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Abstract— Convolutional Neural Networks (CNN)
are becoming deeper and deeper. It is challenging to
deploy the networks directly to embedded devices be-
cause they may have different computational capacities.
When deploying CNNs, the trade-off between the two
objectives: accuracy and inference speed, should be
considered. NSGA-II (Non-dominated Sorting Genetic
Algorithm II) algorithm is a multi-objective optimiza-
tion algorithm with good performance. The network
architecture has a significant influence on the accuracy
and inference time. In this paper, we proposed a con-
volutional neural network optimization method using a
modified NSGA-II algorithm to optimize the network
architecture. The NSGA-II algorithm is employed to
generate the Pareto front set for a specific convolutional
neural network, which can be utilized as a guideline for
the deployment of the network in embedded devices.
The modified NSGA-II algorithm can help speed up the
training process. The experimental results show that
the modified NSGA-II algorithm can achieve similar
results as the original NSGA-II algorithm with respect
to our specific task and saves 46.20% of the original
training time.

I. INTRODUCTION

With the development of the computing capability
of the hardware devices, neural networks are becom-
ing deeper and deeper and have achieved good per-
formance in image classification [1], object detection
[2], speech recognition [3], etc. CNNs are widely
used in the computer vision area and other tasks
as a feaure extractor. The convolutional layers are
concatenated together to make the network deeper
and deeper to obtain good performance.

However, different application scenarios have dif-
ferent requirements for the inference speed and differ-
ent embedded devices have different computational
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Fig. 1: Training a 3-layer CNN network with different
devices for 1 epoch using MNIST dataset.
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Fig. 2: The framework of the optimization process.

capacities. Fig. 1 shows the training time obtained
from different GPU devices for 1 epoch using MIN-
IST dataset [4]. We can observe that GeForce 1070
GPU only needs 8 seconds to run 1 epoch. It is
4 times faster than NVIDIA NX which is almost
4 times faster than NVIDIA NANO. If the deep
neural network that runs fast in a high end device
is deployed in a lower end device, the inference time
will get longer with the same accuracy and may not
be practical for real world applications. Therefore,
the trade-off between the test accuracy and inference
time of a specific network architecture should be
considered when deploying the network to different
embedded devices.

The network architecture has a significant impact
on the accuracy and inference time. Therefore, a
convolutional neural network optimization method
using modified NSGA-II algorithm [5] is proposed.
This method can generate an optimal network set for
the trade-off between the test accuracy and inference
time and speed up the training process. Fig. 2 shows
the framework of the optimization method. There are
three steps in this optimization process. Firstly, the



NSGA-II algorithm generates individuals for each
generation. The individuals are the hyperparameters
that are used to configure the network. Secondly,
the network is constructed using the individuals. The
network is trained and tested to obtain the final accu-
racy. The accuracy and number of parameters are the
two objectives of the multi-objectives optimization
algorithm. Finally, the two objectives are returned
to NSGA-II algorithm to generate new individuals.
The original NSGA-II algorithm requires to train the
network for N (N is the number of individuals in
each generation) times in order to obtain the second
and following N individuals generation even when
keeping the records of the history individuals, which
makes it time-consuming when it comes to train the
neural networks especially the deep neural networks.
Therefore, we modified the NSGA-II algorithm to
accelerate the optimization process.

II. RELATED WORK
A. Multi-objective Optimization

Multi-objective optimization problems (MOOPs)
are important in real-world application. Many real-
world optimization problems can be modeled using
multiple conflicting objectives. This research area has
been explored by many researchers. In order to solve
multi-objective optimization problems, Ines et. al [6]
proposed a generic algorithm based on ant colony
optimization. The number of pheromone trails and
the number of ant colonies are utilized to parame-
terize the proposed algorithm. In order to solve the
problem that multi-objective evolutionary algorithms
(MOEAs) tend to have a computational complex-
ity, use non-elitism approach and specify a sharing
parameter, Kalyanmoy ef. al [5] suggested a non-
dominated sorting-based multi-objective evolutionary
algorithms, called NSGA-II. In their algorithm, a
fast non-dominated sorting approach with O(MN?)
computational complexity is presented. In NSGA-II,
the parent and children are combined and a selection
operator is utilized to select the best N solutions.
Fulya et. al [7] applied the genetic algorithms-based
method to solve the problem of the multi-objective
supply chain network, where they tried to find the
set of Pareto-optimal solutions. They used the weight-
based approaches in their algorithm. Ozan et. al [8]
cast multi-task learning as multi-objective optimiza-
tion to find a Pareto optimal solution. They used
algorithms developed in the gradient-based multi-
objective optimization literature to carry out multi-
task learning.

