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Abstract

Container networking, which provides connectivity among
containers on multiple hosts, is crucial to building and scal-
ing container-based microservices. While overlay networks
are widely adopted in production systems, they cause sig-
nificant performance degradation in both throughput and
latency compared to physical networks. This paper seeks to
understand the bottlenecks of in-kernel networking when
running container overlay networks. Through profiling and
code analysis, we find that a prolonged data path, due to
packet transformation in overlay networks, is the culprit of
performance loss. Furthermore, existing scaling techniques
in the Linux network stack are ineffective for parallelizing
the prolonged data path of a single network flow.

We propose FALCON, a fast and balanced container net-
working approach to scale the packet processing pipeline
in overlay networks. FALcON pipelines software interrupts
associated with different network devices of a single flow on
multiple cores, thereby preventing execution serialization
of excessive software interrupts from overloading a single
core. Farcon further supports multiple network flows by
effectively multiplexing and balancing software interrupts
of different flows among available cores. We have developed
a prototype of FALcoN in Linux. Our evaluation with both
micro-benchmarks and real-world applications demonstrates
the effectiveness of FALcoN, with significantly improved per-
formance (by 300% for web serving) and reduced tail latency
(by 53% for data caching).
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1 Introduction

Due to its high performance [38, 66], low overhead [36, 68],
and widespread community support [53], container tech-
nology has increasingly been adopted in both private data
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centers and public clouds. A recent report from Datadog [1]
has revealed that customers quintupled the number of con-
tainers in their first nine-month container adoption. Google
deploys containers in its cluster management and is reported
to launch about 7,000 containers every second in its search
service [11]. With containers, applications can be automati-
cally and dynamically deployed across a cluster of physical
or virtual machines (VMs) with orchestration tools, such as
Apache Mesos [2], Kubernetes [13], and Docker Swarm [6].

Container networks provide connectivity to distributed
applications and are critical to building large-scale, container-
based services. Overlay networks, e.g., Flannel [10], Weave
[26], Calico [4] and Docker overlay [25], are widely adopted
in container orchestrators [3, 6, 13]. Compared to other com-
munication modes, overlay networks allow each container
to have its own network namespace and private IP address
independent from the host network. In overlay networks,
packets must be transformed from private IP address to pub-
lic (host) IP address before transmission, and vice versa dur-
ing reception. While network virtualization offers flexibility
to configure private networks without increasing the com-
plexity of host network management, packet transformation
imposes significant performance overhead. Compared to a
physical network, container overlay networks can incur dras-
tic throughput loss and suffer an order of magnitude longer
tail latency [50, 68, 69, 74, 78].

The overhead of container overlay networks is largely
due to a prolonged data path in packet processing. Overlay
packets have to traverse the private overlay network stack
and the host stack [78] for both packet transmission and
reception. For instance, in a virtual extensible LAN (VXLAN)
overlay, packets must go through a VXLAN device for IP trans-
formation, i.e., adding or removing host network headers
during transmission or reception, a virtual bridge for packet
forwarding between private and host stacks, and a virtual
network device (veth) for gating a container’s private net-
work. The inclusion of multiple stages (devices) in the packet
processing pipeline prolongs the critical path of a single net-
work flow, which can only be processed on a single core.

The existing mechanisms for parallelizing packet process-
ing, such as Receive Packet Steering (RPS) [20], focus on
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distributing multiple flows (packets with different IPs or
ports) onto separate cores, thereby not effective for accel-
erating a single flow. The prolonged data path inevitably
adds delay to packet processing and causes spikes in latency
and significant throughput drop if computation overloads
a core. To shorten the data path, the state-of-the-art seeks
to either eliminate packet transformation from the network
stack [78] or offload the entire virtual switches and packet
transformation to the NIC hardware[19]. Though the perfor-
mance of such software-bypassing or hardware-offloading
network is improved (close to the native), these approaches
undermine the flexibility in cloud management with limited
support and/or accessibility. For example, Slim [78] does not
apply to connection-less protocols, while advanced hardware
offloading is only available in high-end hardware [19].

This paper investigates how and to what extent the con-
ventional network stack can be optimized for overlay net-
works. We seek to preserve the current design of overlay
networks, i.e., constructing the overlay using the existing
building blocks, such as virtual switches and virtual network
devices, and realizing network virtualization through packet
transformation. This helps to retain and support the existing
network and security policies, and IT tools. Through com-
prehensive profiling and analysis, we identify previously
unexploited parallelism within a single flow in overlay net-
works: Overlay packets travel multiple devices across the
network stack and the processing at each device is handled by
a separate software interrupt (softirq); while the overhead
of container overlay networks is due to excessive softirqs
of one flow overloading a single core, the softirqs are asyn-
chronously executed and their invocations can be interleaved.
This discovery opens up new opportunities for parallelizing
softirq execution in a single flow with multiple cores.

