
Parallelizing Packet Processing in
Container Overlay Networks

Jiaxin Lei∗

Binghamton University

jlei23@binghamton.edu

Manish Munikar∗

The University of Texas at Arlington

manish.munikar@uta.edu

Kun Suo∗

Kennesaw State University

ksuo@kennesaw.edu

Hui Lu
Binghamton University

huilu@binghamton.edu

Jia Rao
The University of Texas at Arlington

jia.rao@uta.edu

Abstract

Container networking, which provides connectivity among

containers on multiple hosts, is crucial to building and scal-

ing container-based microservices. While overlay networks

are widely adopted in production systems, they cause sig-

nificant performance degradation in both throughput and

latency compared to physical networks. This paper seeks to

understand the bottlenecks of in-kernel networking when

running container overlay networks. Through profiling and

code analysis, we find that a prolonged data path, due to

packet transformation in overlay networks, is the culprit of

performance loss. Furthermore, existing scaling techniques

in the Linux network stack are ineffective for parallelizing

the prolonged data path of a single network flow.

We propose Falcon, a fast and balanced container net-

working approach to scale the packet processing pipeline

in overlay networks. Falcon pipelines software interrupts

associated with different network devices of a single flow on

multiple cores, thereby preventing execution serialization

of excessive software interrupts from overloading a single

core. Falcon further supports multiple network flows by

effectively multiplexing and balancing software interrupts

of different flows among available cores. We have developed

a prototype of Falcon in Linux. Our evaluation with both

micro-benchmarks and real-world applications demonstrates

the effectiveness of Falcon, with significantly improved per-

formance (by 300% for web serving) and reduced tail latency

(by 53% for data caching).

ACM Reference Format:

Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao. 2021.

Parallelizing Packet Processing in Container Overlay Networks. In

Sixteenth European Conference on Computer Systems (EuroSys ’21),

April 26–28, 2021, Online, United Kingdom. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3447786.3456241

1 Introduction

Due to its high performance [38, 66], low overhead [36, 68],

and widespread community support [53], container tech-

nology has increasingly been adopted in both private data

∗Equal contribution.

centers and public clouds. A recent report from Datadog [1]

has revealed that customers quintupled the number of con-

tainers in their first nine-month container adoption. Google

deploys containers in its cluster management and is reported

to launch about 7,000 containers every second in its search

service [11]. With containers, applications can be automati-

cally and dynamically deployed across a cluster of physical

or virtual machines (VMs) with orchestration tools, such as

Apache Mesos [2], Kubernetes [13], and Docker Swarm [6].

Container networks provide connectivity to distributed

applications and are critical to building large-scale, container-

based services. Overlay networks, e.g., Flannel [10], Weave

[26], Calico [4] and Docker overlay [25], are widely adopted

in container orchestrators [3, 6, 13]. Compared to other com-

munication modes, overlay networks allow each container

to have its own network namespace and private IP address

independent from the host network. In overlay networks,

packets must be transformed from private IP address to pub-

lic (host) IP address before transmission, and vice versa dur-

ing reception. While network virtualization offers flexibility

to configure private networks without increasing the com-

plexity of host network management, packet transformation

imposes significant performance overhead. Compared to a

physical network, container overlay networks can incur dras-

tic throughput loss and suffer an order of magnitude longer

tail latency [50, 68, 69, 74, 78].

The overhead of container overlay networks is largely

due to a prolonged data path in packet processing. Overlay

packets have to traverse the private overlay network stack

and the host stack [78] for both packet transmission and

reception. For instance, in a virtual extensible LAN (VXLAN)

overlay, packets must go through a VXLAN device for IP trans-

formation, i.e., adding or removing host network headers

during transmission or reception, a virtual bridge for packet

forwarding between private and host stacks, and a virtual

network device (veth) for gating a container’s private net-

work. The inclusion of multiple stages (devices) in the packet

processing pipeline prolongs the critical path of a single net-

work flow, which can only be processed on a single core.

The existing mechanisms for parallelizing packet process-

ing, such as Receive Packet Steering (RPS) [20], focus on

261



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

distributing multiple flows (packets with different IPs or

ports) onto separate cores, thereby not effective for accel-

erating a single flow. The prolonged data path inevitably

adds delay to packet processing and causes spikes in latency

and significant throughput drop if computation overloads

a core. To shorten the data path, the state-of-the-art seeks

to either eliminate packet transformation from the network

stack [78] or offload the entire virtual switches and packet

transformation to the NIC hardware[19]. Though the perfor-

mance of such software-bypassing or hardware-offloading

network is improved (close to the native), these approaches

undermine the flexibility in cloud management with limited

support and/or accessibility. For example, Slim [78] does not

apply to connection-less protocols, while advanced hardware

offloading is only available in high-end hardware [19].

This paper investigates how and to what extent the con-

ventional network stack can be optimized for overlay net-

works. We seek to preserve the current design of overlay

networks, i.e., constructing the overlay using the existing

building blocks, such as virtual switches and virtual network

devices, and realizing network virtualization through packet

transformation. This helps to retain and support the existing

network and security policies, and IT tools. Through com-

prehensive profiling and analysis, we identify previously

unexploited parallelism within a single flow in overlay net-

works: Overlay packets travel multiple devices across the

network stack and the processing at each device is handled by

a separate software interrupt (softirq); while the overhead

of container overlay networks is due to excessive softirqs

of one flow overloading a single core, the softirqs are asyn-

chronously executed and their invocations can be interleaved.

This discovery opens up new opportunities for parallelizing

softirq execution in a single flow with multiple cores.

We design and develop Falcon (fast and balanced container

networking) — a novel approach to parallelize the data path

of a single flow and balance network processing pipelines of

multiple flows in overlay networks. Falcon leverages mul-

tiple cores to process packets of a single flow at different

network devices via a new hashing mechanism: It takes not

only flow but also network device information into consider-

ation, thus being able to distinguish packet processing stages

associated with distinct network devices. Falcon uses in-

kernel stage transition functions to move packets of a flow

among multiple cores in sequence as they traverse overlay

network devices, preserving the dependencies in the packet

processing pipeline (i.e., no out-of-order delivery). Further-

more, to exploit parallelism within a heavy-weight network

device that overloads a single core, Falcon enables a softirq

splitting mechanism that splits the processing of a heavy-

weight network device (at the function level), into multiple

smaller tasks that can be executed on separate cores. Last,

Falcon devises a dynamic balancing mechanism to effec-

tively multiplex softirqs of multiple flows in a multi-core

system for efficient interrupt processing.

pNIC
softIRQ

VXLAN

Container 
bridge

Container 
vNIC

Container 
B (receiver)

Layer 2 Layer 3 & 4 Layer 7

C i

Packet 
decapsulation

Container 
A (sender)

Container 
bridge

Container 
vNIC

VXLANpNIC

Packet 
encapsulation

Kernel Space User Space

IRQ

Hardware

Figure 1. Illustration of container overlay networks.

Though Falcon piplelines the processing stages of a packet

on multiple cores, it does not require packet copying between

these cores. Our experimental results show that the perfor-

mance gain due to parallelization significantly outweighs the

cost of loss of locality. To summarize, this paper has made

the following contributions:

• Weperform a comprehensive study of the performance

of container overlay networks and identify the main

bottleneck to be the serialization of a large number of

softirqs on a single core.

• We design and implement Falcon that parallelizes the

prolonged data path for a single flow in overlay net-

works. Unlike existing approaches that only parallelize

softirqs at packet reception, Falcon allows softirqs to

be parallelized at any stage of the processing pipeline.

• We evaluate the effectiveness of Falcon with both

micro and real-world applications. Our results show

that Falcon can significantly improve throughput (e.g.,

up to 300% for web serving) and reduce latency (e.g.,

up to 53% for data caching).

Road map: Section 2 discusses the background and gives

motivating examples of the comparison between a physical

network and a container overlay network. Section 3 analyzes

reasons causing the degradation in container network per-

formance. Section 4 presents design details of Falcon while

Section 5 discusses its implementation. Section 6 shows the

experimental results. Section 7 reviews related works and

Section 8 concludes the paper.

2 Background and Motivation

In this section, we first describe the process of packet pro-

cessing in the OS kernel. Then, we examine the performance

bottleneck of container overlay networks. Without loss of

generality, we focus on packet reception in the Linux kernel

because reception is in general harder than transmission

and incurs greater overhead in overlay networks. Further-

more, packet reception presents the parallelism that can be

exploited to accelerate overlay networks.

262



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

2.1 Background

In-kernel packet processing. Packet processing in com-

modity OSes is a pipeline traversing the network interface

controller (NIC), the kernel space and the user space, as

shown in Figure 1. Take packet reception for example, when

a packet arrives at the NIC, it is first copied (e.g., via DMA)

to the device buffer and triggers a hardware interrupt. Then

the OS responds to the interrupt and transfers the packet

through the receiving path in the kernel. Packet process-

ing is divided into the top half and bottom half. The top

half runs in the hardware interrupt context. It simply marks

that the packet arrives at the kernel buffer and invokes the

bottom half, which is typically in the form of a software

interrupt, softirq. The softirq handler — the main routine to

transfer packets along the protocol stack — is later scheduled

by the kernel at an appropriate time. After being processed

by various protocol layers, the packet is finally copied to a

user-space buffer and delivered to the applications listening

on the socket.