B. Deep Neural Network Architecture Optimization

There are many ways to design the CNN archi-
tecture automatically. Designing a CNN algorithm
consumes very significant time and computational
resources. The most successful deep neural networks
were handcrafted from scratch. It also takes the prob-
lem domain knowledge into consideration. Consider-
ing above information, Francisco et. al [9] proposed
an algorithm to find the useful convolutional neu-
ral networks (CNNs). Their algorithm was proposed
based on particle swarm optimization and able to
achieve a fast convergence than other evolutionary
methods. Francisco ef. al [10] introduced a two-
phase algorithm to create compact DNNs. They firstly
enlarged the model size until overfitting the given
dataset. After that, a pruning method is used to reduce
the model size according to the user preference.
Existing methods for neural network architecture
optimization are mostly based on the discrete space
searching. Luo et. al [11] proposed a continuous opti-
mization method to improve the searching efficiency.
They used an encoder to convert the architectures
into a continuous space and a decoder to convert the
architectures’ embedding into network architectures.
A predictor was used to accept the continuous repre-
sentation and generate the corresponding accuracy.

III. METHODOLOGY

In this paper, we developed a modified NSGA-II
algorithm to optimize the CNN network. This section
will firstly introduce the CNN network that is opti-
mized. Then the NSGA-II algorithm will be covered.
After that the CNN network optimization problem
is formulated. The modified NSGA-II algorithm is
proposed at the end.

A. Convolutional Neural Network

The DenseNet [12] is employed as the basic net-
work architecture to be optimized. It achieved the
state-of-the-art performance in the CIFAR-10 [13]
and CIFAR-100 dataset [14]. The DenseNet is com-
posed of dense blocks. Inside the dense blocks, all
layers are connected with each other directly. Fig.
3 [12] shows a three dense blocks’ DenseNet. The
feature of DenseNet architecture makes it easier to
configure. We can vary the number of dense blocks,
dense block layers and growth rate to generate new
architecture. Therefore, we use DenseNet as the CNN
network to be optimized.
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Fig. 3: A deep DenseNet with three dense blocks.

B. Multi-objective Optimization Algorithm: NSGA-II

The recognition accuracy and inference time of
the CNN network are the two objectives of the
optimization in this work. Table I shows the pseudo
codes of the original NSGA-II [5]. We can see that

TABLE I: NSGA-II Pseudo Codes.

Step 1: Combine parent and offspring population:
Ri=PF U Q.

Step 2: Perform a non-dominated sorting to R; to get Fj:
Fj, j=1,2, .., etc. all non-dominated fronts of R;

Step 3: Set a variable P, = 0 to contain a new population.
Set a counter j = 1. Until |Py| + |Fj| < N+1,
perform Py = Py U Fjand j=j+1.

Step 4: Carry out a crowding-sorting operation to include
(N - |P1|) widely spread solutions in the sorted
F j to P

Step 5: Generate a sub-population Q;y; from P, by
using the crowded tournament selection, crossover
and mutation operators. Return to Step 1 until the
last generation.

NSGA-II can preserve the elite individuals and keep
the diversity. After generating an offspring Q; from
parent P, Q; and P, are combined to generate R;,
where a non dominated sorting is carried out. Then
the new population of size N is generated from the
different non dominated fronts of R;.

C. Problem Formulation

The goal of this paper is to find a set of optimal
configurations of CNN network to maximize the
accuracy and minimize the inference time. From the
popular CNN networks like VGG16 [15], ResNet
[16] and GoogleLeNet [17], we can observe that the
number of convolutional layer, filter size, activation
functions, optimizer, etc. have different degree of
effect to the network performance. Therefore, they
can be used as the decision variables to decide the
network performance. The following part will explain
the definition of the multi-objective optimization
problem.

1) Objectives: There are two objectives in our
task. The first objective is to maximize the accuracy
or minimize the error obtained from the test dataset.
The second objective is to minimize the inference
time. The number of parameters can be regarded as an
indicator of the network complexity and the inference
time is related to the network architectural complex-
ity. Therefore, we use the number of parameters to
replace the inference time as the second objective.

2) Decision Variables: DenseNet has many hyper-
parameters that will affect the network performance.
We chose five main hyperparameters. They are shown
in Table II. In order to save the training time, the
number of layers in dense block, number of dense
blocks and dense block growth rate are not set to be
large. According to the five decision variables, there
are totally 7200 combinations. It is difficult to traverse
every combination to find the optimal network set.
Therefore, the NSGA-II algorithm can be used in the
situation to find the Pareto front.