We design and develop FaLcon (fast and balanced container
networking) — a novel approach to parallelize the data path
of a single flow and balance network processing pipelines of
multiple flows in overlay networks. FALcon leverages mul-
tiple cores to process packets of a single flow at different
network devices via a new hashing mechanism: It takes not
only flow but also network device information into consider-
ation, thus being able to distinguish packet processing stages
associated with distinct network devices. FALCON uses in-
kernel stage transition functions to move packets of a flow
among multiple cores in sequence as they traverse overlay
network devices, preserving the dependencies in the packet
processing pipeline (i.e., no out-of-order delivery). Further-
more, to exploit parallelism within a heavy-weight network
device that overloads a single core, FALcON enables a softirq
splitting mechanism that splits the processing of a heavy-
weight network device (at the function level), into multiple
smaller tasks that can be executed on separate cores. Last,
Farcon devises a dynamic balancing mechanism to effec-
tively multiplex softirgs of multiple flows in a multi-core
system for efficient interrupt processing.
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Figure 1. [llustration of container overlay networks.

Though FaLcoN piplelines the processing stages of a packet
on multiple cores, it does not require packet copying between
these cores. Our experimental results show that the perfor-
mance gain due to parallelization significantly outweighs the
cost of loss of locality. To summarize, this paper has made
the following contributions:

e We perform a comprehensive study of the performance
of container overlay networks and identify the main
bottleneck to be the serialization of a large number of
softirgs on a single core.

e We design and implement FaLcon that parallelizes the
prolonged data path for a single flow in overlay net-
works. Unlike existing approaches that only parallelize
softirgs at packet reception, FALcon allows softirgs to
be parallelized at any stage of the processing pipeline.

e We evaluate the effectiveness of FaLcon with both
micro and real-world applications. Our results show
that FALCON can significantly improve throughput (e.g.,
up to 300% for web serving) and reduce latency (e.g.,
up to 53% for data caching).

Road map: Section 2 discusses the background and gives
motivating examples of the comparison between a physical
network and a container overlay network. Section 3 analyzes
reasons causing the degradation in container network per-
formance. Section 4 presents design details of FALcoN while
Section 5 discusses its implementation. Section 6 shows the
experimental results. Section 7 reviews related works and
Section 8 concludes the paper.

2 Background and Motivation

In this section, we first describe the process of packet pro-
cessing in the OS kernel. Then, we examine the performance
bottleneck of container overlay networks. Without loss of
generality, we focus on packet reception in the Linux kernel
because reception is in general harder than transmission
and incurs greater overhead in overlay networks. Further-
more, packet reception presents the parallelism that can be
exploited to accelerate overlay networks.
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2.1 Background

In-kernel packet processing. Packet processing in com-
modity OSes is a pipeline traversing the network interface
controller (NIC), the kernel space and the user space, as
shown in Figure 1. Take packet reception for example, when
a packet arrives at the NIC, it is first copied (e.g., via DMA)
to the device buffer and triggers a hardware interrupt. Then
the OS responds to the interrupt and transfers the packet
through the receiving path in the kernel. Packet process-
ing is divided into the top half and bottom half. The top
half runs in the hardware interrupt context. It simply marks
that the packet arrives at the kernel buffer and invokes the
bottom half, which is typically in the form of a software
interrupt, softirq. The softirq handler — the main routine to
transfer packets along the protocol stack — is later scheduled
by the kernel at an appropriate time. After being processed
by various protocol layers, the packet is finally copied to a
user-space buffer and delivered to the applications listening
on the socket.

Container overlay network. In the pursuit of manage-
ment flexibility, virtualized networks are widely adopted in
virtualized servers to present logical network views to end
applications. Overlay network is a common way to virtu-
alize container networks. As an example in Figure 1, in a
container overlay network (e.g., VXLAN), when a packet is
sent from container A to container B, the overlay layer (layer
4) of container A first looks up the IP address of the desti-
nation host where container B resides — from a distributed
key-value store which maintains the mapping between pri-
vate IP addresses of containers and the public IP addresses
of their hosts. The overlay network then encapsulates the
packet in a new packet with the destination host IP address
and places the original packet as the payload. This process
is called packet encapsulation. Once the encapsulated packet
arrives at the destination host, the overlay layer of container
B decapsulates the received packet to recover the original
packet and finally delivers it to container B identified by its
private IP address. This process is called packet decapsulation.
In addition to the overlay networks, the container network
also involves additional virtualized network devices, such
as bridges, virtual Ethernet ports (vNIC), routers, etc., to
support the connectivity of containers across multiple hosts.
Compared to the native network, container overlay network
is more complex with a longer data path.

