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Abstract
The mechanical properties of fiber reinforced polymer matrix composites are known to
gradually deteriorate as fatigue damage accumulates under cyclic loading conditions. While the
steady degradation in elastic stiffness throughout fatigue life is a well-established and studied
concept, it remains difficult to continuously monitor such structural changes during the service
life of many dynamic engineering systems where composite materials are subjected to random
and unexpected loading conditions. Recently, laser induced graphene (LIG) has been
demonstrated to be a reliable, in-situ strain sensing and damage detection component in
fiberglass composites under both quasi-static and dynamic loading conditions. This work
investigates the potential of exploiting the piezoresistive properties of LIG interlayered
fiberglass composites in order to formulate cumulative damage parameters and predict both
damage progression and fatigue life using artificial neural networks (ANNs) and conventional
phenomenological models. The LIG interlayered fiberglass composites are subjected to
tension–tension fatigue loading, while changes in their elastic stiffness and electrical resistance
are monitored through passive measurements. Damage parameters that are defined according to
changes in electrical resistance are found to be capable of accurately describing damage
progression in LIG interlayered fiberglass composites throughout fatigue life, as they display
similar trends to those based on changes in elastic stiffness. These damage parameters are then
exploited for predicting the fatigue life and future damage state of fiberglass composites using
both trained ANNs and phenomenological degradation and accumulation models in both
specimen-to-specimen and cycle-to-cycle schemes. When used in a specimen-to-specimen
scheme, the predictions of a two-layer Bayesian regularized ANN with 40 neurons in each layer
are found to be at least 60% more accurate than those of phenomenological degradation models,
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displaying R2 values greater than 0.98 and root mean square error (RMSE) values smaller than
10−3. A two-layer Bayesian regularized ANN with 25 neurons in each layer is also found to
yield accurate predictions when used in a cycle-to-cycle scheme, displaying R2 values greater
than 0.99 and RMSE values smaller than 2 × 10−4 once more than 30% of the initial
measurements are used as inputs. The final results confirm that piezoresistive LIG interlayers
are a promising tool for achieving accurate and continuous fatigue life predictions in
multifunctional composite structures, specifically when coupled with machine learning
algorithms such as ANNs.

Supplementary material for this article is available online

Keywords: laser induced graphene, fiberglass composites, fatigue life prognosis,
artificial neural networks, phenomenological models

(Some figures may appear in color only in the online journal)

1. Introduction

Owing to their exceptionally high specific strength and
stiffness, fiber reinforced composite materials have been
increasingly integrated into large scale structural applications
within the aerospace, automotive, and construction indus-
tries [1–3]. Given the critical nature of these applications, it
is imperative to monitor and track the structural health of
composite materials while in service in order to ultimately
avoid sudden catastrophic failure [4, 5]. However, due to
their heterogeneity, fiber reinforced composites are known to
exhibit complex damage mechanisms throughout their service
lives which incorporate various failure modes, primarily mat-
rix cracking, fiber-matrix debonding, delamination, and fiber
breakage [6]. As a result, numerous research efforts focused
on incorporating functional elements within composite struc-
tures in order to detect and track these various forms of dam-
age in-situ, yielding structural health monitoring (SHM) tech-
niques such as acoustic emission testing [7–9], embedded
fiber optics [10, 11], and electrical impedance-based meth-
ods [12, 13]. Yet many of these methods typically result in
trade-offs between the newly integrated self-sensing function-
ality and the final mechanical performance of these compos-
ite materials. Therefore, optimal SHM methods are required
to enable strain sensing and damage detection in composite
materials while avoiding any deterioration to their mechanical
properties.

Over the years, piezoresistivity-based methods have con-
tinuously garnered great interest within the SHM research
community due to their relative simplicity, their ease of
implementation, and their compatibility with a wide range of
composite materials. Initial work focused on exploiting the
inherent peizoresistivity of carbon fibers to detect and mon-
itor structural damage within their corresponding composites
in-situ [14–16]. Specifically, the changes in the electrical res-
istance of carbon fiber composites during cyclic loading were
correlated to fatigue life and then used to formulate fatigue
life prediction guidelines [16]. However, such an approach
was found to be considerably less sensitive to more critical
damage modes that occur earlier during fatigue life, such as
matrix cracking and delamination, which is expected when