3) Crossover and Mutation: The individuals of
each generation can be generated from the deci-
sion variables. Each individual has its genotype. The
genotype has five positions that correspond the five
hyperparemeters. There are two basic operations,
crossover and mutation, utilized to generate new
individuals from the existing individuals using the
decision variables. As can be seen in Fig. 4, the first
operation is crossover. In the crossover operation, two
individuals are selected as the parents. The number
in the genetype is corresponding to the specific value
of the hyperparameter. For example, in the father
genotype, the value of the second position (number of
dense blocks) is 4. The digital number 4 is related to
the fifth value of the number of dense blocks in Table
II. It means the number of dense blocks is 5. In order
to generate child 1 and child 2, firstly we choose a
position randomly. Then we switch the two segments
of the parents to generate the offspring. For the mu-
tation operation, we choose a position randomly and
change the value of the selected position randomly
according to the variable value.
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Fig. 4: Crossover and mutation.

TABLE II: Decision variables.

Variables | Values

Number of layers in Dense block | 2, 3,4, 5,6, 7

Number of Dense blocks 1,2,3,4,5

Dense Block growth rate 4,6, 8, 12, 14, 16,18,
20

Dropout rate 0.0, 0.1, 0.2, 0.25,
0.3,0.5

Optimizer adam, sgd, adagrad
adamax, nadam

D. Proposed Algorithm

1) Modified NSGA-II: From Table I, we can ob-
serve that when applying NSGA-II to optimize the
CNN network, in order to generate the next gen-
eration, the population size of R; is 2N. It means
that the CNN network needs to be trained for 2N
times for each generation without keeping the training
history. This is very time-consuming when training
neural networks. In order to save the training time,
the genotype of each individual and the corresponding
accuracy and number of parameters can be recorded.
If the newly generated individuals have the same
genotypes as the previous individuals, we can use
the recorded history directly. By using this method,
the CNN network need to be trained for N times for
each generation. However, when the neural networks
are very deep and the input image size are lager like
224x224x3, it still takes a long time. Besides, if
we want to obtain a better result, we have to train
the model for many epochs. The original NSGA-II
method is time-consuming. Therefore, we modified
the NSGA-II algorithm to speed up the training
process. Table III shows the modified the NSGA-
II algorithm. Different from the original NSGA-
Il algorithm, when generating new individuals, the
modified algorithm just perform a non-dominated
sorting to P; without generating Q;. Keep all the

individuals in the first front (e.g. n individuals), which
is used to preserve the elite individuals in each
generation. In order to increase the variation of the
reserved individuals in the first front, the mutation
operation is utilized. The first half of the remaining
(N - n) individuals are generated randomly and the
second half are generated from the current population.
The modified NSGA-II algorithm will reduce the
number of training times from N to (N - n) for
each generation because we only need to train the
networks for the remaining individuals to generate
the next N individuals generation. When the number
of individuals in the first front becomes larger in the
future generations, the number of the required new
individuals will become smaller and the training time
will be further reduced.

TABLE III: Modified NSGA-IIL.

Input: The population of the current generation P;.
Output: The population of the next generation Py .

Step 1: Perform a non-dominated sorting to P, and identify
different fronts:
F,i=1,2, .. etc
Step 2: Set new population P, = 0. Keep all individuals
in the first front to preserve the elite individuals:
Pip1 = F1;
Step 3: Mutate the elite individuals in P, at the
probability of p.
for k in range(0, length(P,1)):
if random.uniform(0, 1) < p:
Piy1[k] = mutate(Py 1 [k]);
Step 4: Set m = (length( P;) - length(P,y))/2. Generate
m new individuals randomly:
while length(Py1) < length(P) - m:
Randomly generate an individual 1,;
Py =P+ 1as
Step 5: Generate another m new individuals from P;:
while length(P,; ;) < length(F):
Use crowded tournament selection
to select two parents pr; and pr;
from P;
1y, I, = crossover(pry, pra2);
1,= mutate(l,);
1= mutate(lp);
Pii1=Py1 +1a + Ips
Step 6: Return P, .

2) The Whole System: Fig. 5 shows the whole
system that we proposed to optimize the CNN archi-
tecture. 1) The modified NSGA-II algorithm provides
the genotype of the individuals. 2) By using the hy-
perparameters, the DenseNet configures the network
architecture and train the model. After the training
procedure, the network will be tested on the test
dataset to get the accuracy. 3) Return the two objec-



1. Keep the Pareto front of P;

2. Generate the remining individuals randomly.

P; >
3) Objectives:

1. Accuracy

2. Parameters’ amount

1) Individuals
Training data
Prediction
Dense Block 3

Py

Y

Dense Block 2
-0 v0 vo vo

Test data
Dense Block 1 ‘ ol |. o
e ve v e ‘ HEE i-(2

v
2) Configure, train and test the DenseNet

v
Input

Fig. 5: Overall architecture of the proposed method.

tives: test accuracy and the amount of the parameters
with respect to the genotype. The modified NSGA-II
algorithm will utilize the two objectives to perform
non-dominated sorting to generate a new generation.

