mathematical standpoint, a BGM is a probabilistic
model that assumes the data is generated by a mixture of
Gaussian distributions with unknown parameters. The BGM
considers each Gaussian distribution as a cluster whose pa-
rameters are the mean (µ), the covariance matrix (Σ), and the
weight (w) corresponding to a scale factor.

Given a mixture of K Gaussian distributions, the Probability
Density Function (PDF) is defined as: p(x) =

∑K
k=1 w

(k) ·
N (x;µ(k),Σ(k)), where the constraints 0 < w(k) < 1 and∑K
k=1 w

(k) = 1 must be satisfied to obtain a valid Gaussian
mixture with the corresponding PDF integrating to 1.

During the training phase, for each datapoint xi, the algo-
rithm associates a latent random variable zi ∈ [1, 2, ...,K].
These random variables follow a multi-nomial distribution
Mult(w(1), w(2), ..., w(K)) such that p(zi = k) = w(k) is the
probability of assigning the ith datapoint to the kth cluster.
Once a datapoint is assigned to a cluster, the probability
(or the likelihood) to observe it in that cluster is computed
as p(xi|zi = k) = N (xi;µ

(k),Σ(k)), assuming that the
datapoints are be sampled from a Gaussian distribution. Now
the PDF equation can be rewritten as p(x) =

∑K
k=1 p(z =

k) · p(x|z = k), where p(z) is the prior distribution related to
the cluster assignments, and p(x|z = k) is the likelihood that
a datapoint falls in the kth cluster.

Besides the cluster assignments, the BGM also treats the
cluster weights, the means, and the covariance matrices as ran-
dom variables. The BGM algorithm finds the set of parameters
which best fit the data. Let θ denote the vector corresponding
to these random variables and let X be a set of observable
datapoints (i.e., the evidence). Then the BGM applies the
Bayes theorem to update the probability distributions of these
variables as follows: p(θ|X) = p(θ)·p(X|θ)

p(X) .
However, the denominator is intractable as it would require

to consider all possible values of θ (i.e., all possible clusters
assignments, shapes, sizes and orientations in space). Vari-
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Fig. 3: Plots of the raw features of the system considering anomalous and non-anomalous working conditions.
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Fig. 4: Plots of the extracted features after the raw data preprocessing.

ational inference, a method from machine learning that ap-
proximates probability densities through optimization, solves
this problem by picking a family of variational distributions,
denoted as Q(θ), and then finding the set of parameters λ that
minimizes the Kullback-Leibler divergence (KL-divergence):
DKL(Q||P ) =

∑
θ Q(θ;λ) · log(Q(θ;λ)

p(θ|X) ).
Since the KL-divergence measures similarity between two

probability distributions, its minimization is equivalent to find-
ing variational distribution to best approximate the posterior
distribution. This process is repeated by the BGM algorithm
such that the posterior distribution becomes the new prior
distribution at the next iteration until reaching the convergence.

The above algorithm performs clustering in an unsupervised
way. However, for anomaly detection, we require labeled
samples to distinguish if the data contained in a cluster is
normal or anomalous. To apply the algorithm to Industry 4.0,
we extended it by proposing a semi-supervised approach.

The methodology for anomaly detection using the semi-
supervised BGM algorithm is as follows. We first train our
model in an unsupervised way without considering any data
labels. At this point, the BGM is able to identify the clusters,
but without knowing if these clusters are related to normal or
anomalous data (i.e., a faulty condition). After the training
process, we consider a small portion of “normal” labeled
datapoints (those related to normal operating condition of
the system). Let X̃ be a set of m << N normal labeled
datapoints. For each sample, we perform a soft clustering by
computing the likelihood for each one of the K clusters using
the likelihood equation p(xi|zi = k) and returning a matrix:

P =

 p(x̃1|z1 = 1) p(x̃1|z1 = 2) ... p(x̃1|z1 = K)
p(x̃2|z2 = 1) p(x̃2|z2 = 2) ... p(x̃2|z2 = K)

... ... ... ...
p(x̃m|zm = 1) p(x̃m|zm = 2) ... p(x̃m|zm = K)

 ,

(1)

where the generic Pi,j element of the matrix P represents the
probability that the ith datapoint belongs to the jth cluster.

Assuming the semi-supervised assumptions hold, we expect
that the majority of the normal datapoints have very high
likelihoods to fall in the same clusters. This information can
be exploited to distinguish between the normal clusters and
the anomalous ones. For this purpose, we compute the mean
along each column of the P matrix, thus obtaining a vector
C = [c1, c2, ..., cK ], where the ci represents the (average)
likelihood for X̃ to belong to the ith cluster. Then, we set
a threshold τ ∈ [0, 1] and mark each cluster as normal or
anomalous as follows:

ci =

{
anomalous if ci ≤ τ
normal otherwise

(2)

After identifying the anomalous clusters, the anomaly de-
tection can be performed by computing the soft clustering
for a given test datapoint and marking it as an anomaly with
the corresponding uncertainty measured through the likelihood
p(xi|zi = k).