relying on the reinforcing carbon fiber phase to act as a
damage sensor. Additionally, the described method remains
exclusively restricted to composite materials that use con-
ductive reinforcing components, such as carbon fibers. Non-
etheless, the continuous growth of the nanomaterials field
has enabled the incorporation of electrically conductive nan-
ofillers, such as carbon black [17, 18] and carbon nanotubes
(CNTs) [12, 19, 20] into electrically insulating composite
materials for embedding a self-sensing functionality. Partic-
ularly, the excellent mechanical and electrical properties of
CNTs have made them a strong candidate for tracking dam-
age progression in fiberglass composites under cycling load-
ing conditions [21, 22]. Efforts by Gao et al clearly demon-
strated the ability of CNTs to distinguish between various
damage mechanisms that occur under cyclic loading such as
crack initiation, transverse micro-cracking, and delamination
[23]. Yet CNTs still present considerable processing and fab-
rication challenges due to their tendency to agglomerate when
being mixed in epoxy resins [24, 25] or due to them requiring
harsh thermal and chemical growth conditions when grown on
fiber surfaces [26, 27]. More recently, the embedding of laser
induced graphene (LIG) interlayers have been demonstrated as
a reliable and successful approach for the fabrication of multi-
functional aramid and fiberglass composite materials [28–31].
The simple and cost-effective LIG fabrication process [32, 33]
was successfully exploited by Groo et al to embed LIG inter-
layers within fiberglass composites and enable in-situ strain
sensing, damage detection and localization, and failure mode
classification. Furthermore, the piezoresistive LIG interlay-
ers were found capable of tracking matrix-cracking, delamin-
ation, and fiber failure in fiberglass composites throughout
their fatigue life [34]. However, the described work lacks any
extensive investigation of the damage evolution and accumula-
tion mechanisms that can be potentially discerned by the LIG
interlayers, thus hindering the realization of accurate fatigue
life predictions in fiberglass composite materials using such a
technique.

The prediction of fatigue life in composite materials have
been typically achieved through either mechanical [35, 36]
or phenomenological damage models [37]. While the former
can provide more accurate predictions than the latter, the
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reliability of mechanical damage models, such as Owen and
Howe [38] or Palmgren–Miner [39], is typically limited in
application by their material- and condition-specificity, which
require a considerable amount of empirical characterization
experiments and complex mechanical analysis. On the other
hand, phenomenological models aim to describe the fatigue
behavior of composite materials by capturing the evolution
and changes in their macroscopic properties, primarily the
loss of material strength or stiffness due to damage accumu-
lation. While both strength and stiffness degradation models
have been developed, stiffness models have attracted greater
research interest due to the considerably lesser degree of scat-
ter in collected residual stiffness measurements relative to that
of residual strength [40]. As a result, numerous linear and
non-linear stiffness degradation models have been formulated
and used to provide accurate fatigue life predictions [40–45].
More recently, artificial intelligence (AI) technologies such as
neural networks (NNs) have emerged as a reliable tool for pre-
dicting the mechanical behavior and response of a variety of
structural materials, such as metals [46, 47] and fiber rein-
forced composites [48–50], in a wide range of applications.
The advantages of these NN methods over conventional mod-
els lie in their superior extrapolation accuracy, their material
and mechanism independence, and their ability to provide new
insights into the examined response which conventional mod-
els are typically unable to reveal [51–53]. Recent work has
shown that NNs can be used for predicting stiffness degrada-
tion in composite materials during fatigue through time-series
forecasting approaches. For example, Tao et al reported a new
NN architecture that relies on a combination of a β-variational
autoencoder and neural ordinary differential equations to con-
tinuously and accurately predict the stiffness response of com-
posite materials over the cycle domain [54]. Nonetheless, all
stiffness degradation models remain hindered by the difficulty
of directly obtaining stiffness reduction measurements while
a composite structure is in service. Therefore, it is desirable
to infer these changes to the elastic stiffness of composite
materials using one or more of the currently established SHM
techniques. Zhang et al proposed a new method that relies on
the mode conversion behavior of guided waves to quantify
changes in the mechanical properties of fiberglass composites
under cyclic loading [55], while Peng et al developed a real-
time composite fatigue life prognosis framework that estim-
ates changes in stiffness using a Lamb wave-based damage
detection method [56]. Elsewhere, Seo et al demonstrated that
piezoresistive measurements can also be correlated to stiffness
reduction during the fatigue life of carbon fiber composites,
and then used these measurements to predict future stiffness
degradation behavior, and ultimately fatigue failure [57]. Such
results highlight the potential for coupling resistance-based
SHM methods with stiffness degradation models in order to
accurately predict fatigue life and damage accumulation beha-
vior in composite materials during service.

In this work, the piezoresistive response of LIG inter-
layered fiberglass composites was investigated in order to for-
mulate cumulative fatigue damage parameters and predict both
fatigue life and future damage progression in fiberglass com-
posite materials. The LIG interlayers were transfer-printed

from polyimide substrates to fiberglass prepreg surfaces before
subjecting the cured fiberglass composites to tension–tension
fatigue testing. Changes in both the electrical resistance
and elastic stiffness of the fiberglass specimens were pass-
ively monitored throughout fatigue life up until failure. The
observed trends in elastic stiffness and electrical resistance
response were then compared and used to define cumulative
damage parameters for fatigue life predictions using both arti-
ficial neural networks (ANNs) and phenomenological degrad-
ation and accumulation models. Finally, the fatigue dam-
age predictive potential and capabilities of these ANNs and
conventional phenomenological models when relying on the
piezoresistive response of the LIG interlayers were compared
and evaluated.