Container overlay network. In the pursuit of manage-

ment flexibility, virtualized networks are widely adopted in

virtualized servers to present logical network views to end

applications. Overlay network is a common way to virtu-

alize container networks. As an example in Figure 1, in a

container overlay network (e.g., VXLAN), when a packet is

sent from container A to container B, the overlay layer (layer

4) of container A first looks up the IP address of the desti-

nation host where container B resides — from a distributed

key-value store which maintains the mapping between pri-

vate IP addresses of containers and the public IP addresses

of their hosts. The overlay network then encapsulates the

packet in a new packet with the destination host IP address

and places the original packet as the payload. This process

is called packet encapsulation. Once the encapsulated packet

arrives at the destination host, the overlay layer of container

B decapsulates the received packet to recover the original

packet and finally delivers it to container B identified by its

private IP address. This process is called packet decapsulation.

In addition to the overlay networks, the container network

also involves additional virtualized network devices, such

as bridges, virtual Ethernet ports (vNIC), routers, etc., to

support the connectivity of containers across multiple hosts.

Compared to the native network, container overlay network

is more complex with a longer data path.

Interrupts on multi-core machines. The above network

packet processing is underpinned by two types of interrupts:

hardware interrupts (hardirqs) and software interrupts (soft-

irqs). On the one hand, like any I/O devices, a physical NIC

interacts with the OS mainly through hardirqs. A physical

NIC with one traffic queue is assigned with an IRQ number

during the OS boot time; hardirqs triggered by this NIC traffic

queue can only be processed on one CPU core at a time in an

IRQ context of the kernel (i.e., the IRQ handler). To leverage

multi-core architecture, a modern NIC can have multiple

traffic queues each with a different IRQ number and thus

interacting with a separate CPU core. On the other hand, an

OS defines various types of softirqs, which can be processed

on any CPU cores. Softirqs are usually raised when an IRQ

handler exits and processed on the same core (as the IRQ

handler) by the softirq handler either immediately (right

after the IRQ handler) or asynchronously (at an appropriate

time later). Typically, the hardirq handler is designed to be

simple and small, and runs with hardware interrupts on the

same core disabled (cannot be preempted), while the softirq

handler processes most of the work in the network protocol

stack and can be preempted.

Packet steering is a technique that leverages multiple cores

to accelerate packet processing. Receive side scaling (RSS) [21]

steers packets from different flows to a separate receive

queue on a multi-queue NIC, which later can be processed

by separate CPUs. While RSS scales packet processing by

mapping hardirqs to separate CPUs, receive packet steering

(RPS) [20] is a software implementation of RSS and balances

softirqs. Both RSS and RPS calculate a flow hash based on the

packet’s IP address and port and use the hash to determine

the CPU on which to dispatch the interrupts.

2.2 Motivation

Experimental Settings. We evaluated the throughput and

latency of the VXLAN overlay network between a pair of

client and server machines and studied how its performance

is different from the native host network. The machines were

connected with two types of NICs over direct links: Intel

X550T 10-Gigabit and Mellanox ConnectX-5 EN 100-Gigabit

Ethernet adapters. Both the client and server had abundant

CPU and memory resources. Details on the software and

hardware configurations can be found in Section 6.

Single-flow throughput. Figure 2 depicts the performance

loss due to the overlay network in various settings. Figure 2

(a) shows the comparison between overlay and host net-

works in a throughput stress test. We used sockperf [23] with

large packets (64 KB for both TCP and UDP) using a single

flow. To determine the maximum achievable throughput,

we kept increasing the sending rate until received packet

rate plateaued and packet drop occurred. While the overlay

network achieved near-native throughput in the slower 10

Gbps network, which is similar to the findings in Slim [78],

it incurred a large performance penalty in the faster 100

Gbps network for both UDP and TCP workloads by 53% and

47%, respectively. The results suggest that overlay networks

impose significant per-packet overhead that contributes to

throughput loss but the issue is often overlooked when link

bandwidth is the bottleneck and limits packet rate.

Single-flow packet rate. Figure 2 (b) shows packet rates

(IOs per second) under different packet sizes for UDP traffic.

When the packet size was small, the network stack’s ability

263



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

Figure 2. The performance comparison of container overlay network and the native physical network.

to handle a large number of packets limited the packet rate

and led to the largest performance gap between overlay and

host networks while link bandwidth was no longer the bot-

tleneck. As packet size increased, the gap narrowed. But for

the faster 100 Gbps Ethernet, the performance degradation

due to overlay networks had always been significant. Tests

on TCP workloads showed a similar trend.

Multi-flow packet rate. Next, we show that the prolonged

data path in a single flowmay have a greater impact on multi-

flow performance. Both the host and overlay network had

packet steering technique receive packet steering (RPS) en-

abled. Figure 2 (c) shows multi-flow packet rate with two

flow-to-core ratios. A 1:1 ratio indicates that there are suf-

ficient cores and each flow (e.g., a TCP connection) can be

processed by a dedicated core. Otherwise, with a higher ratio,

e.g., 4:1, multiple flows are mapped to the same core. The lat-

ter resembles a more realistic scenario wherein a server may

serve hundreds, if not thousands, of connections or flows.

The packet size was 4 KB.

A notable finding is that overlay networks incurred greater

throughput loss inmulti-flow tests compared to that in single-

flow tests, even in tests with a 1 : 1 flow-to-core ratio. Packet

steering techniques use consistent hashing to map packets

to different cores. When collisions occur, multiple flows may

be placed on the same core even idle cores are available,

causing imbalance in flow distribution. Since individual flows

become more expensive in overlay networks, multi-flow

workloads could suffer a greater performance degradation in

the presence of load imbalance. Furthermore, as flow-to-core

ratio increased, throughput loss further exacerbated.

Latency. As shown in Figure 2 (d), it is expected that given

the prolonged data path, overlay networks incur higher la-

tency than the native host network in both UDP and TCP

workloads. The figure suggests up to 2x and 5x latency hike

for UDP and TCP, respectively.

Summary. Container overlay networks incur significant

performance loss in both throughput and latency. The per-

formance penalty rises with the speed of the underlying

network and packet rate. In what follows, we analyze the

root causes of overlay-induced performance degradation.

NICPhysical

NAPI
scheduler

mlx5e_n
api_poll

br_handle
_frame

process_
backlog

Native/Containerized applications

pNIC
_interrupt

hardIRQ 
handler

softIRQ 
handler

netif_receive
_skb

veth_xmit

udp_rcvvxlan_rcv tcp_v4_rcv

ip_rcv

Control path Data path

gro_cell
_poll

Data Link

Network

Transport

Application

rx_ring

Figure 3. Packet reception in a container overlay network.

3 Root Cause Analysis

3.1 Prolonged Data Path

We draw the call graph of packet reception in the Linux

kernel using perf and flamegraph [9] and analyze the con-

trol and data paths in the host and overlay networks. As

Figure 3 illustrates, packet reception in an overlay network

involves multiple stages. The numbered steps are the invoca-

tion of hardware or software interrupts on different network

devices (�: physical NIC, �: VXLAN, �: veth).

In host network, upon packet arrival, the physical NIC

raises a hardirq and copies the packet into a receiving ring

buffer (rx_ring) in the kernel. In response to the hardirq,

the IRQ handler (pNIC_interrupt) is immediately executed

(�), during which it raises softirqs on the same CPU it is

running. Later, the softirq handler (net_rx_action) is in-

voked by the Linux NAPI scheduler; it traverses the polling

list and calls the polling function provided by each network

device to process these softirqs. In the native network, only

one polling function – physical NIC (mlx5e_napi_poll) (�)

is needed. It polls packets from the ring buffer and passes

them to the entry function of the kernel network stack

(netif_receive_skb). After processed by each kernel stack,

packets are finally copied to the socket buffer and received

264



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Figure 4. The comparison of hardware and software inter-

rupt rates in the native and container overlay networks.

by userspace applications. Note that the entire packet pro-

cessing is completed in one single softirq.

In comparison, packet processing in an overlay network

is more complex, requiring to traverse multiple network de-

vices. The initial processing in an overlay shares step � with

the physical network until packets reach the transport layer.

The UDP layer receive function udp_rcv invokes the VXLAN

receive routine vxlan_rcv if a packet is found to contain

an inner packet with a private IP. vxlan_rcv decapsulates

the packet by removing the outer VXLAN header, inserts it

at the tail of the receive queue of the VXLAN device, and

raises another NET_RX_SOFTIRQ softirq (step �). The softirq

uses the VXLAN device’s polling function gro_cell_poll

to pass packets to the upper network stack.