Interrupts on multi-core machines. The above network
packet processing is underpinned by two types of interrupts:
hardware interrupts (hardirgs) and software interrupts (soft-
irgs). On the one hand, like any I/O devices, a physical NIC
interacts with the OS mainly through hardirgs. A physical
NIC with one traffic queue is assigned with an IRQ number
during the OS boot time; hardirgs triggered by this NIC traffic
queue can only be processed on one CPU core at a time in an
IRQ context of the kernel (i.e., the IRQ handler). To leverage
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multi-core architecture, a modern NIC can have multiple
traffic queues each with a different IRQ number and thus
interacting with a separate CPU core. On the other hand, an
OS defines various types of softirqs, which can be processed
on any CPU cores. Softirgs are usually raised when an IRQ
handler exits and processed on the same core (as the IRQ
handler) by the softirq handler either immediately (right
after the IRQ handler) or asynchronously (at an appropriate
time later). Typically, the hardirq handler is designed to be
simple and small, and runs with hardware interrupts on the
same core disabled (cannot be preempted), while the softirq
handler processes most of the work in the network protocol
stack and can be preempted.

Packet steering is a technique that leverages multiple cores
to accelerate packet processing. Receive side scaling (RSS) [21]
steers packets from different flows to a separate receive
queue on a multi-queue NIC, which later can be processed
by separate CPUs. While RSS scales packet processing by
mapping hardirgs to separate CPUs, receive packet steering
(RPS) [20] is a software implementation of RSS and balances
softirgs. Both RSS and RPS calculate a flow hash based on the
packet’s IP address and port and use the hash to determine
the CPU on which to dispatch the interrupts.

2.2 Motivation

Experimental Settings. We evaluated the throughput and
latency of the VXLAN overlay network between a pair of
client and server machines and studied how its performance
is different from the native host network. The machines were
connected with two types of NICs over direct links: Intel
X550T 10-Gigabit and Mellanox ConnectX-5 EN 100-Gigabit
Ethernet adapters. Both the client and server had abundant
CPU and memory resources. Details on the software and
hardware configurations can be found in Section 6.

Single-flow throughput. Figure 2 depicts the performance
loss due to the overlay network in various settings. Figure 2
(a) shows the comparison between overlay and host net-
works in a throughput stress test. We used sockperf [23] with
large packets (64 KB for both TCP and UDP) using a single
flow. To determine the maximum achievable throughput,
we kept increasing the sending rate until received packet
rate plateaued and packet drop occurred. While the overlay
network achieved near-native throughput in the slower 10
Gbps network, which is similar to the findings in Slim [78],
it incurred a large performance penalty in the faster 100
Gbps network for both UDP and TCP workloads by 53% and
47%, respectively. The results suggest that overlay networks
impose significant per-packet overhead that contributes to
throughput loss but the issue is often overlooked when link
bandwidth is the bottleneck and limits packet rate.

Single-flow packet rate. Figure 2 (b) shows packet rates
(IOs per second) under different packet sizes for UDP traffic.
When the packet size was small, the network stack’s ability
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Figure 2. The performance comparison of container overlay network and the native physical network.

to handle a large number of packets limited the packet rate
and led to the largest performance gap between overlay and
host networks while link bandwidth was no longer the bot-
tleneck. As packet size increased, the gap narrowed. But for
the faster 100 Gbps Ethernet, the performance degradation
due to overlay networks had always been significant. Tests
on TCP workloads showed a similar trend.

Multi-flow packet rate. Next, we show that the prolonged
data path in a single flow may have a greater impact on multi-
flow performance. Both the host and overlay network had
packet steering technique receive packet steering (RPS) en-
abled. Figure 2 (c) shows multi-flow packet rate with two
flow-to-core ratios. A 1:1 ratio indicates that there are suf-
ficient cores and each flow (e.g., a TCP connection) can be
processed by a dedicated core. Otherwise, with a higher ratio,
e.g., 4:1, multiple flows are mapped to the same core. The lat-
ter resembles a more realistic scenario wherein a server may
serve hundreds, if not thousands, of connections or flows.
The packet size was 4 KB.