2. Materials and methods

2.1. LIG transfer and composite fabrication

Uniform LIG interlayers were introduced on the surface of
fiberglass prepregs using the simple transfer printing process
previously described by Nasser et al [58]. Initially, vertically
aligned arrays of LIGwere directly generated on a commercial
polyimide film (0.0254 mm thick Kapton® tape sheets) using
a 40 W CO2 infrared laser (Epilog Zing 16 universal laser
system) that was operated in raster mode at a pulsing dens-
ity of 400 DPI, laser output power of 16%, and a raster speed
of 1 cm2 s−1. The described laser induction parameters have
been previously shown to be optimal for successfully transfer-
ring uniform and electrically conductive LIG interlayers onto
fiberglass prepreg composites, while maintaining their excel-
lent mechanical properties [30, 59]. The LIG interlayer was
then transferred from the irradiated polyimide tape to the sur-
face of uncured fiberglass prepregs (CYCOM® E773 epoxy
prepreg with S-2 glass fiber-reinforced roving) [60] using a
transfer printing process where the prepreg is rolled across the
80 ◦C pre-heated polyimide substrate while applying manual
pressure. Once the transfer-printing process was successfully
completed, the LIG interlayered fiberglass prepregs were com-
bined in a (+45◦/−45◦/+45◦) stacking sequence and cured at
127 ◦C under vacuum in a hot press and at a constant pres-
sure of 100 psi (689.5 kPa). Specimens were then cut from
the fabricated laminate to dimensions of 10 mm in width and
76 mm in length for subsequent mechanical testing. In order
to avoid slippage and provide insulation between the speci-
mens and the electrically conductive metallic grips, fiberglass
tabs were adhered to the end of the specimens using high shear
strength epoxy (Loctite® 9430™ Hysol®). Thin lines of silver
paint were then added around the edges of the specimens at
each end in order to act as electrodes during fatigue testing.
The described sample configuration allows for electrical res-
istance measurements across the entire specimen rather than
just at the LIG interlayer located along the top ply. Finally,
copper wires were attached to each electrode using additional
silver paint and epoxy which keeps them fixed during dynamic
testing. For reference, the final electrical resistances of the fab-
ricated specimens were measured to range between 200 and
900 Ω.
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Figure 1. Schematic of experimental fatigue testing setup.

2.2. Dynamic testing and resistance measurements

Initially, quasi-static tensile testing was performed according
to ASTM D3039 on an Instron model 5982 test frame using
a 100 kN load cell. Once the average ultimate strength (σult)
and initial elastic stiffness (E0) of the LIG interlayered fiber-
glass specimens were determined, 13 additional samples were
subjected to load-controlled tension–tension fatigue testing
using an Instron ElectroPulsTM model E1000 loading frame
equipped with a ±1 kN load cell (Figure 1). The tests con-
sisted of 10 Hz sine wave excitation at a stress ratio R of
0.1 (R = σmin/σmax) and maximum stress levels that ranged
between 65% and 78% of σult. The decrease in the elastic
stiffness of the specimens was monitored throughout fatigue
life directly using the dynamic test frame. Concurrently, the
changes in the electrical resistance of the specimens were
measured using a traditional Wheatstone bridge circuit, where
input voltage was provided using a Hewlett Packard model
6217A DC power supply, while output voltage was recorded
using a National Instrument compact data acquisition system.
The recorded resistance measurements were averaged every
one second, which corresponded to one measurement point for
every 10 tension–tension loading cycles. It should be noted
that the accumulation in damage throughout fatigue life was
also monitored using digital imaging correlation (DIC) and
analysis of the speckled fiberglass specimen surfaces, which
was achieved using a Photron FASTCAMMini AX 200 high-
speed camera operating in periodic bursts at 1000 frames per
second. The initial mechanical and electrical properties of the
LIG interlayered fiberglass specimens are shown in table 1.

2.3. Artificial neural network (ANN) design

ANNs are machine learning algorithms that are designed to
simulate the functioning principles of a brain by automatically
and independently learning from large sets of data, processing
them, inferring relationships and patterns, and ultimately gen-
eralize these learning outcomes for future decision making
[61]. The fundamental element of these ANNs are termed
neurons, which are the processing units enabling communic-
ation between the various layers of the network, namely, the
input, hidden, and output layers. As described in Kara et al, the

Table 1. Properties of (+45◦/−45◦/+45◦) LIG coated fiberglass
laminate.

Laminate properties

Nominal ply thickness = 0.21 mm
vf = 0.55
σult = 109.65 MPa
E0 = 23.45 GPa
R0 = 200–900 Ω

net input of each neuron is typically obtained using a summa-
tion function that combines the various input activations into
a single one, while also applying weights and biases [47]. The
net weighted sum of the input into to the ith neuron (NETi) is
then processed through an activation function that determines
the output of the neuron, and ultimately dictates the overall
performance of the network. Due to their wide use as activa-
tion functions in ANNs, both sigmoid and hyperbolic tangent
(tanh) functions were considered in this work. However, given
its superior performance and faster convergence rate, an asym-
metric tanh function was preferred over a sigmoid one for the
choice of logistic transfer function in this work, such as:

f(NETi) =
eNETi − e−NETi

eNETi + e−NETi
(1)