Furthermore, containers are usually connected to the host

network via a bridge device (e.g., Linux bridge or Open

vSwitch [16]) and a pair of virtual Ethernet ports on device

veth. One veth port attaches to the network bridge while

the other attaches to the container, as a gateway to the con-

tainer’s private network stack. Thus, the packets (passed by

gro_cell_poll) need to be further processed by the bridge

processing function (br_handle_frame) and the veth pro-

cessing function (veth_xmit). More specifically, the veth

device on the bridge side inserts the packets to a per-CPU

receiving queue (input_pkt_queue) and meanwhile raises a

third softirq (NET_RX_SOFTIRQ) (step �). Since veth is not a

NAPI device, the default poll function process_backlog is

used to pass packets to the upper protocol stack. Therefore,

packet processing in a container overlay network involves

three network devices with the execution of three softirqs.

3.2 Excessive, Expensive, and Serialized Softirqs

Call graph analysis suggests that overlay networks invoke

more softirqs than the native network does. Figure 4 con-

firms that the overlay network triggers an excessive number

of the RES and NET_RX interrupts. NET_RX is the softirq that

handles packet reception. The number of NET_RX in the over-

lay network was 3.6x that of the native network. The results

confirm our call graph analysis that overlay networks invoke

three times of softirqs than the native network.

Our investigation on RES – the rescheduling interrupt,

further reveals that there exists significant load imbalance

Figure 5. Serialization of softirqs and load imbalance.

gro_cell_poll
process_backlog
mlx5e_napi_poll

30.61%

20.54%
35.97%

1.59%

27.63%

4.75%

Sockperf Memcached

Figure 6. Flamegraphs of Sockperf and Memcached.

among multiple cores when processing overlay packets. RES

is an inter-processor interrupt (IPI) raised by the CPU sched-

uler attempting to spread load across multiple cores. Figure 5

shows the CPU utilization in host and overlay networks

for single-flow and multi-flow tests in the 100 Gbps Eth-

ernet. The workloads were sockperf UDP tests with fixed

sending rates. Note that the sending rates were carefully set

to keep the server reasonably busy without overloading it.

This allows for a fair comparison of their CPU utilization

facing the same workload. The figure shows that overlay

network incurred much higher CPU utilization compared

to the native network, mostly on softirqs. Moreover, most

softirq processing was stacked on a single core. (e.g., core 1 in

the single-flow overlay test). The serialization of softirq exe-

cution can quickly become the bottleneck as traffic intensity

ramps up. The multi-flow tests confirmed softirq serializa-

tion — the OS was unable to use more than 5 cores, i.e., the

number of flows, for packet processing. The overlay network

also exhibited considerable imbalance in core utilization due

to possible hash collisions in RPS, which explains the high

number of RES interrupts trying to perform load balancing.

Not only are there more softirqs in overlay networks,

some of them become more expensive than that in the na-

tive network. Figure 6 shows the flamegraphs of function

invocation in sockperf and memcached. The former is a

micro-benchmark that has only one type of packets with

uniform sizes while the latter is a realistic application that

includes a mixture of TCP and UDP packets with different

sizes. The flamegraphs demonstrate that for workloads with

simple packet types the overhead of overlay networks is man-

ifested by additional, relatively equally weighted softirqs. In

contrast, certain softirqs become particularly expensive and

dominate overlay overhead in realistic workloads.

265



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

3.3 Lack of Single-flow Parallelization

Packet steering techniques seek to reduce the data-plane

overhead via inter-flow parallelization. However, these mech-

anisms are not effective for parallelizing a single flow as all

packets from the same flow would have the same hash value

and thus are directed to the same CPU. As shown in Figure 5

(left, single-flow tests), although packet steering (i.e., RSS and

RPS) does help spread softirqs from a single flow to two cores,

which agrees with the results showing packet steering im-

proves TCP throughput for a single connection in Slim [78],

most of softirq processing is still stacked on one core. The

reason is that packet steering takes effect early in the packet

processing pipeline and does help separate softirq processing

from the rest of data path, such as hardirqs, copying pack-

ets to the user space, and application threads. Unfortunately,

there is a lack of mechanisms to further parallelize the softirq

processing from the same flow.

There are two challenges in scaling a single flow: 1) Simply

dispatching packets of the same flow to multiple CPUs for

processingmay cause out-of-order delivery as different CPUs

may not have a uniform processing speed. 2) For a single

flow involving multiple stages, as is in the overlay network,

different stages have little parallelism to exploit due to inter-

stage dependency. Hence, performance improvement can

only be attained by exploiting packet-level parallelism.

4 Falcon Design

The previous section suggests that, due to the lack of

single-flow parallelization, the execution of excessive softirqs

frommultiple network devices in container overlay networks

can easily overload a single CPU core, preventing a single

flow from achieving high bandwidth and resulting in long

tail latency. To address this issue, we design and develop Fal-

con with the key idea as follows: Instead of processing all

softirqs of a flow on a single core, Falcon pipelines softirqs

associated with different devices on separate cores, while

still preserving packet processing dependencies among these

devices and in-order processing on each device. To realize

this idea, Falcon incorporates three key components, soft-

ware interrupt pipelining, software interrupt splitting, and

dynamic load balancing (in Figure 7), as detailed as follows.

4.1 Software Interrupt Pipelining

Inspired by RPS [20], which dispatches different network

flows onto multiple cores via a hashing mechanism, Falcon

aims to dispatch the different packet processing stages (asso-

ciated with different network devices) of a single flow onto

separate cores. This way, Falcon exploits the parallelism of

a flow’s multiple processing stages by leveraging multiple

cores, while still preserving its processing dependencies —

packets are processed by network devices sequentially as

they traverse overlay network stacks. Furthermore, as for

each stage, packets of the same flow are processed on one

dedicated core, Falcon avoids “out-of-order” delivery.

Overlay 
networks

Flows

Network dev1
(NIC)

Network dev2
(VXLAN)

Network dev3
(veth)

Network 
packet

Software Interrupt Splitting (Hashing)

Software Interrupt Balancing

Hash Value1 Hash Value2 Hash Value3

FALCON

Device ID1

Flow Key

Device ID2

Flow Key

Device ID3

Flow Key

Hash Value1.1 Hash Value1.2 Hash Value2 Hash Value3

CPU1 CPU5 CPU6CPU3 CPU7 CPU8CPU4CPU2

Network 
Packet

Network 
Packet

Software Interrupt Pipelining (Hashing)

HIGH LOW MID LOW HIGH MID MID LOW

Figure 7. Architecture of Falcon. Falcon consists of three

main techniques:� software interrupt pipelining,� software

interrupt splitting, and � software interrupt balancing.

process_backlog
_netif_receive_skb

to_application

FALCON (get_falcon_cpu)
enqueue_to_backlog

process_backlog
_netif_receive_skb

br_forward
veth_xmit
netif_rx

RPS (get_rps_cpu)

mlx5e_napi_poll
napi_gro_receive

RPS (get_rps_cpu)
process_backlog

vxlan_rcv
netif_rx

FALCON (get_falcon_cpu)
enqueue_to_backlog

RPS (get_rps_cpu)

Per-CPU packet queue Per-CPU packet queuePer-CPU packet queue

VXLAN virtual NIC (veth)
Packet processing stages

Code snippets 
Linux Kernel 4.19

_netif_receive_skb
…

physical NIC Bridge

Raise a softirq Raise a softirq

Figure 8. Falcon pipelines software interrupts of a single

flow by leveraging stage transition functions.

Unfortunately, we find that the existing hashing mech-

anism used by RPS cannot distinguish packet processing

stages associated with different network devices (e.g., NIC,

VXLAN, bridge, and veth in Figure 3), as it simply takes

packet information as input without considering device in-

formation. Specifically, the existing hash mechanism in RPS

performs the hash calculation upon a network flow key

(flow_keys) — a data structure composed of a packet’s source

and destination IP addresses, protocol, ports, tags, and other

metadata needed to identify a network flow. The calculated

hash value is used to determine the core on which the packet

will be processed. Yet, since the hash calculation does not in-

clude device information, all stages of the packets of a single

flow are executed on the same core. As illustrated in Figure 8,

though the RPS function is invoked multiple times along the

network path, only the first RPS (on CPUi) takes effect (i.e.,

selecting a new CPU core based on the hash value), while

the following RPS (e.g., on CPUi and on CPUj) generate the

same hash value for the packets of the same flow.

A natural way to distinguish different processing stages of

a single flow is to involve additional device information for

266



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

the hash calculation: We notice that, when a packet is sent or

received by a new network device, the device pointer (dev)

in the packet’s data structure (sk_buff) will be updated and

pointed to that device. Therefore, we could involve the index

information of network devices (e.g., dev→ifindex) in the

hash calculation, which would generate distinct hash val-

ues for different network devices. However, simply reusing

RPS functions that are statically located along the existing

network processing path may unnecessarily (and inappro-

priately) split the processing of one network device into

fragmented pieces distributed on separate cores — as we can

see in Figure 8, two RPS functions are involved along the

processing path of the first network device (i.e., pNIC).

