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ABSTRACT
Deep Neural Network (DNN) models when implemented on ex-
ecuting devices as the inference engines are susceptible to Fault
Injection Attacks (FIAs) that manipulate model parameters to dis-
rupt inference execution with disastrous performance. This work
introduces Contrastive Learning (CL) of visual representations i.e.,
a self-supervised learning approach into the deep learning training
and inference pipeline to implement DNN inference engines with
self-resilience under FIAs. Our proposed CL based FIA Detection
and Recovery (CFDR) framework features (i) real-time detection
with only a single batch of testing data and (ii) fast recovery ef-
fective even with only a small amount of unlabeled testing data.
Evaluated with the CIFAR-10 dataset on multiple types of FIAs, our
CFDR shows promising detection and recovery effectivenesses.
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1 INTRODUCTION
Deep learning (DL) has succeeded in many application domains
such as computer vision [3, 8] and natural language processing [2, 5].
Along with the prosperity of DL, its vulnerability under adversarial
attacks has drawn significant attentions. For example, sophisti-
catedly crafted perturbations can be added onto clean images to
produce adversarial examples [9, 10], the prediction of which by
Deep Neural Networks (DNNs) will be erroneous, although the
added perturbations are mostly imperceptible to humans.

Besides adversarial examples, Fault InjectionAttacks (FIAs) present
another category of adversarial attacks, which aim at DNN infer-
ence models when implemented on executing devices. In general,
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FIAs modify DNN model parameters, leading to malfunction of the
inference models e.g., severely degradation in prediction accuracy
or targeted misclassification of specified objects. Therefore, a DNN
inference engine is subject to integrity violation caused by FIAs.

There are several state-of-the-art DNN FIAs proposed with di-
verse algorithms. Liu et al. proposed the first FIA with a heuristic
algorithm i.e., Gradient Descent Attack (GDA) [6] that modifies
DNN model parameters to classify specified inputs into wrong la-
bels. Furthermore, Fault Sneaking Attack (FSA) [11] improved upon
GDA with ADMM (Alternating Direction Method of Multipliers)
based algorithms that set two constraints i.e., ℓ0 or ℓ2 norm of the
parameter modifications, besides the specified misclassifications.
On the other hand, He, Rakin, et al. proposed a FIA for quantized
DNN models i.e., Bit Flip Attack (BFA) [4], which randomly picks
model parameters and selects the most sensitive bit to flip. Then
Progressive Bit Search (PBS) [7] extended BFA with cross-layer and
intra-layer searches. Please note that both BFA and PBS target for
tampering with DNN models through minimal modification efforts.

This paper aims to design DNNmodels with self-resilience under
FIAs. We are the first to use Contrastive Learning (CL) towards
this objective. Specifically, we use CL to obtain the DNN inference
models. Comparing with conventional DNN training, CL enables
our detection as well as recovery mechanisms against FIAs. With
DNN inference models obtained by CL, we propose to observe the
change of contrastive loss over single batches of testing data to de-
tect potential FIAs. Since the detection mechanism does not require
labeled data, it can be executed periodically without disruption on
the normal DNN inference process. Whenever a FIA is detected,
the recovery algorithm will be triggered to boost the accuracy per-
formance close to that before the FIA. We consider two scenarios
for the recovery process i.e., the labeled training data is available
or only unlabeled testing data is available for recovery. In both
scenarios, our proposed recovery algorithm can boost the accuracy
significantly with only a small amount of data in a few number of
epochs. We summarize our contributions as follows:

• The first CL based approach for FIA detection and recovery.
• A highly sensitive detection requiring a single batch of unla-
beled data without disruption on normal inference process.

• A fast recovery algorithm that significantly boosts accuracy,
even with only a small amount of unlabeled data.

2 PROPOSED CL BASED FIA DETECTION
AND RECOVERY (CFDR)

This section introduces our main approaches by first fitting CL
for our purpose, and then presenting our proposed detection and
recovery mechanisms.
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2.1 Contrastive Learning and Preliminaries
Contrastive learning has been proposed as a self-supervised learn-
ing to reduce the requirement on the amount of labeled training
data. For contrastive learning, we adopt the SimCLRmethod [1] that
learns representations by maximizing agreement between differ-
ently augmented views of the same data example via a contrastive
loss in the latent space. We will find in the following that (i) the
contrastive loss is a key criterion in our FIA detection, and (ii) the
relaxed requirement on the amount of labeled data by CL enables
our effective recovery from FIA.