where f is a rescaling of the logistic sigmoid function in
order to yield an output that ranges between −1 and 1.
Additionally, the design of the ANN architecture requires
determining the optimal learning algorithm, number of hid-
den layers, and the number of neurons in each one of these
layers. Different ANN training algorithms were investigated
in this work, such as quasi-Newton backpropagation (BFGS),
Levenberg–Marquardt backpropagation (LM), scaled conjug-
ate gradient backpropagation, resilient backpropagation, and
Bayesian regulation backpropagation (BR). In this case, only
LM, BFGS, and BR were found to yield suitable fatigue dam-
age and remaining life predictions, with BR outperforming
the other two training algorithms (table S1 (available online
at stacks.iop.org/SMS/30/085010/mmedia)). This is expec-
ted given that BR training algorithms have been shown to
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enable more robust models that are capable of capturing
complex and non-linear relationships [62]. Additional ANN
design parameters pertaining to these learning algorithms are
also provided in table S2. It should also be noted that the
coupling of these training algorithms with two hidden lay-
ers instead of one was found to improve error convergence
in these ANN networks. When aiming to perform predictions
based on specimen-to-specimen and cycle-to-cycle schemes,
the optimal ANN architectures were found to consist of 40
and 25 neurons in each hidden layer, respectively. The exper-
imental data consisted of the electrical resistance response of
the LIG interlayered fiberglass specimens and their corres-
ponding normalized fatigue cycles, which were randomly split
between training and testing cases at a ratio of∼75:25 for both
of the previously mentioned prediction schemes. Finally, the
performance of the ANN models was assessed by comparing
their predictions to the experimental results through calculat-
ing the root mean square error (RMSE) and the coefficient of
correlation (R2), such that:

RMSE=

(1
p

)∑
j

|tj− oj|2
1/2

(2)

R2 = 1−

(∑
j (tj− oj)

2∑
j(oj

2)

)
(3)

where t represents the goal values, o the output values, and p
is the number of samples.

3. Results and discussion

3.1. Predictions using phenomenological models

Under cyclic loading conditions, composite materials are
expected to experience non-linear progression in damage prior
to catastrophic structural failure. Phenomenological models
aim to describe and quantify such damage through macro-
scopic parameters, such as material strength or stiffness. As
seen in figure 2(A), these material properties will exhibit pro-
gressive degradation throughout fatigue life which can be
divided into three distinct phases [42, 63]. Initially, the degrad-
ation process is dominated by matrix cracking and mater-
ial relaxation, before stabilizing in the form of a steady and
gradual decrease due to a combination of delamination and
fiber-matrix debonding. Finally, the last stage consists of a
sudden and abrupt increase in degradation rate due to fiber
failure and delamination, which ultimately leads to quick
and near-immediate catastrophic failure. Therefore, these vari-
ous forms of damage and mechanisms can be captured and
described by monitoring the degradation in the elastic stiff-
ness of composite materials. Given that fatigue testing here is
performed in a load control mode and at a fixed stress ratio of
R= 0.1, the elastic stiffness of the LIG interlayered fiberglass
composites is expected to decrease with increasing number of
loading cycles, thus yielding an increase in strain (figure 2(B)).
It should be noted that under the described conditions, the

stiffness degradation rate is expected to be strictly a function
of σmax, E0, and R. Based on the stiffness degradation dam-
age parameter (DE) defined in figure 2(B), the reduction in
elastic stiffness throughout the fatigue life of the LIG inter-
layered fiberglass specimens is found to be in good agreement
with the general trend shown in figure 2(A). Similarly, a new
damage parameter can be defined to express changes in the
electrical resistance (DR) of LIG interlayered fiberglass spe-
cimens. Recently, Groo et al demonstrated the capability to
use these piezoresistive interlayers to track various damage
modes throughout the fatigue life of fiberglass composites,
while showing good agreement between the obtained trends
in measured strain and electrical resistance [34]. Since elastic
stiffness is inversely proportional to strain, the damage para-
meterDR is here defined to be inversely dependent on the elec-
trical resistance of the specimens. Such a definition yields a
DR trend that is in good agreement with the general trend seen
in figure 2(A), especially during the second and third dam-
age phases (figure 2(C)). When examining figure 2(D), which
shows DE and DR for a representative specimen, both dam-
age parameters display comparable trends throughout fatigue
life, in addition to being sensitive to the various damage
phases experienced by the fiberglass specimen. Therefore, the
piezoresistive response of the LIG interlayer can be potentially
integrated with pre-existing stiffness degradation models in
order to provide in-situ damage and fatigue life prognosis of
fiberglass composite materials.

Using the stiffness degradation model suggested by Yang
et al [43, 64, 65], the electrical resistance damage parameter,
DR, shown in figure 2 can be used to predict the future damage
state of fiberglass composite materials. The proposed model
assumes the rate of change in DR to be a power function of the
number of load cycles, yielding the following relationship:

DR (n) = 1−Qnv (4)

where n is the number of cycles, while Q and v are material
constants that can be determined using a least-square fitting.
For brevity, the predicted and experimental DR of only two
LIG interlayered fiberglass specimens are shown in figure 3.
When comparing the predicted results to the experimental
ones, it is clear that the obtained predictions using the model
suggested by Yang et al are in good agreement with the exper-
imental results, especially during the first two stages of fatigue
life. However, as expected, the model fails to accurately pre-
dict the final failure stage of fiber breaking, due to the abrupt
and highly non-linear change in the trend of DR which cannot
be accuratelymodeled by a power function. Nonetheless, these
results confirm the capability of predicting future damage in
fiberglass composites within the earlier stages of fatigue life
and at various stress levels by solely relying on the piezores-
istive response of the LIG interlayers embedded in them.