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained from testing
the proposed anomaly detection technique in the industrial
scenario considered. We demonstrate the feasibility of our
approach by its performance in detecting the occurrence of
anomalies and we also show the advantages of our semi-
supervised approach over a supervised one.

Fig. 5 depicts the split of the dataset into training (80%) and
test (20%) datasets of BGM. Now, from the training dataset,
we extracted 10% of the normal labeled samples to create the
normal dataset. Since the system operating conditions have
been manually injected during the dataset construction phase



(described in Subsection V-A), the three obtained datasets are
provided with the corresponding labels. However, to emulate
the lack of labeled data (a common problem in the industrial
setting), after the normal dataset extraction, we dropped the
labels of the training dataset, maintaining them in the test only
for performance comparison purposes.

The normal dataset was used to train BGM in a supervised
way. In the semi-supervised approach, the normal dataset was
used for identifying the cluster associated with the normal
operating condition of the system using the methodology in
Subsection V-B. On the other hand, the training dataset con-
taining normal and anomalous samples, was used to train the
BGM in a semi-supervised way (considering only the labels
related to the normal dataset). Finally, the same test dataset
was used to test the performance of both the approaches.

Training
Dataset

Normal
Dataset
(labeled)

Test
Dataset
(labeled)

10%

80%

20%

Normal data

Anomaly 1 data

Anomaly 2 data

Fig. 5: Datasets organization for training and testing of BGM
using supervised and semi-supervised approaches.

We first analyze the supervised approach where we consider
a totally labeled dataset (i.e., normal dataset) for training the
algorithm. This is the baseline to compare with our proposed
semi-supervised approach.

In the supervised approach, the base methodology involves
in training the BGM only on data related to the normal work-
ing condition of the system with the aim to learn its probability
distribution. Since we are training only on the normal dataset,
we used one cluster to fit the data. To visualize the cluster
found by the BGM, we applied Principal Component Analysis
(PCA) to reduce the data into a two-dimensional space. Fig. 6
depicts the contour plot from testing the BGM on the test
dataset and considering the first two principal components
(PC1 and PC2). Here the contour lines delineate areas with
the same Negative Log Likelihood (NLL). Due to the strictly
decreasing trend of the NLL, the higher the likelihood (i.e,
probability) of a datapoint, the lower is the NLL. Thus, the
points falling on the dark purple areas correspond to the points
for which the BGM has a low uncertainty. On the other hand,
those falling on green and yellow areas correspond to the
datapoints for which the algorithm has a higher amount of
uncertainty. Here the green, blue, and red points are referred
to the normal, Anomaly 1, and Anomaly 2 respectively.

Normal datapoints are well concentrated around the mean of
the cluster (marked as a black “X”), such that the ones which
are far away from it are likely to be considered as anomalies.
The soft clustering performed well; looking at the figure, even

if three green datapoints fell outside the dark purple area, the
BGM algorithm still has a good level of confidence on them,
marking them as “normal.” The distinction between normal
and anomalous datapoints can be performed by following
the BGM analysis. As mentioned, the model assumes normal
distribution of data and finds the best set of parameters to
fit in (i.e., maximize the probability). Exploiting that the
probability maximization in a normal distribution is equivalent
to approaching the data to the mean of the distribution, we
can identify anomalies inside the cluster. To compute the
threshold for distinguishing between a normal condition and
an anomalous one, we computed the distances for each training
datapoint and the mean of the distribution. Thus, the distance
threshold is computed as: threshold = ˜distances+σdistances
where ˜distances is the median of the distances previously
computed and σdistances is its standard deviation.

To measure the performance of the algorithm, we used hard
clustering by setting the above threshold, and marked as an
anomaly each datapoint beyond the threshold. The obtained
results are very good with an average on 100 different training
or test split of 98% for accuracy. Moreover, to better analyze
the results, we computed the confusion matrix on the test set
to capture the performance of our machine learning algorithm
through the extraction precision, recall, and F1-score.

Considering the same 100 different training/test split used
for the accuracy computation, the algorithm scored on average
97% for the precision, 100% for the recall, and 98.4% for the
F1-score (see Table I).
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Fig. 6: Contour plot of BGM performed on the test dataset.

For the semi-supervised approach, the BGM is trained with
the above defined training dataset whose samples are referred
to as normal or anomalous operating condition, and for which
the corresponding labels are not known. In this sense, the very
first step is to choose the correct number of clusters to fit the
data in an unsupervised way (i.e., without the use of labels).
For traditional algorithms like K-Means, it is possible to use
metrics like the silhouette score to derive the optimal number
of clusters. However, this can not be done with BGM because
it assumes clusters with different sizes and shapes which make
these metrics unreliable. To address this problem, we exploit
the probabilistic nature of the algorithm by choosing a fairly



large number of clusters and then looking at the multinomial
distribution of the weights introduced in Section V.