IV. EXPERIMENTAL EVALUATION

We implemented the proposed algorithm using
Python programming language and TensorFlow deep
learning framework. This section presents the exper-
iments and evaluations of this system.

A. Experimental Setup

1) Training and test Dataset: The CIFAR-10
dataset is used to train and test the network. This
dataset has 50,000 images for training and 10,000
images for test purpose. The images are 32x32 RGB
images in 10 classes.

2) Parameter Setting and Training Hardware: For
the DenseNet, the batch size is set to 64. For each
individual, in order to save the training time, the
training epoch is set to 15. For the modified NSGA-II
algorithm, the group size is set to 30 and we run the
program for 5 generations. We use the Google Cloud
GPU NVIDIA Tesla P100 to speed up the training
process.

3) Results and Analysis: Fig. 6 shows the obtained
results of the individuals of different generations.
The red dots are the dots in the Pareto front. From
Generation 1 to Generation 5, we can observe that
the individuals are moving towards the left-bottom
side and the left part of the Pareto front goes up
gradually. The best accuracy obtained from the Pareto
front of generation 5 is 83.13%. The corresponding
number of parameters is 1.94 million. Its genotype
is as follows. Number of layers in Dense block: 7,
Number of Dense blocks: 4, Growth rate: 20, Dropout
rate: 0.1, Optimizer: adam. The best result obtained
from the DenseNet paper is 94.23%. It has 7 million
parameters. The accuracy is reduced by 11.78% but
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Fig. 6: Pareto front of DenseNet trained from CIFAR-
10: (a) — Generation 1; (b) - Generation 2; (c) -
Generation 3; (d) - Generation 4; (e) - Generation
5; (f) - Comparison with Generation 5 obtained from
original NSGA-IIL.

the speed is 3.61 times faster. The decision variables
are not set to be too large because of the limitation of
the computational resource. It limits the size of the
network which reduces the test result.

Fig. 6 (f) shows the comparison of the Pareto front
of Generation 5 between the modified and original
NSGA-II. The original NSGA-II algorithm is used
to train the DenseNet to get the Pareto front. The
dataset is CIFAR-10. It also utilizes 30 individuals
for each generation and the algorithm is trained for
5 generations. It uses the same GPU. We can see
that they have similar results. Especially the two
Pareto fronts overlap each other when the number of
parameters is less than 0.5 million. When the number
of parameters is larger than 1.0 million, the modified
NSGA-II result is sparser than the original NSGA-
II, which has 3 individuals. The smallest error of the
modified NSGA-II is 16.87% and the corresponding
number of parameter is 1.94 million. The smallest
error of the original NSGA-II is 16.01% and the
corresponding number of parameter is 2.35 million,
where the accuracy is improved by 0.86% but the
number of parameter is 1.2 times larger than that of



the modified NSGA-IL

For the training time, by using the same dataset,
hyperparameters and hardware, the original NSGA-II
algorithm takes 17 hours and 32 minutes to run for 5
generations, while the modified NSGA-II algorithm
takes 9 hours and 26 minutes, which saves 46.20%
of the original training time.

The proposed algorithm can speed up the training
process and provide the Pareto front for different
devices with respect to the trade-off between the
accuracy and the inference time. However, there are
still some drawbacks in the current work. In order to
speed up the training process, the proposed algorithm
sacrificed part of the ability to explore the sample
space. It is also not fully evaluated in different dataset
and neural networks.

V. CONCLUSION AND FUTURE WORK

In this paper, we utilize NSGA-II algorithm to
optimize DenseNet architecture to obtain the Pareto
front. It can be used for the trade-off between the
accuracy and the inference time of a specific network
architecture when deploying the network to different
embedded devices. In order to reduce the training
time, we modified the NSGA-II algorithm. The test
results show that the modified NSGA-II algorithm
achieved similar results as the original NSGA-II
algorithm with respect to our specific task and saves
46.20% of the training time. In the future work,
we will evaluate the proposed algorithm in different
datasets and neural networks and train the algorithm
using real world data like people detection datasets
and design the application strategy to deploy the
algorithm on different embedded devices guided by
the Pareto front.
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