A notable finding is that overlay networks incurred greater
throughput loss in multi-flow tests compared to that in single-
flow tests, even in tests with a 1 : 1 flow-to-core ratio. Packet
steering techniques use consistent hashing to map packets
to different cores. When collisions occur, multiple flows may
be placed on the same core even idle cores are available,
causing imbalance in flow distribution. Since individual flows
become more expensive in overlay networks, multi-flow
workloads could suffer a greater performance degradation in
the presence of load imbalance. Furthermore, as flow-to-core
ratio increased, throughput loss further exacerbated.

Latency. As shown in Figure 2 (d), it is expected that given
the prolonged data path, overlay networks incur higher la-
tency than the native host network in both UDP and TCP
workloads. The figure suggests up to 2x and 5x latency hike
for UDP and TCP, respectively.

Summary. Container overlay networks incur significant
performance loss in both throughput and latency. The per-
formance penalty rises with the speed of the underlying
network and packet rate. In what follows, we analyze the
root causes of overlay-induced performance degradation.
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3 Root Cause Analysis

3.1 Prolonged Data Path

We draw the call graph of packet reception in the Linux
kernel using perf and flamegraph [9] and analyze the con-
trol and data paths in the host and overlay networks. As
Figure 3 illustrates, packet reception in an overlay network
involves multiple stages. The numbered steps are the invoca-
tion of hardware or software interrupts on different network
devices (@: physical NIC, ®: VXLAN, ©: veth).

In host network, upon packet arrival, the physical NIC
raises a hardirq and copies the packet into a receiving ring
buffer (rx_ring) in the kernel. In response to the hardirq,
the IRQ handler (pNIC_interrupt) is immediately executed
(@), during which it raises softirgs on the same CPU it is
running. Later, the softirq handler (net_rx_action) is in-
voked by the Linux NAPI scheduler; it traverses the polling
list and calls the polling function provided by each network
device to process these softirgs. In the native network, only
one polling function — physical NIC (m1x5e_napi_poll) (@)
is needed. It polls packets from the ring buffer and passes
them to the entry function of the kernel network stack
(netif_receive_skb). After processed by each kernel stack,
packets are finally copied to the socket buffer and received



Parallelizing Packet Processing in Container Overlay Networks

I Host
7271 Contianer

Normalized interrupt rate

Figure 4. The comparison of hardware and software inter-
rupt rates in the native and container overlay networks.

by userspace applications. Note that the entire packet pro-
cessing is completed in one single softirq.

In comparison, packet processing in an overlay network
is more complex, requiring to traverse multiple network de-
vices. The initial processing in an overlay shares step @ with
the physical network until packets reach the transport layer.
The UDP layer receive function udp_rcv invokes the VXLAN
receive routine vxlan_rcv if a packet is found to contain
an inner packet with a private IP. vxlan_rcv decapsulates
the packet by removing the outer VXLAN header, inserts it
at the tail of the receive queue of the VXLAN device, and
raises another NET_RX_SOFTIRQ softirq (step @). The softirq
uses the VXLAN device’s polling function gro_cell_poll
to pass packets to the upper network stack.

Furthermore, containers are usually connected to the host
network via a bridge device (e.g., Linux bridge or Open
vSwitch [16]) and a pair of virtual Ethernet ports on device
veth. One veth port attaches to the network bridge while
the other attaches to the container, as a gateway to the con-
tainer’s private network stack. Thus, the packets (passed by
gro_cell_poll) need to be further processed by the bridge
processing function (br_handle_frame) and the veth pro-
cessing function (veth_xmit). More specifically, the veth
device on the bridge side inserts the packets to a per-CPU
receiving queue (input_pkt_queue) and meanwhile raises a
third softirq (NET_RX_SOFTIRQ) (step ®). Since veth is not a
NAPI device, the default poll function process_backlog is
used to pass packets to the upper protocol stack. Therefore,
packet processing in a container overlay network involves
three network devices with the execution of three softirgs.

3.2 Excessive, Expensive, and Serialized Softirqs

Call graph analysis suggests that overlay networks invoke
more softirgs than the native network does. Figure 4 con-
firms that the overlay network triggers an excessive number
of the RES and NET_RX interrupts. NET_RX is the softirq that
handles packet reception. The number of NET_RX in the over-
lay network was 3.6x that of the native network. The results
confirm our call graph analysis that overlay networks invoke
three times of softirgs than the native network.