Fig. 7 depicts the cluster weights distribution inferred from
data by the BGM after the training process. Despite an initial
selection of 10 clusters at the end of the training, only 3 of
them reached a probability higher than 0.1 implying that the
remaining ones are unnecessary for the clustering process. For
this reason, we selected K = 3 clusters in our semi-supervised
approach, which is a coherent choice if we consider that the
system worked on three different operating conditions as we
mentioned in Subsection V-A.
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Fig. 7: Cluster weights multi-nomial distribution after BGM
training.

Fig. 8 shows the semi-supervised BGM contour plot of the
PCA training dataset for which we again considered the first
two principal components; and the dashed red curves represent
the decision boundaries for the clusters. The BGM identified
the 3 clusters, however, it was unable to establish which were
related to the normal or anomalous operating conditions. In
order to identify the cluster related to the normal operating
condition, we used the labeled normal dataset (same as for
supervised BGM training) and then applied the methodology
in Subsection V-B. Fig. 9 depicts the contour plot of the same
test dataset for the supervised approach after applying the
methodology, where the green datapoints are labeled as normal
samples for cluster identification.

As expected, the majority of the normal datapoints (in
green color) fell in the dark purple area of the same cluster
on the bottom right, implying very high BGM confidence
in belonging to the cluster. This allowed us to identify the
bottom right cluster as the one associated with the normal
working condition of our system, and mark the datapoints
falling outside as anomalies. Moreover, looking at the rest of
the plot, only a small portion of the datatpoints falls in the
green and yellow areas, which implies that the algorithm has
most of the times a low level of uncertainty with respect to
data clustering of these points. In terms of soft clustering, in
this case also the BGM performed very well. Specifically, a
small number of blue and green datapoints fell outside the dark
purple area of their corresponding clusters. Nevertheless, the
BGM has a high level of confidence with respect to these two
group of datapoints which enable to cluster them correctly.

In general, the semi-supervised BGM outperformed the

TABLE I: Accuracy, precision, recall and F1 scores computed
for each approach.

Performance indices
Index Supervised Semi− supervised

Accuracy 98% 99.8%
Precision 97% 99.7%
Recall 100% 100%
F1 98.5% 99.8%

supervised one, This is due to the fact that the former approach
benefits from the use of a larger training set containing both
normal and anomalous data, which help the algorithm to better
define the cluster decision boundaries, thus improving the
performance of anomaly detection.
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Fig. 8: Contour plot of BGM performed on the training set.
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Fig. 9: Contour plot of the BGM performed on the test set
after identification of the cluster of the labeled data (green).

Additionally, we performed the hard clustering, computed
the confusion matrix, and measured the performance of our
algorithm by extracting the precision, recall, and F1-score
indices. Table I reports these indices considering a threshold
of τ = 0.2 that we set empirically keeping fixed the the train
and test sets, varying τ from 0 to 1.0 (with a step of 0.01),
and measuring the values of precision and recall obtained by
the proposed BGM algorithm (as showed in Fig. 10). The
obtained results are very good with an average of 99.8% for
the accuracy, 99.7% for the precision, 100% for the recall, and
99.8% for the F1-score, thus demonstrating the effectiveness
of our anomaly detection algorithm.
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Fig. 10: Precision and recall measurements when varying τ
for the anomaly detection threshold setup.

To further demonstrate the benefits of BGM semi-supervised
approach, we compared its performance with the supervised
one and the One Class Support Vector Machines (OCSVM).
OCSVM have been tuned using a radial basis function kernel
and gamma parameter to “auto”, a special value supported
by the Scikit-learn framework for automatically setting the
best value. Fig. 11 depicts a comparison in terms of accuracy
between the three models when varying the percentage of
normal labeled samples in training dataset. The OCSVM main-
tains an accuracy of about 81.5% which is worst compared to
other models. We also observe that the BGM fully supervised
approach reaches an accuracy which is slightly less than
the one obtained with the semi-supervised model. However,
the performance tends to decrease as the number of labeled
samples decreases. On the other hand, the proposed BGM
semi-supervised approach exhibits a higher accuracy which
remains almost constant even for small percentages of labeled
samples (e.g., 20% and 10%), demonstrating the effectiveness
of our approach for an industrial scenario.
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Fig. 11: Accuracy comparison between BGM supervised ap-
proach, the proposed semi-supervised one, and One-Class
SVM algorithm with varying percentage of labeled samples.

VII. CONCLUSIONS

In this paper, we presented an anomaly detection technique
for the diagnosis of a scale replica plant. Precisely, we
extended the functionalities of S4T architecture to suit it for

industrial applications, and implemented on top of it a BGM
based semi-supervised anomaly detection algorithm to assess
the working condition of the plant. The results of anomaly
detection algorithm are very good. It was able to correctly
detect the system working conditions with a 99.8% of accuracy
and a high level of precision, recall, and F1-score.

As part of future work, we plan to improve the performance
of the proposed technique in order to detect a higher number
of anomalies. This can be accomplished with the help of
additional sensors (e.g., a weight sensor on the cart) such that
the telemetry can provide more information about the system
working conditions, and the anomaly detection algorithm will
be enhanced to identify not only the presence of an anomaly,
but also which type of anomaly is occurring.
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