In the case where no prior base-line data is available, initial
electrical resistance measurements can be used to accurately
forecast future damage in LIG interlayered fiberglass compos-
ites based on a cycle-to-cycle scheme. By assuming that Q(k)
and v(k) are the best estimates of material constants Q and v at
cycle nk, boundary conditions can be applied to equation (4),
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Figure 2. (A) General trend for stiffness degradation in composite materials throughout fatigue life and corresponding DIC images for each
damage phase. (B) Reduction in elastic stiffness (DE) of LIG interlayered fiberglass composites throughout fatigue life and at different stress
levels, where E0 and En represent the elastic stiffness at cycles 0 and n of the fatigue life, respectively. (C) Reduction in electrical resistance
damage parameter (DR) of LIG interlayered fiberglass composites throughout fatigue life and at different stress levels, where R0 and Rn
represent the electrical resistance at cycles 0 and n of the fatigue life, respectively. (D) Elastic stiffness and electrical resistance damage
parameters of a (+45◦/−45◦/+45◦) specimen throughout fatigue life (S7).

such asDR(n)=DR(nk), and the following relationship can be
obtained:

Q(k) =
1−DR (nk)

(nk)
v(k)

. (5)

Which can be then re-substituted in equation (4) and trans-
formed into a linear regression formulation for obtaining v(k)
such as:

ln

(
DR (n)
DR (nk)

)
= v(k) ln

(
n
nk

)
. (6)

Once v(k) and Q(k) are estimated, future values of DR can be
predicted for the remaining life cycles. Additionally, the val-
ues of both constants can be continuously updated with both
increasing number of elapsed cycles and recorded electrical
resistance measurements in order to further improve the accur-
acy of these predictions. A comparison between the experi-
mental and predicted electrical resistance damage response of
two LIG coated fiberglass specimens based on a cycle-to-cycle

scheme is shown in figures 4(A) and (B). As expected, the pre-
diction accuracy is improved with an increasing number of ini-
tial observations, as the model displays good agreement with
experimental results once more than 30% of the electrical res-
istance measurements become available. Such results indic-
ate that DR can be used to accurately predict future damage
in fiberglass composites without requiring extensive experi-
mental characterization prior to its use. Nonetheless, the used
model remains incapable of fully predicting the fatigue life of
fiberglass composites due to its inability to capture the final
damage phase of fiber breakage. Yang et al formulated a cri-
terion that allows for fatigue life predictions using the pro-
posed model, where stiffness at failure (Ef) is defined to be
linearly dependent on the σmax/σultimate ratio [65]. In a similar
fashion, a linear relationship can be determined to describe the
relationship betweenDR at failure (R0/Rf) and the σmax/σultimate

ratio, which can then be used to predict fatigue life (Nf). Non-
etheless, the described approach is known to greatly over-
predict fatigue life, which is undesirable in real life applica-
tions and can result in safety concerns [65]. Elsewhere, Suzuki
et al demonstrated that incorporating an additional criterion
for the determination of fatigue life during the final stage of
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Figure 3. Comparison between predicted and experimental
reduction in the electrical resistance damage parameter (DR) of LIG
interlayered fiberglass composites throughout fatigue life and at two
different stress levels.

fiber failure, such that 100% of fatigue life is designated to
be located at a degradation slope (d/dN(DR)) = −0.01, can
considerably improve fatigue life predictions [40]. Therefore,
by combining these two criterions, fatigue life can be pre-
dicted according to the approach shown in figure 4(C). While
the forecasted fatigue life is an under-prediction of the exper-
imental one and is largely a representation of the transition
from the second to the third damage phase, fiber breakage
dominates less than 10% of the total fatigue life and usu-
ally occurs in the form of sudden catastrophic failure. There-
fore, such under-predictions of fatigue life can potentially help
avoid dealing with the uncertainties that take place during
the final damage phase of composite materials when cyclic-
ally loaded. As observed in figure 4(D), predictions of Nf

are improved with an increasing number of available fatigue
cycles, reaching an error of less than 10%whenmore than 40%
of the electrical resistance measurements become available.
However, a disadvantage of the detailed predictionmethod lies
in it requiring prior experimental characterization in order to
define a linear fit betweenR0/Rf and σmax/σultimate ratios, which
can be prone to large scattering and inaccuracies [64]. Addi-
tionally, a new linear fit is required for specimens of differ-
ent E0, thus necessitating an extensive amount of experimental
characterization and limiting the applicability and scalabil-
ity of this technique to a wide range of composite materials.
Therefore, it is preferable to investigate other phenomenolo-
gical models and approaches than can circumvent these issues
and accurately describe the final damage phase occurring in
composite materials.