Instead, Falcon develops a new approach to separate dis-

tinct network processing stages via stage transition functions.

We find that certain functions in the kernel network stack

act as stage transition functions — instead of continuing the

processing of a packet, they enqueue the packet into a device

queue that will be processed later. The netif_rx function

is such an example as shown in Figure 8, which by default

enqueues a packet to a device queue. The packet will be

retrieved from the queue and processed later on the same

core. These stage transition functions are originally designed

to multiplex processings of multiple packets (from multiple

flows) on the same core, while Falcon re-purposes them

for a multi-core usage: At the end of each device process-

ing 1, Falcon reuses (or inserts) a stage transition function

(e.g., netif_rx) to enqueue the packet into a target CPU’s

per-CPU packet queue. To select the target CPU, Falcon em-

ploys a CPU-selection function, which returns a CPU based

on the hash value calculated upon both the flow information

(e.g., flow_keys) and device information (e.g., ifindex) —

i.e., distinct hash values for different network devices given

the same flow. Finally, Falcon raises a softirq on the target

CPU for processing the packet at an appropriate time.

With stage transition functions, Falcon can leverage a

multi-core system to freely pipeline a flow’s multiple pro-

cessing stages on separate CPU cores — the packets of a

single flow can be associated with nonidentical cores for pro-

cessing when they enter distinct network devices. Falcon’s

design has the following advantages: 1) It does not require

modifications of existing network stack data structures (e.g.,

sk_buff and flow_keys) for hash calculation, making Fal-

con portable to different kernel versions (e.g., we have imple-

mented Falcon in kernel 4.19 and easily ported it to kernel

5.4); 2) Since Falcon uses stage transition functions (instead

of reusing RPS) for separation of network processing, it can

coexist with existing scaling techniques like RPS/RSS.

4.2 Software Interrupt Splitting

Though it makes intuitive sense to separate network pro-

cessing stages at per-device granularity (in Section 4.1), our

1Falcon can also stack multiple devices in one processing stage, aiming to

evenly split the network processing load on multiple cores.

(a) CPU% of first stage.

napi_gro_receive

skb_allocation Software interrupt 
splitting

pNIC (1) pNIC (2)
Packet 

processing 
stages

CPU cores

napi_gro_receive

(b) Software interrupt splitting.

Figure 9. (a) A single device takes up a single core under

TCP with large packet size (4 KB). (b) Falcon splits the

processing of a “heavy” network device into multiple smaller

tasks with each running on a separate core.

analysis of the Linux kernel (from version 4.19 to 5.4) and

the performance of TCP and UDP with various packet sizes

reveal that, a finer-grained approach to split network pro-

cessing stages is needed under certain circumstances.

As plotted in Figure 9a, under the TCP case with a large

packet size (e.g., 4 KB), the first stage of Falcon (associated

with the physical NIC) easily takes up 100% of a single CPU

core and becomes the new bottleneck. Upon deep investiga-

tion, we identify that two functions (skb_allocation and

napi_gro_receive) are the culprits, with each contribut-

ing around 45% of CPU usage. However, such a case does

not exist under UDP or TCP with small packets (e.g., 1 KB),

where the first stage does not saturate a single core. It is

because, the GRO 2 function (napi_gro_receive) is heavily

involved in processing TCP flows with a large packet size,

while it merely takes effect for UDP flows or TCP flows with

a small packet size. This issue – the processing of one net-

work device overloads a single CPU core – could commonly

exist, as the Linux network stack is designed to be flexible

enough that allows arbitrary network devices or modules

to be “hooked” on demand along the network path, such

as container’s overlay device (VXLAN), traffic encryption [8],

profiling [24], in-kernel software switches [17], and many

network functions [39, 42, 52].

To further exploit parallelismwithin a “heavy-weight” net-

work device that overloads a single core, Falcon enables

a softirq splitting mechanism: It separates the processing

functions associated with the network device onto multiple

cores by inserting stage transition functions right before the

function(s) to be offloaded. In the example of Figure 9b, to of-

fload the CPU-intensive GRO function (e.g., under TCP with

4 KB packet size), Falcon inserts a transition function (i.e.,

netif_rx) before the GRO function. Meanwhile, a softirq

is raised on the target core, where the GRO function is of-

floaded. By doing this, Falcon splits the original one softirq

2The generic receive offload (GRO) function reassembles small packets into

larger ones to reduce per-packet processing overheads.

267



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

into two, with each for a half processing of the associated

network device (e.g., pNIC1 and pNIC2 in Figure 9b).

Note that, Falcon’s softirq splitting mechanism is general

in that Falcon can arbitrarily split the processing of any

network device, at the function level, into multiple smaller

tasks, which can be parallelized on multiple cores. However,

it should be applied with discretion, as splitting does incur

additional overhead, such as queuing delays, and it could

offset the performance benefit from the parallelism. In prac-

tice, Falcon only applies software interrupt splitting to a

network device that fully overloads a CPU core 3.

4.3 Software Interrupt Balancing

The use of stage transition functions is a generic approach

to resolve the bottleneck of overlay networks by paralleliz-

ing softirq processing of a single flow as well as breaking

expensive softirqs into multiple smaller softirqs. Challenges

remain in how to effectively and efficiently balance the soft-

riqs to exploit hardware parallelism and avoid creating new

bottlenecks. First, the kernel network stack may coalesce

the processing of packets from different flows in the same

softirq to amortize the overhead of softirq invocation. Thus,

softirq balancing must be performed on a per-packet basis

as downstream softirqs from different flows should be sent

to different cores. Since packet latency is in the range of tens

of to a few hundreds of microseconds, the cost to evenly

distribute softirqs should not add much delay to the latency.

Second, load balancing relies critically on loadmeasurements

to determine where softirqs should be migrated from and to.

However, per-packet softirq balancing on individual cores

lacks timely and accurate information on system-wide load,

thereby likely to create new bottlenecks. A previous lightly

loaded core may become a hotspot if many flows dispatch

their softirqs to this core and CPU load may not be updated

until the burst of softirqs has been processed on this core.

The fundamental challenge is the gap between fine-grained,

distributed, per-packet balancing and the complexity of achiev-

ing global load balance. To overcome it, Falcon devises a

dynamic softirq balancing algorithm that 1) prevents over-

loading any core and 2) maintains a reasonably good balance

across cores 3) at a low cost. As shown in Algorithm 1, the

dynamic balancing algorithm centers on two designs. First,

Falcon is enabled only when there are sufficient CPU re-

sources to parallelize individual network flows otherwise all

softirqs stay on the original core (line 6–9). Falcon monitors

system-wide CPU utilization and switches softirq pipelining

and splitting on and off according to FALCON_LOAD_THRESHOLD

(see Section 6.1 for parameter sensitivity). Second, Falcon

employs a two-choice algorithm for balancing softirqs: 1) it

first computes a hash on the device ID and the flow key to

uniquely select a CPU for processing a softirq (line 19–20).

3Falcon statically splits functions of a heavy-weight network device, via

offline profiling. Yet, we note that a dynamic method is more desired, which

is the subject of our ongoing investigations.

Algorithm 1 Dynamic Softirq Balancing

1: Variables: socket buffer 𝑠𝑘𝑏; current average load of the sys-

tem 𝐿𝑎𝑣𝑔; network flow hash 𝑠𝑘𝑏.ℎ𝑎𝑠ℎ and device ID ifindex;

Falcon CPU set falcon_cpus.

2:

3: // Stage transition function

4: function netif_rx(𝑠𝑘𝑏)
5: // Enable Falcon only if there is room for parallelization

6: if 𝐿𝑎𝑣𝑔 < falcon_load_threshold then

7: 𝑐𝑝𝑢 := get_falcon_cpu(𝑠𝑘𝑏)
8: // Enqueue skb to cpu’s packet queue and raise softirq

9: enqueue_to_backlog(𝑠𝑘𝑏, 𝑐𝑝𝑢)
10: else

11: // Original execution path (RPS or current CPU)

12: . . .
13: end if

14: end function

15:

16: // Determine where to place the next softirq

17: function get_falcon_cpu(𝑠𝑘𝑏)
18: // First choice based on device hash

19: ℎ𝑎𝑠ℎ := hash_32(𝑠𝑘𝑏.ℎ𝑎𝑠ℎ + ifindex)

20: 𝑐𝑝𝑢 := falcon_cpus[ℎ𝑎𝑠ℎ % nr_falcon_cpus]

21: if 𝑐𝑝𝑢.𝑙𝑜𝑎𝑑 < falcon_load_threshold then

22: return 𝑐𝑝𝑢
23: end if

24: // Second choice if the first one is overloaded

25: ℎ𝑎𝑠ℎ := hash_32(ℎ𝑎𝑠ℎ)
26: return falcon_cpus[ℎ𝑎𝑠ℎ % nr_falcon_cpus]

27: end function

Given the nature of hashing, the first choice is essentially a

uniformly random CPU in the Falcon CPU set. This helps

evenly spread softirqs across CPUs without quantitatively

comparing their loads. If the first selected CPU is busy, Fal-

con performs double hashing to pick up another CPU (sec-

ond choice, line 25–26). Regardless if the second CPU is busy

or not, Falcon uses it for balancing softirqs.