Our investigation on RES — the rescheduling interrupt,
further reveals that there exists significant load imbalance
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among multiple cores when processing overlay packets. RES
is an inter-processor interrupt (IPI) raised by the CPU sched-
uler attempting to spread load across multiple cores. Figure 5
shows the CPU utilization in host and overlay networks
for single-flow and multi-flow tests in the 100 Gbps Eth-
ernet. The workloads were sockperf UDP tests with fixed
sending rates. Note that the sending rates were carefully set
to keep the server reasonably busy without overloading it.
This allows for a fair comparison of their CPU utilization
facing the same workload. The figure shows that overlay
network incurred much higher CPU utilization compared
to the native network, mostly on softirqs. Moreover, most
softirq processing was stacked on a single core. (e.g., core 1 in
the single-flow overlay test). The serialization of softirq exe-
cution can quickly become the bottleneck as traffic intensity
ramps up. The multi-flow tests confirmed softirq serializa-
tion — the OS was unable to use more than 5 cores, i.e., the
number of flows, for packet processing. The overlay network
also exhibited considerable imbalance in core utilization due
to possible hash collisions in RPS, which explains the high
number of RES interrupts trying to perform load balancing,.
Not only are there more softirgs in overlay networks,
some of them become more expensive than that in the na-
tive network. Figure 6 shows the flamegraphs of function
invocation in sockperf and memcached. The former is a
micro-benchmark that has only one type of packets with
uniform sizes while the latter is a realistic application that
includes a mixture of TCP and UDP packets with different
sizes. The flamegraphs demonstrate that for workloads with
simple packet types the overhead of overlay networks is man-
ifested by additional, relatively equally weighted softirgs. In
contrast, certain softirqs become particularly expensive and
dominate overlay overhead in realistic workloads.
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3.3 Lack of Single-flow Parallelization

Packet steering techniques seek to reduce the data-plane
overhead via inter-flow parallelization. However, these mech-
anisms are not effective for parallelizing a single flow as all
packets from the same flow would have the same hash value
and thus are directed to the same CPU. As shown in Figure 5
(left, single-flow tests), although packet steering (i.e., RSS and
RPS) does help spread softirgs from a single flow to two cores,
which agrees with the results showing packet steering im-
proves TCP throughput for a single connection in Slim [78],
most of softirq processing is still stacked on one core. The
reason is that packet steering takes effect early in the packet
processing pipeline and does help separate softirq processing
from the rest of data path, such as hardirgs, copying pack-
ets to the user space, and application threads. Unfortunately,
there is a lack of mechanisms to further parallelize the softirq
processing from the same flow.

There are two challenges in scaling a single flow: 1) Simply
dispatching packets of the same flow to multiple CPUs for
processing may cause out-of-order delivery as different CPUs
may not have a uniform processing speed. 2) For a single
flow involving multiple stages, as is in the overlay network,
different stages have little parallelism to exploit due to inter-
stage dependency. Hence, performance improvement can
only be attained by exploiting packet-level parallelism.

4 FALcON Design

The previous section suggests that, due to the lack of
single-flow parallelization, the execution of excessive softirgs
from multiple network devices in container overlay networks
can easily overload a single CPU core, preventing a single
flow from achieving high bandwidth and resulting in long
tail latency. To address this issue, we design and develop FaL-
coN with the key idea as follows: Instead of processing all
softirgs of a flow on a single core, FALcON pipelines softirgs
associated with different devices on separate cores, while
still preserving packet processing dependencies among these
devices and in-order processing on each device. To realize
this idea, FALCON incorporates three key components, soft-
ware interrupt pipelining, software interrupt splitting, and
dynamic load balancing (in Figure 7), as detailed as follows.

4.1 Software Interrupt Pipelining

Inspired by RPS [20], which dispatches different network
flows onto multiple cores via a hashing mechanism, FarLcon
aims to dispatch the different packet processing stages (asso-
ciated with different network devices) of a single flow onto
separate cores. This way, FALcON exploits the parallelism of
a flow’s multiple processing stages by leveraging multiple
cores, while still preserving its processing dependencies —
packets are processed by network devices sequentially as
they traverse overlay network stacks. Furthermore, as for
each stage, packets of the same flow are processed on one
dedicated core, FALcON avoids “out-of-order” delivery.