Figure 1: The SimCLR framework.

Figure 1 (a) and (b) present the two phases in the whole con-
trastive learning pipeline. We will first introduce the four compo-
nents for Phase (a) Contrastive Learning:

• A stochastic data augmentation module. The module
performs random combinations of data augmentation meth-
ods for each original data example 𝑥𝑛 to generate a pair of
correlated views of the same example, denoted by 𝑥𝑛 and 𝑥𝑛 ,
which are considered as a positive pair.

• Abase encoder 𝑓\ . It extracts image representation/embedding
from augmented data examples. Following the SimCLRmethod,
we also use ResNet (without the last fully-connected (FC)
layer) as the base encoder to have

ℎ𝑛 = 𝑓\ (𝑥𝑛) . (1)

• A projection head 𝑔𝜙 . It projects/maps high dimensional
image representations to latent space with lower dimension-
ality, where the contrastive loss can be applied. It is a shallow
multi-layer perceptron (MLP) with one hidden layer i.e.,

𝑧𝑛 = 𝑔𝜙 (ℎ𝑛). (2)

• A contrastive loss function. It is designed for maximizing
agreement between both image embeddings of the same data
examples i.e., the positive pairs as follows:

𝐿𝑜𝑠𝑠 = −
𝑁∑
𝑛=1

log
exp(sim(̃z𝑛, ẑ𝑛)/𝜏)∑𝑁

𝑘=1,𝑘≠𝑛 exp(sim(̃z𝑛, ẑ𝑘 )/𝜏) + exp(sim(̂z𝑛, z̃𝑘 )/𝜏)
(3)

where (̃z𝑛, ẑ𝑛) represents a positive pair, and (̃z𝑛, ẑ𝑘 ) or
(̂z𝑛, z̃𝑘 ) represents a negative pair. The sim(·) function is
the dot product between two ℓ2 normalized vectors (i.e., co-
sine similarity).

With those above described components, the two phases in the
whole contrastive learning pipeline are summarized as below:

(a) Contrastive Learning Phase as in Figure 1 (a). It trains the
base encoder and the projection head with the contrastive
loss. Only unlabeled data is needed in this phase.

(b) Fine-Tuning Phase as in Figure 1 (b). It fine-tunes on the
FC layer using the regular cross entropy loss with a small
amount of labeled training data, while the base encoder that
is already trained in Phase (a) is not updated. Note that in
our paper the base encoder plus the FC layer make a whole
ResNet model architecture. The architecture in Figure 1 (b)
is the finally obtained DNN inference model i.e., a SimCLR
trained ResNet model.

2.2 Detection and Recovery Overview
With a DNN model obtained through the SimCLR method intro-
duced in the previous section, nowwe introduce the overview of our
proposed CL based FIA Detection and Recovery (CFDR) framework.

For the detection of FIAs, we propose to use the contrastive learn-
ing loss in Phase (a) as a key criterion to determine whether the
DNN model is attacked by a FIA. We use the contrastive learning
loss over a batch of data calculated with the clean (unattacked)
model as the reference value. Note that the contrastive loss does
not rely on labeled data, and therefore, the detection process can be
co-executed during the normal DNN inference. Once a higher con-
trastive loss over a batch of testing data is observed, we determine
that a FIA was conducted on the model. In summary, our detection
mechanism features the real-time detection without interference
with the normal inference execution.

Once a FIA is detected, our recovery algorithm will be triggered
to boost the accuracy close to that before the FIA. We consider two
scenarios for the recovery process. If the labeled training data is
available for the recovery, we can recover a fault injection attacked
model wherever the FIA is conducted on i.e., any layers of the DNN
model. If only unlabeled testing data is available for the recovery,
our recovery process can only address the cases where the FIA
is conducted on any layers except the last FC layer. This is the
limitation of our recovery mechanism.