The dynamic balancing algorithm is inspired by compre-

hensive experimentation with container networks and the

network stack. The central design is the use of hash-based,

two random choices in CPU selection. As CPU load cannot

be accurately measured at a per-packet level, we observed

significant fluctuations in CPU load due to frequent softirq

migrations that aggressively seek to find the least loaded

CPU. On the other hand, purely random balancing based

on device hash may lead to persistent hotspots. The two-

choice algorithm avoids long-lasting hotspots by steering

away from a busy CPU in the first attempt but commits to

the second choice in order to minimize load fluctuations.

5 Implementation

We have implemented Falcon upon Linux network stack

in two generations of Linux kernel, 4.19 and 5.4, and its

source code is available at: https://github.com/munikarmanish/

268



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Figure 10. Packet rates in the host network, vanilla overlay, and Falcon overlay under a UDP stress test.

falcon. Underpinning Falcon’s implementation, there are

two specific techniques:

Stage transition functions. To realize softirq pipelining

and splitting, Falcon re-purposes a state transition function,

netif_rx (line 4–14 of Algorithm 1), and explicitly inserts it

at the end of each network device’s processing path. There-

fore, once a packet finishes its processing on one network

device, it could be steered by netif_rx to a different CPU

core for the subsequent processing. The netif_rx function

relies on the CPU-selection function get_falcon_cpu (line

17–27) to choose a target CPU (line 7), enqueues the packet

to the target CPU’s packet processing queue (line 8), and

raises a softirq to signal the target CPU (also line 8).

Furthermore, in the current implementation of softirq split-

ting, Falcon splits two heavy processing functions of the

first network device (i.e., physical NIC) — skb_allocation

and napi_gro_receive— onto two separate cores by insert-

ing netif_rx right before the napi_gro_receive function.

We call this approach “GRO-splitting”. Note that, to apply

such a splitting approach, we need to identify that the two

split functions are “stateless” — the processing of one func-

tion does not depend on the other function.

Hashingmechanism. As stated in Section 4.3, Falcon em-

ploys a two-choice dynamic load balancing algorithm (line

17–27), which relies on a new hashing mechanism to pick

up the target CPU. Specifically, the first CPU choice is deter-

mined by the hash value (line 19) calculated upon both the

flow information skb.hash and device information ifindex

— skb.hash represents the flow hash, calculated only once

when a packet enters the first network device and based on

the flow key (flow_keys); ifindex represents the unique de-

vice index of a network device. With this hash value, Falcon

ensures that 1) given the same flow but different network

devices, hash values are distinct — a flow’s multiple process

stages of devices can be distinguished; 2) given the same

network device, all packets of the same flow will always be

processed on the same core — preserving processing depen-

dencies and avoiding “out-of-order” delivery; 3) Falcon does

not need to store the “core-to-device” mapping information;

instead, such mapping information is captured by the hash

value, inherently. Furthermore, if the first CPU choice fails

(i.e., the selected CPU is busy), Falcon simply generates a

new hash value for the second choice (line 25).

Falcon is enabled when the average system load (i.e., CPU

usage) is lower than FALCON_LOAD_THRESHOLD (line 6); other-

wise, it is disabled (line 11) indicating no sufficient CPU

resources for packet parallelization. Falcon maintains the

average system load in a global variable 𝐿𝑎𝑣𝑔 and updates

it every N timer interrupts within the global timer inter-

rupt handler (i.e., do_timer), via reading the system state

information (i.e., /proc/stat) to detect each core’s load.

6 Evaluation
We evaluate both the effectiveness of Falcon in improving

the performance of container overlay networks. Results with

micro-benchmarks demonstrate that 1) Falcon improves

throughput up to within 87% of the native performance in

UDP stress tests with a single flow (Section 6.1), 2) signifi-

cantly improves latency for both UDP and TCP (Section 6.1),

and 3) achieves even higher than native throughput in multi-

flow TCP tests (Section 6.1). Experiments with two genera-

tions of Linux kernels that have undergone major changes in

the network stack prove Falcon’s effectiveness and general-

ity. Results with real applications show similar performance

benefits (Section 6.2). Nevertheless, overhead analysis (Sec-

tion 6.3) reveals that Falcon exploits fine-grained intra-flow

parallelism at a cost of increased CPU usage due to queue

operations and loss of locality, which in certain cases could

diminish the performance gain.

Experimental configurations. The experiments were per-

formed on two DELL PowerEdge R640 servers equipped with

dual 10-core Intel Xeon Silver 4114 processors (2.2 GHz)

and 128 GB memory. Hyperthreading and turbo boost were

enabled, and the CPU frequency was set to the maximum.

The two machines were connected directly by two physical

links: Intel X550T 10-Gigabit Ethernet (denoted as 10G), and

Mellanox ConnectX-5 EN 100-Gigabit Ethernet (denoted as

100G). We used Ubuntu 18.04 with Linux kernel 4.19 and

5.4 as the host OSes. We used the Docker overlay network

mode in Docker version 19.03.6 as the container overlay net-

work. Docker overlay network uses Linux’s builtin VXLAN

to encapsulate container network packets. Network optimiza-

tions (e.g., TSO, GRO, GSO, RPS) and interrupt mitigation

(e.g., adaptive interrupt coalescing) were enabled for all tests.

269



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

For comparisons, we evaluated the following three cases:

• Native host: running tests on the physical host network

without containers (denoted as Host).

• Vanilla overlay: running tests on containers with de-

fault docker overlay network (denoted as Con).

• Falcon overlay: running tests on containerswith Falcon-

enabled overlay network (denoted as Falcon).

6.1 Micro-benchmarks

Single-flow stress test. As shown in Figure 2, UDP work-

loads suffer higher performance degradation in overlay net-

works compared to TCP. Unlike TCP, which is a connection-

oriented protocol that has congestion (traffic) control, UDP

allows multiple clients to send packets to an open port, be-

ing able to press the network stack to its limit on handling

a single flow. Since Falcon addresses softirq serialization,

the UDP stress test evaluates its maximum potential in ac-

celerating single flows. If not otherwise stated, we used 3

sockperf clients to overload a UDP server. Experiments were

performed in Linux version 4.19 and 5.4. The new Linux ker-

nel hadmajor changes in sk_buff allocation, a data structure

used throughout the network stack. Our study revealed that

the new kernel achieves performance improvements as well

as causing regressions.

Figure 10 shows that Falcon achieved significant through-

put improvements over Docker overlay, especially with large

packet sizes. It delivered near-native throughput in the 10

Gbps Ethernet while bringing packet rate up to 87% of the

host network in the 100 Gbps Ethernet. However, there still

existed a considerable gap between Falcon and the host net-

work for packets smaller than the maximum transmission

unit (MTU) in Ethernet (i.e., 1500 bytes).

Figure 11 shows the breakdown of CPU usage on multiple

cores for the 16B single-flow UDP test in the 100 Gbps net-

work. With the help of packet steering, network processing

in the vanilla Linux can utilize at most three cores – core-0 for

hardirqs and the first softirq responsible for packet steering,

core-1 for the rest of softirqs, and core-2 for copying received

packets to user space and running application threads. It can

be clearly seen that core-1 in the vanilla overlay was over-

loaded by the prolonged data path with three softirqs. In

comparison, Falcon is able to utilize two additional cores to

process the two extra softirqs. The CPU usage also reveals

that both the host network and Falcon were bottlenecked

by user space packet receiving on core-2. Since Falcon in-

volves packet processing on multiple cores, it is inevitably

more expensive for applications to access packets due to loss

of locality. This explains the remaining gap between Falcon

and the host network. To further narrow the gap, the user

space applications need to be parallelized, which we leave

for future work.

Single-flow latency. Figure 12 depicts per-packet latency

in single-flow UDP and TCP tests. We are interested in la-

tency in both 1) underloaded tests, wherein client sending

Figure 11. CPU utilization of a single UDP flow.

rate is fixed in all three cases to avoid overloading any cores

on the receiving side, and 2) overloaded tests, in which each

case is driven to its respective maximum throughput before

packet drop occurs. In the underloaded UDP test in Figure 12

(a), Falcon had modest improvements on the average and

90𝑡ℎ percentile latency and more pronounced improvements

towards the tail. Note that fine-grained softirq splitting, such

as GRO splitting, did not take effect in UDP since GRO was

not the bottleneck. In contrast, Figure 12 (c) suggests that

softirq pipelining helped tremendously in the overloaded

UDP test wherein packets processed on multiple cores expe-

rienced less queuing delay than that on a single core.