266

Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

Overlay | Network devl Network dev2 Network dev3
networks (NIC) (VXLAN) (veth)
Flows ) ¥
Device IDI < Device ID2 Device ID3
Flow Key  |Network Flow Key | Network Flow Key |Network
,,,,,,,,,,,,,,,,,,,, packet i Racket Packet
FALCON

@ sSoftware Intenui); Pipelining (Hashing)

Hash Valuel

‘ “,»"' “““‘Q'Soﬁ‘ware Interrupf Splitting (Hashing) ‘

‘ Hash Value2 ‘ ‘ Hash Value3

v A ] h
‘ Hash Valuel.1 ‘ ‘ Hash Valuel.2 ‘ ‘ Hash Value2 ‘ ‘ Hash Value3

‘ 9 Software Interrupt Balancing ‘

iHIGH DLOW E MID ELOW iHIGH BMID E MID DLOW

CPUI CPU2  CPU3 CPU4  CPU5 CPU6 CPU7 CPU8

Figure 7. Architecture of FALcoN. FALCON consists of three
main techniques:@ software interrupt pipelining, @ software
interrupt splitting, and @ software interrupt balancing.

[ CPU; I
Perl-,CP\L\J packet queue

T
Per-CPU packet queue

CPUy ]
Per-CPU packet queue

*» mix5e_napi_poll !
napi_gro_receive |
RPS (get_rps_cpu) f
process_backlog |
_netif_receive_skb !

= process_backlog ! )
_netif_receive_skb 3
br_forward

process_backlog
_netif_receive_skb

wian. rov veth_xmit to_appvlication
netif_rx h netif_rx ] A
X RPS (get_rps_cpu) | | XRPS (get_rps_cpu) y | v

FALCON (get_falcon_cpu)
enqueue_to_backlog
Raise a softirq

FALCON (get_falcon_cpu)j
enqueue_to_backlog -
Packet processing stages Raise a soffirq

physical NIC

Code snippets
Linux Kernel 4.19

virtual NIC (veth) |

VXLAN Bridge

Figure 8. FALCON pipelines software interrupts of a single
flow by leveraging stage transition functions.

Unfortunately, we find that the existing hashing mech-
anism used by RPS cannot distinguish packet processing
stages associated with different network devices (e.g., NIC,
VXLAN, bridge, and veth in Figure 3), as it simply takes
packet information as input without considering device in-
formation. Specifically, the existing hash mechanism in RPS
performs the hash calculation upon a network flow key
(flow_keys) — a data structure composed of a packet’s source
and destination IP addresses, protocol, ports, tags, and other
metadata needed to identify a network flow. The calculated
hash value is used to determine the core on which the packet
will be processed. Yet, since the hash calculation does not in-
clude device information, all stages of the packets of a single
flow are executed on the same core. As illustrated in Figure 8,
though the RPS function is invoked multiple times along the
network path, only the first RPS (on CPU;) takes effect (i.e.,
selecting a new CPU core based on the hash value), while
the following RPS (e.g., on CPU; and on CPU;) generate the
same hash value for the packets of the same flow.

A natural way to distinguish different processing stages of
a single flow is to involve additional device information for
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the hash calculation: We notice that, when a packet is sent or
received by a new network device, the device pointer (dev)
in the packet’s data structure (sk_buff) will be updated and
pointed to that device. Therefore, we could involve the index
information of network devices (e.g., dev—ifindex) in the
hash calculation, which would generate distinct hash val-
ues for different network devices. However, simply reusing
RPS functions that are statically located along the existing
network processing path may unnecessarily (and inappro-
priately) split the processing of one network device into
fragmented pieces distributed on separate cores — as we can
see in Figure 8, two RPS functions are involved along the
processing path of the first network device (i.e., pNIC).
Instead, FaLcon develops a new approach to separate dis-
tinct network processing stages via stage transition functions.
We find that certain functions in the kernel network stack
act as stage transition functions — instead of continuing the
processing of a packet, they enqueue the packet into a device
queue that will be processed later. The netif_rx function
is such an example as shown in Figure 8, which by default
enqueues a packet to a device queue. The packet will be
retrieved from the queue and processed later on the same
core. These stage transition functions are originally designed
to multiplex processings of multiple packets (from multiple
flows) on the same core, while FALCON re-purposes them
for a multi-core usage: At the end of each device process-
ing !, FALCON reuses (or inserts) a stage transition function
(e.g., netif_rx) to enqueue the packet into a target CPU’s
per-CPU packet queue. To select the target CPU, FALCON em-
ploys a CPU-selection function, which returns a CPU based
on the hash value calculated upon both the flow information
(e.g., flow_keys) and device information (e.g., ifindex) —
i.e., distinct hash values for different network devices given
the same flow. Finally, FALCON raises a softirq on the target
CPU for processing the packet at an appropriate time.
With stage transition functions, FALcON can leverage a
multi-core system to freely pipeline a flow’s multiple pro-
cessing stages on separate CPU cores — the packets of a
single flow can be associated with nonidentical cores for pro-
cessing when they enter distinct network devices. FALcoN’s
design has the following advantages: 1) It does not require
modifications of existing network stack data structures (e.g.,
sk_buff and flow_keys) for hash calculation, making FaL-
coN portable to different kernel versions (e.g., we have imple-
mented FALcoN in kernel 4.19 and easily ported it to kernel
5.4); 2) Since FALCON uses stage transition functions (instead
of reusing RPS) for separation of network processing, it can
coexist with existing scaling techniques like RPS/RSS.