2.3 Detection Mechanism
The detection of FIA is co-executed with the normal inference pro-
cess with unlabeled testing data. Specifically, the contrastive loss
over a batch of testing data is calculated with the same architec-
ture as Figure 1 (a). Although this architecture is not directly used
during inference, we can add the project head at the output of base
encoder as the other path in parallel with the FC layer. This newly
added path is for calculating contrastive loss simultaneouly with
the inference execution. Therefore, we can implement real-time
detection by comparing the contrastive loss with that of the clean
model i.e., the reference value. If a relative large difference is ob-
served, then the model is attacked. Besides the reference value, we
set the fault tolerance parameter as the threshold for the difference.
This fault tolerance parameter should be properly set to reduce the
occurrences of false positives and false negatives. Furthermore, we
can also use the contrastive loss over multiple batches for more
accurate detection.
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Algorithm 1: CL based FIA Detection and Recovery.
Data: The model to be detected, unlabeled testing data for

detection, and a small amount of unlabeled/labeled
data for recovery.

Result: The detection result and the recovered model if a
FIA is detected.

Train a new DNN with the two-phase SimCLR method;
Compute the average contrastive loss 𝑙𝑐 for the clean model;
Set 𝑙𝑐 of the clean model as the reference value;
Set 𝛿 as the fault tolerance parameter;
Compute the contrastive loss 𝑙𝑑 for the model to be detected
over a batch of unlabeled testing data;
if |𝑙𝑑 − 𝑙𝑐 | > 𝛿 then

the model is attacked;
perform model recovery
if labeled data is available then

perform contrastive learning phase (a) for the model;
perform fine-tuning phase (b);

else
perform contrastive learning phase (a);

end
else

the model is not attacked;
end

2.4 Recovery Mechanism
Once a FIA is detected, the recovery process is needed to boost the
accuracy performance by retraining the model with a small amount
labeled or unlabeled data. For the case that labeled training data is
available, we perform both Phase (a) and Phase (b) for multiple
epochs over the available training data. For the case that only
unlabeled testing data is available for recovery, we perform only
Phase (a).

Due to the small amount of labeled/unlabeled data for recovery,
cautions must be used to avoid overfitting. Therefore, we use the
following stopping criteria:

(1) The training loss is less than or equal to a reference value.
For the contrastive loss in Phase (a) or the cross entropy loss
in Phase (b), we use their counterpart on the clean model as
the reference value. OR

(2) The training loss stops decreasing. OR
(3) The total epoch number reaches a certain value e.g., 30.

3 EXPERIMENTS
3.1 Experimental Setup
We evaluate our CFDR framework using a ResNet-18 model trained
with the SimCLR framework on CIFAR-10 dataset. We adopt a
batch size of 64 throughout the whole process i.e., SimCLR training,
detection and recovery. For the original SimCLR training, Phase
(a) uses 1,000 epochs and Phase (b) uses 100 epochs, i.e., the same
setting as the SimCLR codes.

For detection, the contrasive loss over a single batch of testing
data is sampled 1,000 times to obtain the detection results in Section

3.2. For recovery, we assume only 512 images are available for both
the unlabeled and labeled data cases.

For evaluation, we adopt four types of FIAs i.e., PBS [7], FSA
ℓ0 [11], FSA ℓ2 [11], and GDA [6]. We use attacked models by the
above-mentioned four attacks in various settings to evaluate our
CFDR framework.

3.1.1 PBS. Progressive bit search (PBS) [7] performs in-layer search
and cross-layer search. In-layer search finds the most vulnerable
bits from a layer; cross-layer search finds the most vulnerable layer
with in-layer search. The goal of PBS is to tamper with the network,
more precisely, degrading the top-1 accuracy of attacked network
below 11%. For PBS, we adopt the default setting of [7], i.e. the
hacker can change all parameters in the attacked layer. Normally,
single PBS run tampers with the network below 11%.

3.1.2 FSA. Fault sneaking attack (FSA) [11] uses efficient ADMM
(alternating direction method of multipliers) algorithms to modify
model parameters, so that themodel wouldmake wrong predictions.
In the experiment, we found out that FSA usually changes almost
all parameters in a layer. For FSA, we set S=5 and R=20, i.e. we
modify 5 images out of 20 images. 5 images are misclassified to
wrong labels while 15 images keeps the original correct labels.

3.1.3 GDA. Similar to FSA, Gradient descent attack (GDA) [6]
is more straightforward. It gradually modifies parameters with
gradient information to enlarge the predictions of a specific class,
leading to incorrect predictions. At the same time, they use an ℓ1-
norm regulator to limit the parameter modifications. Different from
the original setting, we do not perform modification compression,
since its iteration is inefficient. Besides, we use an ℓ2 regulator to
restrict model modifications.