Figure 12 (b) and (d) shows the effect of Falcon on TCP

latency. Our experiments found that in the overloaded TCP

test (Figure 12 (d)), latency is largely dominated by queuing

delays at each network device and hence the improvement is

mainly due to softirq pipelining while softirq splitting may

also have helped. It is worth noting that Falcon was able to

achieve near-native latency across the spectrum of average

and tail latency. For underloaded TCP test with packets less

than 4 KB (not listed in the figures), neither softirq splitting

nor pipelining had much effect on latency. For 4 KB under-

loaded TCP test (Figure 12 (b)), GRO splitting helped to attain

near-native average and the 90𝑡ℎ percentile latency but failed

to contained the long tail latency. We believe this is due to

the possible delays in inter-processor interrupts needed for

raising softirqs on multiple cores. It is worth noting that

despite the gap from the host network Falcon consistently

outperformed the vanilla overlay in all cases.

Multi-flow throughput. This sections compares Falcon

with existing packet steering techniques (i.e., RSS/RPS) in

multi-flow tests — multiple flows were hosted within one

container. In all tests, both RSS and RPS were enabled and

we used dedicated cores in FALCON_CPUS. This ensures that

Falcon always has access to idle cores for flow paralleliza-

tion. As previously discussed, GRO-splitting is only effective

for TCP workloads and hence does not take effect in UDP

tests. The packet sizes were set to 16 B and 4 KB for UDP

and TCP, respectively. Unlike the UDP stress test, which

used multiple clients to press a single flow, the multi-flow

test used one client per flow. Figure 13 (a) and (b) show that

Falcon can consistently outperform the vanilla overlay with

packet steering by as much as 63%, within 58% to 75% of that

270



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Figure 12. Effect of Falcon on per-packet latency. Packet size is 16 B in (a, c, d) and 4 KB in (b).

Figure 13. Packet rates in the host network, vanilla overlay, and Falcon under multi-flow UDP and TCP tests.

in the host network. Note that Falcon neither improved nor

degraded performance for a single flow. It is because, for

UDP tests with 16 B packets without using multiple clients,

the sender was the bottleneck.

For TCPmulti-flow tests, we further enabledGRO-splitting

for the host network (denoted as Host+). Figure 13 (c) and

(d) show that GRO processing is a significant bottleneck

even for the host network. GRO-splitting helped achieve

up to 56% throughput improvement in Host+ than that in

the vanilla host network. With Falcon, the overlay network

even outperformed Host by as much as 37%.

Multi-container throughput in busy systems. This sec-

tion evaluates Falcon in more realistic scenarios in which

multiple containers, each hosting one flow, are running in a

busy system. Unlike the multi-flow tests that used dedicated,

idle cores for flow parallelization, in the multi-container tests

all cores were actively processing either hardirqs, softirqs,

or application threads. Falcon needed to exploit idle CPU

cycles on unsaturated cores for flow parallelization. This

evaluates the effectiveness of the dynamic balancing algo-

rithm. We limited the packet receiving CPUs to 6 cores 4 and

configured them as FALCON_CPUS. As illustrated in Figure 14,

we gradually increased the number of containers from 6 to

40 in order to drive the receiving cores from around 70% busy

until overloaded. We observed that: 1) when the system had

idle CPU cycles (e.g., under 6 or 10 containers), Falcon was

able to improve overall throughput by up to 27% and 17%

4It was impractical for us to saturate a 40-core system due to limited client

machines; hence we selected a subset of cores for evaluation.

under UDP and TCP, respectively. In addition, Falcon’s per-

formance was more consistent across runs compared to the

vanilla container network; 2) when the system was pressed

towards fully saturated (e.g., 100% utilization with 20 and

more containers), Falcon’s gain diminished but never under-

performed RSS/RPS. Figure 14 (b) and (d) show that Falcon’s

diminishing gain was observed during high CPU utilization

and Falcon was disabled once system is overloaded.

Parameter sensitivity. Falcon is disabled when the sys-

tem load is high since there is a lack of CPU cycles for par-

allelization. In this section, we evaluate the effect of param-

eter FALCON_LOAD_THRESHOLD, which specifies the utilization

threshold for disabling Falcon. Figure 15 shows that always

enabling Falcon (denoted as always-on) hurt performance

when the system was highly loaded while setting a low uti-

lization threshold (e.g., 70% and lower) missed the opportuni-

ties for parallelization. Our empirical studies suggested that a

threshold between 80-90% resulted in the best performance.

Adaptability test. To demonstrate the significance of Fal-

con’s two-random choice algorithm, we created hotspots

by suddenly increasing the intensity of certain flows. In a

hashing-based balancing algorithm, such as RSS/RPS and the

first random choice in Falcon, the softirq-to-core mapping

is fixed, thereby unable to adapt to workload dynamics. In

contrast, Falcon’s two-choice dynamic re-balancing algo-

rithm allows some softirqs to be steered away from an over-

loaded core and quickly resolves the bottleneck. In the test,

we randomly increased the intensity of one flow, resulting

in one overloaded core. We compare Falcon’s two-choice

271



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

Figure 14. Falcon’s benefit diminishes as utilization increases but causes no performance loss when system is overloaded.

Figure 15. Effect of the average load threshold and its impact

on container network performance.

Figure 16. Falcon adapts to changing workload and re-

balances softirqs, dynamically.

balancing algorithm (denoted as dynamic) with static hash-

ing (Falcon’ balancing algorithm with the second choice

disabled, denoted as static). As shown in Figure 16, the two-

choice balancing algorithm achieved 18% higher throughput

in UDP about 15% higher throughput in TCP, respectively.

Most importantly, the performance benefit was consistent

across multiple runs. These results suggest that the two-

choice balancing algorithm can effectively resolve transient

bottlenecks without causing fluctuations.

6.2 Application Results

Web serving. We measured the performance of the Cloud-

suite’s Web Serving benchmark [5] with Falcon. Cloudsuite

Web Serving, which is a benchmark to evaluate page load

throughput and access latency, consists of four tiers: an ng-

inx web server, a mysql database, a memcached server and

clients. The web server runs the Elgg [7] social network and

connects to the cache and database servers. The clients send

requests, including login, chat, update, etc., to the social net-

work (i.e., the web server). We evaluated the performance

with our local testbed. Web server’s pm.max_children was

set to 100. The cache and database servers were running on

two separate cores to avoid interferences. All clients and

servers ran inside containers and were connected through

Docker overlay networks on top of the 100 Gbps NIC.

Figure 17(a) shows the “success operation” rate with a

load of 200 users under the vanilla overlay network and

Falcon. Compared to the vanilla case, Falcon improves the

rate of individual operations significantly, by up to 300% (e.g.,

BrowsetoElgg). Figure 17(b) and (c) illustrate the average re-

sponse time and delay time of these operations: The response

time refers to the time to handle one request, while the de-

lay time is the difference between the target (expected time

for completion) and actual processing time. With Falcon,

both response time and delay time are significantly reduced.

For instance, compared to the vanilla case, the maximum

improvement in average response time and delay time is

63% (e.g., PostSelfWall) and 53% (e.g., BrownsetoElgg), re-

spectively. Falcon’s improvements on both throughput and

latency are mainly due to distributing softirqs to separate

cores, thus avoiding highly loaded cores.

Data caching. We further measured the average and tail

latency using Cloudsuite’s data caching benchmark, mem-

cached [15]. The client and server were running in two con-

tainers connected with Docker overlay networks. The mem-

cached server was configured with 4GB memory, 4 threads,

and an object size of 550 bytes. The client had up to 10 threads,

submitting requests through 100 connections using the Twit-

ter dataset. As shown in Figure 18, with one client, Falcon

reduces the tail latency (99𝑡ℎ percentile latency) slightly by

7%, compared to the vanilla case. However, as the number

of clients grows to ten, the average and tail latency (99𝑡ℎ

percentile latency) are reduced much further under Falcon,

by 51% and 53%. It is because, as the number of clients (and

the request rate) increases, kernel spends more time in han-

dling interrupts, and Falcon greatly increases its efficiency

due to pipelined packet processing and balanced software

interrupts distribution, as stated in Section 6.4.

6.3 Overhead Analysis

The overhead of Falcon mainly comes from two sources:

interrupt redistribution and loss of packet data locality. These

are inevitable, as Falcon splits one softirq into multiple

ones to help packets migrate from one CPU core to another.

272



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Figure 17. Falcon improves the performance of a web serving application (from Cloudsuite) in terms of higher operation rate

and lower response time, compared to vanilla overlay network.

Figure 18. Falcon reduces the average and tail latency un-

der data caching using Memcached.