Another form of phenomenological model focuses on
studying the synchronous evolution and accumulation of dam-
age in composite materials due to the degradation of their

mechanical properties. As seen in figure 5(A), the amount of
accumulated damage will progressively increase throughout
fatigue life along the three previously discussed damage
phases. Similarly, both the first and third phases of mat-
rix cracking and fiber breakage, respectively, display a con-
siderably faster rate of accumulation relative to the more
stable second phase of delamination and fiber-matrix inter-
facial debonding. Such damage accumulation curves can be
obtained through the definitions of new damage parameters,
DEE and DRR, shown in figures 5(B) and (C), respectively.
Here, the damage parameters are bound between 0, which
indicates an undamaged specimen, and 1, which signifies com-
plete catastrophic failure. Therefore, these defined parameters
can accurately represent the continuous and gradual changes in
the structural state of composite materials throughout the dur-
ation of their fatigue life. The trends in both DEE and DRR of
LIG interlayered fiberglass specimens throughout fatigue life
are found to be in good agreement with the general damage
accumulation trend displayed in figure 5(A). It should be noted
that, in this case, DRR is defined to be directly proportional to
the electrical resistance of the specimens in order to obtain
similar trends to those of DEE. When examining figure 5(D),
both DEE and DRR show acceptable agreement with regards to
their trends throughout fatigue life, in addition to being sensit-
ive to the various damage phases experienced by the specimens
during cyclic loading. Given these trends, damage accumula-
tion phenomenological models can be explored for providing
in-situ damage and fatigue life prognosis of fiberglass compos-
ite materials using the piezoresistive response of their embed-
ded LIG interlayers.

A number of formulations have been suggested to model
fatigue damage accumulation in composite materials using
elastic stiffness measurements. Based on the previously dis-
cussed results, such models can be adjusted and applied to
electrical resistance measurements provided by the LIG inter-
layers embedded within the fiberglass specimens. Here, two
different numerical models are used to describe the non-linear
evolution in damage across fatigue life, and the results are
shown in figures 6(A) and (B). The Weibull cumulative dens-
ity function proposed by Suzuki et al [40] can be adjusted
to describe evolution in the electrical resistance damage para-
meter (DRR) such as:

DRR (n) = γ

(
ln

Nf

n−Nf

)k

(7)

where Nf is fatigue life, γ and k is are scale and shape para-
meter that can be both obtained through a least-square fitting,
respectively. In addition, another non-linear damage evolution
model was suggested by Wu et al [41]:

DRR (n) = 1−

(
1−

(
n
Nf

)B
)A

(8)

where A and B are two material modeling parameters that
can be obtained through a least-square fitting. The results of
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Figure 4. (A), (B) Phenomenological model predictions of the reduction in electrical resistance damage parameter (DR) of LIG interlayered
fiberglass composites according to a cycle-to-cycle scheme. (C) Criterion for fatigue life predictions using electrical resistance damage
parameter (DR) according to the change in degradation rate. (D) Error in fatigue life predictions (Nf Pred) with increasing number of available
fatigue life cycles for LIG interlayered fiberglass composites at various stress levels.

both models can be seen in figures 6(A) and (B), where, for
brevity, only the predicted and experimental DRR of two LIG
interlayered fiberglass specimens are shown. When compar-
ing the performance of both models, the predicted results are
found to be in relatively good agreement with the experimental
ones during the last two phases of fatigue life. However, the
first damage phase of matrix cracking is poorly represen-
ted by both models. Nonetheless, this is expected, as Groo
et al observed that the increase in the electrical resistance of
LIG interlayered fiberglass composites during the first damage
phase of matrix cracking is considerably less pronounced than
the increase occurring during the later stages of debonding,
delamination, and fiber failure [34]. This was reasoned to be
due tomatrix cracking yielding considerably less physical sep-
aration within the LIG interlayer, and therefore having a sig-
nificantly smaller effect on its piezoresistive response. There-
fore, such models are unable to accurately predict changes
in DRR during the earlier cycles of fatigue life. Furthermore,
while these models are capable of describing the final dam-
age phase of fiber failure, prior knowledge of Nf is required,
which necessitate extensive experimental characterization and

restricts the use of such models in fatigue damage and life
prediction frameworks that operate based on a cycle–cycle
scheme. Similar shortcomings are also faced when using other
suggested models, such as the one by Shiri et al which relies
on trigonometric functions to describe damage accumulation
in composite materials [45]. Therefore, despite phenomeno-
logical models providing insightful and accurate information
regarding both material properties degradation and damage
progression throughout the fatigue life of composite materi-
als, it is important to explore more robust predictive methods
that are capable of overcoming all the previously described
limitations.

3.2. Predictions using ANNs

AI driven methods are considered to be a superior altern-
ative to numerical modeling approaches due to their ability
to address intractable and cumbersome problems whose ana-
lytical solutions are typically difficult to obtain, while also
being, in this case, material- and mechanism-independent.
Given the time-series forecasting nature of the degradation in
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Figure 5. (A) General trend for damage evolution and accumulation in composite materials and corresponding DIC images for each
damage phase. (B) Evolution in elastic stiffness damage accumulation (DEE) throughout the fatigue life of LIG interlayered fiberglass
composites at different stress levels, where E0, En, Ef represent the elastic stiffness at cycles 0, n, and failure, respectively. (C) Evolution in
electrical resistance damage accumulation parameter (DRR) throughout the fatigue life of LIG interlayered fiberglass composites at different
stress levels, where R0, Rn, Rf represent the electrical resistance at cycles 0, n, and failure, respectively. (D) Elastic stiffness and electrical
resistance damage parameter of a (+45◦/−45◦/+45◦) specimen during fatigue loading (S7).