4.2 Software Interrupt Splitting
Though it makes intuitive sense to separate network pro-

cessing stages at per-device granularity (in Section 4.1), our

IFALCON can also stack multiple devices in one processing stage, aiming to
evenly split the network processing load on multiple cores.
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Figure 9. (a) A single device takes up a single core under
TCP with large packet size (4 KB). (b) FaLcon splits the
processing of a “heavy” network device into multiple smaller
tasks with each running on a separate core.

analysis of the Linux kernel (from version 4.19 to 5.4) and
the performance of TCP and UDP with various packet sizes
reveal that, a finer-grained approach to split network pro-
cessing stages is needed under certain circumstances.

As plotted in Figure 9a, under the TCP case with a large
packet size (e.g., 4 KB), the first stage of FaLcoN (associated
with the physical NIC) easily takes up 100% of a single CPU
core and becomes the new bottleneck. Upon deep investiga-
tion, we identify that two functions (skb_allocation and
napi_gro_receive) are the culprits, with each contribut-
ing around 45% of CPU usage. However, such a case does
not exist under UDP or TCP with small packets (e.g., 1 KB),
where the first stage does not saturate a single core. It is
because, the GRO “ function (napi_gro_receive) is heavily
involved in processing TCP flows with a large packet size,
while it merely takes effect for UDP flows or TCP flows with
a small packet size. This issue — the processing of one net-
work device overloads a single CPU core - could commonly
exist, as the Linux network stack is designed to be flexible
enough that allows arbitrary network devices or modules
to be “hooked” on demand along the network path, such
as container’s overlay device (VXLAN), traffic encryption [8],
profiling [24], in-kernel software switches [17], and many
network functions [39, 42, 52].

To further exploit parallelism within a “heavy-weight” net-
work device that overloads a single core, FALcON enables
a softirq splitting mechanism: It separates the processing
functions associated with the network device onto multiple
cores by inserting stage transition functions right before the
function(s) to be offloaded. In the example of Figure 9b, to of-
fload the CPU-intensive GRO function (e.g., under TCP with
4 KB packet size), FALcON inserts a transition function (i.e.,
netif_rx) before the GRO function. Meanwhile, a softirq
is raised on the target core, where the GRO function is of-
floaded. By doing this, FALcoN splits the original one softirq

2The generic receive offload (GRO) function reassembles small packets into
larger ones to reduce per-packet processing overheads.
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into two, with each for a half processing of the associated
network device (e.g., pNICT and pNIC2 in Figure 9b).

Note that, FALCON’s softirq splitting mechanism is general
in that FALcON can arbitrarily split the processing of any
network device, at the function level, into multiple smaller
tasks, which can be parallelized on multiple cores. However,
it should be applied with discretion, as splitting does incur
additional overhead, such as queuing delays, and it could
offset the performance benefit from the parallelism. In prac-
tice, FALcoN only applies software interrupt splitting to a

network device that fully overloads a CPU core °.

4.3 Software Interrupt Balancing

The use of stage transition functions is a generic approach
to resolve the bottleneck of overlay networks by paralleliz-
ing softirq processing of a single flow as well as breaking
expensive softirqs into multiple smaller softirgs. Challenges
remain in how to effectively and efficiently balance the soft-
rigs to exploit hardware parallelism and avoid creating new
bottlenecks. First, the kernel network stack may coalesce
the processing of packets from different flows in the same
softirq to amortize the overhead of softirq invocation. Thus,
softirq balancing must be performed on a per-packet basis
as downstream softirqs from different flows should be sent
to different cores. Since packet latency is in the range of tens
of to a few hundreds of microseconds, the cost to evenly
distribute softirgs should not add much delay to the latency.
Second, load balancing relies critically on load measurements
to determine where softirqs should be migrated from and to.
However, per-packet softirq balancing on individual cores
lacks timely and accurate information on system-wide load,
thereby likely to create new bottlenecks. A previous lightly
loaded core may become a hotspot if many flows dispatch
their softirgs to this core and CPU load may not be updated
until the burst of softirqs has been processed on this core.