Note that, the essence of Falcon is to split and spread CPU-

consuming softirqs to multiple available CPUs instead of re-

ducing softirqs. As the overhead ultimately results in higher

CPU usage given the same traffic load, we quantify it by mea-

suring the total CPU usage with fixed packet rates. Figure 19

shows the CPU usage with a 16B single-flow UDP test under

various fixed packet rates in three network modes: native

host, vanilla overlay, and Falcon.

As depicted in Figure 19 (a), compared to vanilla overlay,

Falcon consumes similar (or even lower) CPU resources

when the packet rate is low, while slightly more CPU re-

sources (≤ 10%) when the packet rate is high. Meanwhile,

Falcon triggers more softirqs, e.g., by 44.6% in Figure 19

(b).5 It indicates that though Falcon could result in loss of

cache locality as the processing of a packet is spread onto

multiple cores, it brings little CPU overhead compared to

the vanilla overlay. It is likely because the vanilla overlay

approach does not have good locality either, as it needs to

frequently switch between different softirq contexts (e.g.,

for NIC, VXLAN, and veth) on the same core. As expected,

Falcon consumes more CPU resources compared to native

host, and the gap widens as the packet rate increases.

6.4 Discussion

Dynamic softirq splitting. While we found softirq split-

ting is necessary for TCP workloads with large packets and

5Note that the overlay network triggers fewer softirqs in Figure 19 (b) than

that in Figure 4, as we measured it in a less loaded case (400 Kpps).

Figure 19. Overhead of Falcon.

can significantly improve both throughput and latency, it

may impose overhead for UDP workloads that are not bot-

tlenecked by GRO processing. In the meantime, we employ

offline profiling to determine the functions within a softirq

that should be split and require the kernel to be recompiled.

Although Falcon can be turned on/off completely based

on the system load, there is no way to selectively disable

function-level splitting while keeping the rest part of Falcon

running. As such, certain workloads may experience subop-

timal performance under GRO splitting. One workaround is

to configure the target CPU for softirq splitting to use the

same core so that the split function is never moved. We are

investigating a dynamic method for function-level splitting.

Real-world scenarios. Falcon is designed to be a general

approach for all types of network traffic in container over-

lay networks. Particularly, two practical scenarios would

greatly benefit from it: 1) Real-time applications based on

“elephant” UDP flows, such as live HD streaming, VoIP, video

conferencing, and online gaming; 2) a large number of flows

with unbalanced traffic — multiple flows could co-locate on

the same core if the number of flows is larger than the core

count, where Falcon can parallelize and distribute them

evenly. Note that, Falcon’s effectiveness depends on ac-

cess to idle CPU cycles for parallelization. In a multiple-user

environment, policies on how to fairly allocate cycles for

parallelizing each user’s flows need to be further developed.

273



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

7 Related Work

Network stack optimization. Many researchers have re-

vealed that the poor performance of network suffered from

the inefficiency and complexity inside the kernel network

stack. Therefore, lots of studies and solutions have been

proposed to optimize problems along the data path, includ-

ing the interrupt processing [31, 34, 41, 61], protocol pro-

cessing [31, 45], memory copying [31, 51, 61, 64], schedul-

ing [34, 35, 61, 70, 76, 77], interaction between the appli-

cation and kernel [37, 44], etc. Different from the above

work improving the traditional network, our work focuses

on optimizing the issues existed specifically inside the con-

tainer networks and thus the above studies are orthogonal

to ours. In addition to renovating the existing OSes, some

other papers proposed lightweight and customized network

stacks [30, 46–48, 55, 65, 78] to improve the network per-

formance. For example, Slim [78] is a connection-oriented

approach that creates overlay networks by manipulating

connection metadata. Containers can still use private IPs to

establish connections but packets use host IPs for transmis-

sion. In Slim, network virtualization is realized via connec-

tion redirection at the connection level rather than packet

transformation at the packet level. As such, Slim can bypass

the virtual bridge and the virtual network device in con-

tainers, achieving near-native performance. However, Slim

does not apply to connection-less protocols, such as UDP,

and complicates and limits the scalability of host network

management since each overlay network connection needs

a unique file descriptor and port in the host network. In

this work, we strive to salvage a commodity OS kernel to

efficiently support all network traffic in overlay networks.

Kernel scalability on multicore. As the number of CPU

core increases, how to improve the resource utilization and

the system efficiency, scalability and concurrency is becom-

ing a hot research topic. Boyd-Wickizer et al. [33] analyzed

the scalability of applications running on Linux on top of a

48-core machine and reported almost all applications trig-

gered scalability bottlenecks inside the Linux kernel. Many

researchers advocated rethinking the operating systems [28,

59] and proposed new kernel for high scalability, such as

Barrelfish [29] and Corey [32]. The availability of multi-

ple processors in computing nodes and multiple cores in a

processor also motivated proposals to utilize the multicore

hardware, including protocol onloading or offloading on ded-

icated processors [40, 63, 67, 72], network stack paralleliza-

tion [54, 57, 58, 73], packet processing alignment [60, 62],

optimized scheduling [49, 56, 62], to improve the network

performance. However, none of the above techniques are

designed on optimizing the inefficiency inside container net-

works. Instead, Falcon addresses the serialization of softirq

execution due to overlay networks in Linux kernel.

Container network acceleration. As a new and complex

technique, many reasons could contribute to inefficiency of

container networks. In order to diagnose bottlenecks and op-

timize container networks, many researches and techniques

have been developed in recent years. These works can be

divided in two categories. First, many researchers propose

to reduce unnecessary work to improve the performance.

Systems can offload CPU-intensive work, such as checksum

computing, onto hardwares [12, 14, 18, 71] or bypass ineffi-

cient parts inside kernel [22, 71] to improve the container

network processing. As a concrete example, advanced of-

floading techniques, e.g., Mellanox ASAP2 [19], allow for

the offloading of virtual switches and packet transformation

entirely to the NIC hardware. This technique helps deliver

near-native overlay performance as packets coming out of

the NIC are stripped off host network headers and can be

processed as ordinary packets in physical networks. How-

ever, it has several drawbacks: 1) advanced offloading is only

available in high-end hardware; 2) it has restrictions on the

configuration of overlay networks, limiting flexibility and

scalability. For example, SR-IOV has to be enabled to directly

pass virtual functions (VFs) to containers as a network de-

vice. This not only increases the coupling of containers with

the hardware but also limits the number of containers in a

host, e.g., 512 VFs in the Mellanox ConnectX®-5 100 Gbps

Ethernet adapter [27]. Another category of works, including

virtual routing [4], memory sharing [74], resource manage-

ment [43], redistribution and reassignment [75], manipulat-

ing connection-level metadata [78], focus on optimizing the

data path along container networks. Different from above

works, our work focuses on the inefficiency of interrupt pro-

cessing inside container networks and proposes solutions

to address them by leveraging the multicore hardware with

little modification to the kernel stack and data plane.

8 Conclusions

This paper demonstrates that the performance loss in over-

lay networks due to serialization in the handling of excessive,

expensive softirqs can be significant. We seek to parallelize

softirq processing in a single network flow and present Fal-

con, a fast and balanced container network. Falcon centers

on three designs: softirq pipelining, splitting, and dynamic

balancing to enable fine-grained, low-cost flow paralleliza-

tion on multicore machines. Our experimental results show

that Falcon can significantly improve the performance of

container overlay networks with both micro-benchmarks

and real-world applications.

9 Acknowledgments

We thank our shepherd, Michio Honda, and the anony-

mous reviewers for their insightful comments. This work

was supported by NSF under Award 1909877 and 1909486.

274



Parallelizing Packet Processing in Container Overlay Networks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

References

[1] 8 surprising facts about real docker adoption. https://goo.gl/F94Yhn.

[2] Apache Mesos. http://mesos.apache.org/.

[3] Apache Mesos. https://mesos.apache.org/.

[4] Calico. https://github.com/projectcalico/calico-containers.

[5] cloudsuite. https://cloudsuite.ch.

[6] Docker Swarm. https://docs.docker.com/engine/swarm/.

[7] Elgg. https://elgg.org.

[8] Encrypting Network Traffic. http://encryptionhowto.sourceforge.net/

Encryption-HOWTO-5.html.

[9] Flame Graph. https://github.com/brendangregg/FlameGraph.

[10] Flannel. https://github.com/coreos/flannel/.

[11] Google Cloud Container. https://cloud.google.com/containers/.

[12] Improving Overlay Solutions with Hardware-Based VXLAN Termination.

https://goo.gl/5sV8s6.

[13] Kubernetes. https://kubernetes.io/.

[14] Mellanox VXLAN Acceleration. https://goo.gl/QJU4BW.

[15] Memcached. https://memcached.org/.

[16] Open vSwitch. https://www.openvswitch.org/.

[17] Open vSwitch. http://openvswitch.org/.

[18] Optimizing the Virtual Network with VXLAN Overlay Offloading. https:

//goo.gl/LEquzj.

[19] OVS Offload Using ASAP2 Direct. https://docs.mellanox.com/display/

MLNXOFEDv471001/OVS+Offload+Using+ASAP2+Direct.