3.2 Results on Detection
Figures 2, 3, 4, and 5 represent the detection effectiveness of our
CFDR framework against PBS, FSA ℓ0, FSA ℓ2, and GDA attacks.
For each attack type, we conducted FIA multiple times, acting on
different layers of the DNNmodel. The number of parameters in the
modified layers of each attack instance is the x-axis. The contrastive
loss is sampled 1,000 times over single batches of testing data. As can
be observed from the figures, the contrastive loss is well seperated
from that of the clean model, demonstrating the effectiveness of
our detection mechanism.

3.3 Results on Recovery
Table 1 presents the recovery effectiveness of our CFDR framework

For each FIA type, we generate various attacked models by per-
turbing different layers with different number of parameters. As
shown in Table 1, the accuracy after attack suffers from obvious
degradation. But after we successfully detected the attacks, we
can perform model recovery with labeled or unlabeled data. After
the recovery, we are able to improve the accuracy on the test set.
For models with less perturbed/attacked parameters, the accuracy
can be restored to a typical accuracy (around 87%) for ResNet-18
on CIFAR-10 with only a few data. For models with more per-
turbed/attacked parameters (e.g., 1180672 parameters), the accuracy
can be improved to 45% for GDA with labeled data, which is still
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Figure 2: Detection effectiveness by box plot when different
number of parameters are modified by the PBS

Figure 3: Detection effectiveness by box plot when different
number of parameters are modified by the FSA ℓ0

Figure 4: Detection effectiveness by box plot when different
number of parameters are modified by the FSA ℓ2

smaller than the normal accuracy with a large gap. This demon-
strates the limitations/difficulties for recovery to restore if too many
parameters (e.g. more than 1 billion) are perturbed. We also notice
that the recovery with labeled data can usually achieve higher ac-
curacy than the recovery with unlabeled data, demonstrating that
more information with labels can help with the training.

4 CONCLUSION
This work introduces Contrastive Learning (CL) of visual represen-
tations into DL training and inference pipeline to implement DNN

Figure 5: Detection effectiveness by box plot when different
number of parameters are modified by the GDA

Table 1: Recovery effectiveness

Attack

total # of
param. in
the attack
-ed layer(s)

after
attack
acc.

unlabeled
recovery

acc. epochs

labeled
recovery

acc. epochs

PBS 36864 10.00 88.71 6 88.89 7
PBS 155648 10.16 87.72 15 87.64 22
PBS 294612 13.25 87.36 15 87.34 5
PBS 589824 10.00 80.34 12 81.05 5

FSA ℓ0 9408 12.57 85.15 30 85.57 9
FSA ℓ0 36992 10.07 88.09 20 88.11 15
FSA ℓ0 147712 10.47 87.68 24 88.22 7
FSA ℓ0 295424 14.43 79.63 18 80.82 5
FSA ℓ0 590336 17.03 65.84 15 68.52 10
FSA ℓ0 1180672 11.86 33.45 21 40.41 10
FSA ℓ2 9408 11.17 85.23 30 85.65 9
FSA ℓ2 36992 13.6 88.50 10 88.41 3
FSA ℓ2 147712 11.04 87.53 22 87.93 5
FSA ℓ2 295424 15.22 83.70 11 84.19 5
FSA ℓ2 590336 10.95 70.57 20 72.37 5
FSA ℓ2 1180672 12.84 28.42 19 35.07 15
GDA 9408 46.79 82.77 30 82.93 9
GDA 36992 83.42 88.08 9 88.33 9
GDA 147712 84.72 87.62 9 87.87 24
GDA 295424 55.89 80.41 17 80.86 9
GDA 590336 58.69 79.38 27 79.92 10
GDA 1180672 25.41 32.79 30 45.36 30

inference engines with self-resilience under FIAs. Our proposed
CL based FIA Detection and Recovery (CFDR) framework features
(i) the first CL based approach for FIA detection and recovery; (ii)
a highly sensitive detection mechanism requiring a single batch
of unlabeled testing data without disruption on the normal infer-
ence process; and (iii) a fast recovery algorithm that significantly
boosts accuracy performance even only with unlabeled testing data.
Evaluated with the CIFAR-10 dataset on multiple types of FIAs, our
CFDR shows promising detection and recovery effectivenesses.
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