Figure 6. (A), (B) Comparisons between predicted and experimental changes in the electrical resistance damage accumulation parameter
(DRR) of LIG interlayered fiberglass composites throughout fatigue life using two different phenomenological accumulation models and at
two different stress levels.
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Figure 7. (A) Diagram of used two-layer Bayesian regularized ANN with an optimal number of 40 hidden units or neurons in each layer
(ANN1). (B)–(D) Comparisons between ANN predicted and experimental fatigue life cycles of LIG interlayered fiberglass composites
based on the reduction in electrical resistance damage parameter (DR) at three different stress levels.

the mechanical properties of composite materials throughout
fatigue life, ANNs are expected to be the most suitable form
of algorithms for continuously predicting fatigue damage and
remaining life in the cycle domain [54]. Therefore, ANNs can
be first trained to learn the underlying mechanisms behind the
progressive degradation in elastic stiffness before then using
them to potentially achieve more accurate predictions. How-
ever, instead of relying on a reduction in the elastic stiffness of
the LIG interlayered fiberglass specimens, electrical resistance
measurements can be used in the form of damage parameter
DR to describe damage progression. As previously detailed,
DR andDE have been shown to be in good agreement through-
out all the different fatigue damage phases of fiberglass com-
posites. Furthermore, unlike DRR, DR does not require prior
knowledge of the electrical resistance of the fiberglass speci-
mens at failure (Rf), which eliminates the need for any addi-
tional assumptions and reduces prediction inaccuracies. Here,
a two-layer Bayesian regularized ANN with an optimal num-
ber of 40 hidden units or neurons in each layer (ANN1) is
trained to learn the relationship between DR and fatigue life
and then predict fatigue damage in a new fiberglass speci-
men. It should be noted that the use of two hidden layers
instead of one was found to improve error convergence, which

is expected given that prediction accuracy is largely dependent
on ANN architecture. The training of the ANN is achieved
by providing the DR of 10 LIG interlayered fiberglass spe-
cimens as inputs to the ANN, while using their correspond-
ing fatigue cycles (n) as target outputs (figure 7(A)). In order
to investigate its extrapolation capability, the trained ANN is
then used to predict the fatigue life of three new specimens,
and the results are shown in figures 7(C) and (D). It should be
noted that the predicted fatigue cycles for each specimen are
normalized by their respective predicted fatigue life. As seen
in figure 7, the ANN is found to yield accurate fatigue life pre-
dictions in LIG interlayered fiberglass composites irrespective
of the applied stress magnitude, where the determined R2 and
RMSE corresponding for both training and testing cases are
found to be greater than 0.98 and smaller than 10−3, respect-
ively (table S1). Given that the ANN is not bounded by the
limitations of conventional numerical models, it is therefore
capable of simultaneously describing the various non-linear
responses that constitute fatigue damage in fiberglass com-
posites. Consequently, unlike phenomenological models, the
ANN makes no assumption regarding the final damage phase
of fiber failure and is thus capable of directly learning its char-
acteristic features during the training and validation process.
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Figure 8. (A) Diagram of used two-layer Bayesian regularized ANN with an optimal number of 40 hidden units or neurons in each layer
(ANN2). (B)–(D) Comparisons between ANN predicted and experimental reduction in the electrical resistance damage parameter (DR) of
LIG interlayered fiberglass composites based on fatigue life cycles and at three different stress levels.

Additionally, such prediction capacity eliminates the need for
defining complex failure criterions similar to what was previ-
ously discussed in an earlier section, thus considerably simpli-
fying the fatigue life prediction process and greatly improving
its accuracy. These claims can be further confirmed by train-
ing an ANN in a reverse manner in order to predict DR in
fiberglass specimens when fatigue life cycles are introduced
as an input (ANN2) (figure 8(A)). Again, the trained ANN is
tested using three new specimens, and the results are shown
in figures 8(B)–(D). The predicted DR of all three LIG inter-
layered fiberglass specimens are found to be in good agree-
ment with the experimental results across all three damage
phases, as the determined R2 and RMSE corresponding for
both training and testing cases are also found to be greater
than 0.98 and smaller than 10−3, respectively (table S1). The
ability to predict damage progression over a targeted number
of cycles or given an expected fatigue life enables the for-
mulation of closed-loop ANN-based prognosis frameworks
that are capable of self-adjusting and improving fatigue life
predictions in an iterative manner. Finally, the superior per-
formance of ANNs over degradation phenomenological mod-
els can be also validated by examining their corresponding

Table 2. Comparisons of RMSEs for phenomenological and ANN
predictions.