[20] Receive Packet Steering. https://lwn.net/Articles/362339/.

[21] Receive Side Scaling. https://goo.gl/BXvmAJ.

[22] Scalable High-Performance User Space Networking for Containers. https:

//goo.gl/1SJjro.

[23] Sockperf. https://github.com/Mellanox/sockperf.

[24] TCPDump. https://www.tcpdump.org/.

[25] Use overlay networks. https://docs.docker.com/network/overlay/.

[26] Weave. https://github.com/weaveworks/weave.

[27] World-Class Performance Ethernet SmartNICs Product Line. https://

www.mellanox.com/files/doc-2020/ethernet-adapter-brochure.pdf.

[28] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatow-

icz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al. A view of

the parallel computing landscape. Communications of the ACM, 2009.

[29] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new os

architecture for scalable multicore systems. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles (SOSP), 2009.

[30] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and

E. Bugnion. Ix: A protected dataplane operating system for high

throughput and low latency. In Proceedings of USENIX Symposium on

Operating System Design and Implementation (OSDI), 2014.

[31] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and

S. K. Reinhardt. Performance analysis of system overheads in tcp/ip

workloads. In Proceedings of 14th International Conference on Parallel

Architectures and Compilation Techniques (PACT), 2005.

[32] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al. Corey: An operating

system for many cores. In Proceedings of 8th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2008.

[33] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,

R. Morris, N. Zeldovich, et al. An analysis of linux scalability to many

cores. In Proceedings of 9th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2010.

[34] L. Cheng and C.-L. Wang. vbalance: using interrupt load balance to

improve i/o performance for smp virtual machines. In Proceedings of

the Third ACM Symposium on Cloud Computing, page 2. ACM, 2012.

[35] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized

task-aware scheduling for data center networks. In Proceedings of

ACM Special Interest Group on Data Communication (SIGCOMM), 2014.

[36] R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs containerization

to support paas. In Proceedings of IEEE IC2E, 2014.

[37] P. Emmerich, D. Raumer, A. Beifuß, L. Erlacher, F. Wohlfart, T. M.

Runge, S. Gallenmüller, and G. Carle. Optimizing latency and cpu load

in packet processing systems. In Proceedings of International Sympo-

sium on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS), 2015.

[38] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated per-

formance comparison of virtual machines and linux containers. In

Proceedings of IEEE ISPASS, 2015.

[39] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,

S. Das, and A. Akella. Opennf: Enabling innovation in network func-

tion control. In ACM SIGCOMM Computer Communication Review,

2014.

[40] P. Gilfeather and A. B. Maccabe. Modeling protocol offload for message-

oriented communication. In Proceedings of the IEEE International

Cluster Computing, 2005.

[41] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster,

and D. Tsafrir. Eli: bare-metal performance for i/o virtualization. In

Proceedings of ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2012.

[42] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtual-

ization: Challenges and opportunities for innovations. IEEE Commu-

nications Magazine, 2015.

[43] Y. Hu, M. Song, and T. Li. Towards full containerization in container-

ized network function virtualization. In Proceedings of ACM Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2017.

[44] H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu. Adaptive resource

views for containers. In Proceedings of the 28th International Symposium

on High-Performance Parallel and Distributed Computing (HPDC), 2019.

[45] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and

O. Spatscheck. An in-depth study of lte: effect of network protocol

and application behavior on performance. In Proceedings of ACM

SIGCOMM, 2013.

[46] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li. Los: A high

performance and compatible user-level network operating system. In

Proceedings of the First Asia-Pacific Workshop on Networking (APNet),

2017.

[47] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mos: A reusable

networking stack for flow monitoring middleboxes. In Proceedings of

USENIX NSDI, 2017.

[48] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.

mtcp: a highly scalable user-level tcp stack for multicore systems. In

Proceedings of USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2014.

[49] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and

C. Kozyrakis. Shinjuku: Preemptive scheduling for 𝜇second-scale tail
latency. In 16th {USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI}), 2019.

[50] J. Lei, K. Suo, H. Lu, and J. Rao. Tackling parallelization challenges of

kernel network stack for container overlay networks. In 11th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton,

WA, 2019. USENIX Association.

[51] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-

gnaire, S. Smith, S. Hand, and J. Crowcroft. Unikernels: Library op-

erating systems for the cloud. In Proceedings of ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2013.

[52] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and

F. Huici. Clickos and the art of network function virtualization. In

Proceedings of USENIX NSDI, 2014.

[53] D. Merkel. Docker: lightweight linux containers for consistent devel-

opment and deployment. In Linux Journal, 2014.

275



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

[54] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley. Performance

issues in parallelized network protocols. In Proceedings of the 1st

USENIX conference on Operating Systems Design and Implementation

(OSDI), 1994.

[55] Z. Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein.

Network stack as a service in the cloud. In Proceedings of the 16th

ACM Workshop on Hot Topics in Networks (HotNets), 2017.

[56] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.

Shenango: Achieving high {CPU} efficiency for latency-sensitive data-

center workloads. In 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI}), 2019.

[57] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and

S. Shenker. E2: a framework for nfv applications. In Proceedings of the

25th Symposium on Operating Systems Principles (SOSP), 2015.

[58] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Net-

bricks: Taking the V out of NFV. In Proceedings of USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2016.

[59] D. Patterson. The parallel revolution has started: Are you part of the

solution or part of the problem? In International Conference on High

Performance Computing for Computational Science (SC), 2010.

[60] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving

network connection locality on multicore systems. In Proceedings of

the 7th ACM european conference on Computer Systems (Eurosys), 2012.

[61] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. An-

derson, and T. Roscoe. Arrakis: The operating system is the control

plane. In Proceedings of USENIX Symposium on Operating System

Design and Implementation (OSDI), 2014.

[62] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail

latency for microsecond-scale networked tasks. In Proceedings of the

26th Symposium on Operating Systems Principles (SOSP), 2017.

[63] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli,

D. Newell, L. Cline, and A. Foong. TCP onloading for data center

servers. IEEE Computer, 2004.

[64] L. Rizzo. Netmap: a novel framework for fast packet i/o. In Proceedings

of 21st USENIX Security Symposium (USENIX Security), 2012.

[65] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual ma-

chines. In Proceedings of the 8th international conference on Emerging

networking experiments and technologies (CoNEXT), 2012.

[66] P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay. Containers and

virtual machines at scale: A comparative study. In Proceedings of ACM

Middleware, 2016.

[67] P. Shivam and J. S. Chase. On the elusive benefits of protocol of-

fload. In Proceedings of the ACM SIGCOMM workshop on Network-I/O

convergence: experience, lessons, implications, 2003.

[68] K. Suo, Y. Zhao, W. Chen, and J. Rao. An analysis and empirical study

of container networks. In Proceedings of IEEE INFOCOM, 2018.

[69] K. Suo, Y. Zhao, W. Chen, and J. Rao. vNetTracer: Efficient and pro-

grammable packet tracing in virtualized networks. In Proceedings of

IEEE ICDCS, 2018.

[70] K. Suo, Y. Zhao, J. Rao, L. Cheng, X. Zhou, and F. C. Lau. Preserving

i/o prioritization in virtualized oses. In Proceedings of the Symposium

on Cloud Computing (SoCC), 2017.

[71] J. Weerasinghe and F. Abel. On the cost of tunnel endpoint processing

in overlay virtual networks. In Proceedings of the 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing (UCC), 2014.

[72] R. Westrelin, N. Fugier, E. Nordmark, K. Kunze, and E. Lemoine. Study-

ing network protocol offload with emulation: approach and prelimi-

nary results. In Proceedings of 12th IEEE Symposium on High Perfor-

mance Interconnects (HOTI), 2004.

[73] P. Willmann, S. Rixner, and A. L. Cox. An evaluation of network stack

parallelization strategies in modern operating systems. In Proceedings

of the USENIX Annual Technical Conference (USENIX ATC), 2006.
[74] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar. Freeflow:

High performance container networking. In Proceedings of ACM Hot-

Net, 2016.

[75] Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang. A

communication-aware container re-distribution approach for high

performance vnfs. In Proceedings of IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), 2017.

[76] Y. Zhao, K. Suo, L. Cheng, and J. Rao. Scheduler activations for

interference-resilient smp virtual machine scheduling. In Proceed-

ings of the ACM/IFIP/USENIX Middleware Conference (Middleware),

2017.

[77] Y. Zhao, K. Suo, X. Wu, J. Rao, S. Wu, and H. Jin. Preemptive multi-

queue fair queuing. In Proceedings of the 28th International Symposium

on High-Performance Parallel and Distributed Computing (HPDC), 2019.

[78] D. Zhuo, K. Zhang, Y. Zhu, H. Liu, M. Rockett, A. Krishnamurthy, and

T. Anderson. Slim: OS kernel support for a low-overhead container

overlay network. In Proceedings of USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2019.

276