Phenomenological ANN2

Training cases 6.21 × 10−4 3.31 × 10−4

Tested cases 1.02 × 10−3 6.34 × 10−4

root mean square errors (RMSEs) for both training and val-
idation cases. As seen in table 2, ANN2 statistically outper-
forms the phenomenological model and yields more accurate
predictions, where 87.6% and 60.4% improvements in RMSE
are observed for both training and testing cases, respectively.
The performance of the ANN is expected to further enhanced
when using a larger and more diverse set of experimental data,
such that prediction accuracy can be improved while avoiding
overfitting. Evidently, these results confirm the ability of ANN
to learn the dynamics governing the degradation in electrical
resistance damage parameter DR due to permanent changes
in the piezoresistive response of the LIG interlayers, and to
then accurately predict fatigue damage in fiberglass compos-
ites according to a specimen-to-specimen scheme.
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Figure 9. (A) Diagram of used two-layer Bayesian regularized ANNs with an optimal number of 25 hidden units or neurons in each layer
(ANN3−ANN6). (B)–(D) ANN predictions of reduction in electrical resistance damage parameter (DR) of LIG interlayered fiberglass
composites in a cycle-to-cycle scheme and at three stress levels.

To further evaluate the ability of ANNs to predict changes
in DR based on a cycle-to-cycle scheme, portions of DR were
used as ANN inputs with the goal of predicting future dam-
age progression by solely relying on early stage measure-
ments and observations. Four NNs, ANN3, ANN4, ANN5,
and ANN6 were trained using ten different fiberglass speci-
mens by supplying 20%, 30%, 40%, and 50% of the initial
DR measurements as inputs, respectively. In this case, two-
layer Bayesian regularized ANNs with an optimal number of
25 hidden units or neurons in each layer is found to yield the
most accurate predictions (figure 9(A)). The trained ANNs are
then applied to three new specimens, and as expected, the pre-
dictions of future changes in DR improved with each update,
as their accuracy is enhanced with the increasing size of input
data (figures 9(B)–(D)). As shown in table S1, R2 and RMSE
corresponding for both training and testing cases when using
more than 30% of the initial DR measurements as inputs are
found to be greater than 0.98 and lower than 2× 10−4, respect-
ively. As previously described, one of the main advantages of
a trained ANN over conventional phenomenological models
lies in its ability to accurately predict the final damage phase
of fiber breakage up until failure. It should be noted that, in

order to eliminate any bias, the ANNs are designed to ran-
domly categorize data sets as training, validation, and testing
cases, which explains the reason behind figures 7–9 displaying
different fiberglass specimens. Nonetheless, based on these
results, it can be confirmed that ANNs are an effective tool for
predicting future changes inDR independent of loading condi-
tions. Future work will aim to incorporate more sophisticated
ANN algorithms in order to expand the potential of fatigue
life predictions using LIG piezoresistive interlayers, improve
their robustness and reliability, while also furthering and eas-
ing their integration in real-life structural applications.

4. Conclusion

This study proposes an integrated fatigue damage diagnostics
and prognostics procedure for fiberglass composite materi-
als by combining a piezoresistive LIG interlayer-based SHM
technique with predictive algorithms such as ANNs and phe-
nomenological models. The LIG interlayered fiberglass com-
posites were subjected to tension–tension fatigue loading
while monitoring changes in both their elastic stiffness and
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electrical resistances. Damage parameters based on the recor-
ded electrical resistance measurements, DR and DRR, were
defined and their trends were compared to those of conven-
tional stiffness-based ones,DE andDEE, respectively. The vari-
ous damage phases and fatigue life of the LIG interlayered
fiberglass specimens were then predicted using three non-
linear stiffness degradation and damage accumulation mod-
els according to electrical resistance-based damage paramet-
ers. The predicted responses using the degradationmodel were
found to be largely in good agreement with experimental res-
ults, except during the final phase of fatigue life, where fiber
failure causes for abrupt and highly non-linear changes in
mechanical properties. In the case of both damage accumu-
lation models, the predicted responses were also found to
be in good agreement with experimental results, except dur-
ing the initial phase of matrix cracking due to the relatively
low sensitivity of LIG to such a failure mode. Subsequently,
ANNs were trained, validated, and then used to yield accur-
ate extrapolations of future fatigue damage progression in LIG
interlayered fiberglass specimens, based on both specimen-to-
specimen and cycle-to-cycle approaches. Various ANN train-
ing algorithms were considered, with BR yielding the most
accurate ANN predictions when combined with a network
architecture consisting of two hidden layers that contain 40
and 25 neurons in each layer for specimen-to-specimen and
cycle-to-cycle schemes, respectively. The ANN predictions
were found to be at least 60% more accurate and reliable
than those of phenomenological models throughout all dam-
age phases of fatigue life in a specimen-to-specimen scheme,
while also requiring less information and being independent of
loading conditions. The R2 and RMSE values of these ANN
models were found to be greater than 0.98 and smaller than
10−3, respectively, for both training and testing cases. Sim-
ilarly, ANN models utilized in a cycle-to-cycle scheme were
found to yield accurate predictions of fatigue damage progres-
sion once more than 30% of initial DR measurements are used
as inputs, having R2 and RMSE values greater than 0.99 and
smaller than 2× 10−4, respectively. Therefore, state-of-the-art
ANN architectures can be coupled with piezoresistive LIG-
based SHM methods to continuously and accurately update
fatigue damage predictions in composite materials. Future
work will aim to further expand on such techniques to allow
for simple, contactless, and reliable predictions of fatigue phe-
nomena in composite structures used in dynamic engineering
systems.
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