The fundamental challenge is the gap between fine-grained,
distributed, per-packet balancing and the complexity of achiev-
ing global load balance. To overcome it, FALCON devises a
dynamic softirq balancing algorithm that 1) prevents over-
loading any core and 2) maintains a reasonably good balance
across cores 3) at a low cost. As shown in Algorithm 1, the
dynamic balancing algorithm centers on two designs. First,
FarcoN is enabled only when there are sufficient CPU re-
sources to parallelize individual network flows otherwise all
softirgs stay on the original core (line 6-9). FALcON monitors
system-wide CPU utilization and switches softirq pipelining
and splitting on and off according to FALCON_LOAD_THRESHOLD
(see Section 6.1 for parameter sensitivity). Second, FALcon
employs a two-choice algorithm for balancing softirgs: 1) it
first computes a hash on the device ID and the flow key to
uniquely select a CPU for processing a softirq (line 19-20).

3FaLcon statically splits functions of a heavy-weight network device, via
offline profiling. Yet, we note that a dynamic method is more desired, which
is the subject of our ongoing investigations.
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Algorithm 1 Dynamic Softirq Balancing

1: Variables: socket buffer skb; current average load of the sys-
tem Lgyg; network flow hash skb.hash and device ID ifindex;
FarLcon CPU set FALCON_CPUS.

2:

3: // Stage transition function

4: function NETIF_RX(skb)

5: // Enable FALCON only if there is room for parallelization
6: if Lgayg < FALCON_LOAD_THRESHOLD then

7: cpu := get_falcon_cpu(skb)

8: // Enqueue skb to cpu’s packet queue and raise softirq
9: enqueue_to_backlog(skb, cpu)
10: else
11: // Original execution path (RPS or current CPU)
12: S
13: end if
14: end function
15:

16: // Determine where to place the next softirq
17: function GET_FALCON_cPU(skb)

18: // First choice based on device hash

19: hash := hash_32(skb.hash + ifindex)

20: cpu := FALCON_CPUS[hash % NR_FALCON_CPUS]
21: if cpu.load < FALCON_LOAD_THRESHOLD then
22: return cpu

23: end if

24: // Second choice if the first one is overloaded

25: hash := hash_32(hash)

26: return FALCON_CPUSs[hash % NR_FALCON_CPUS]
27: end function

Given the nature of hashing, the first choice is essentially a
uniformly random CPU in the FaLcon CPU set. This helps
evenly spread softirgs across CPUs without quantitatively
comparing their loads. If the first selected CPU is busy, FAL-
con performs double hashing to pick up another CPU (sec-
ond choice, line 25-26). Regardless if the second CPU is busy
or not, FALcON uses it for balancing softirgs.

The dynamic balancing algorithm is inspired by compre-
hensive experimentation with container networks and the
network stack. The central design is the use of hash-based,
two random choices in CPU selection. As CPU load cannot
be accurately measured at a per-packet level, we observed
significant fluctuations in CPU load due to frequent softirq
migrations that aggressively seek to find the least loaded
CPU. On the other hand, purely random balancing based
on device hash may lead to persistent hotspots. The two-
choice algorithm avoids long-lasting hotspots by steering
away from a busy CPU in the first attempt but commits to
the second choice in order to minimize load fluctuations.

5 Implementation

We have implemented FALcoN upon Linux network stack
in two generations of Linux kernel, 4.19 and 5.4, and its
source code is available at: https://github.com/munikarmanish/



Parallelizing Packet Processing in Container Overlay Networks

(a) Linux 4.19 (10G)

(b) Linux 4.19 (100G)

EuroSys "21, April 26-28, 2021, Online, United Kingdom

(c) Linux 5.4 (100G)

2000 [ Host [ Host I Host
= 72 Con A Con 71 Con
Iy 1500 X Falcon KX Falcon X3 Falcon
~
& 10001 r
[a %

o
500 r
0 181717 421830 401832
16B 1KB 4KB 64KB 16B 1KB 4KB 64KB 16B 1KB 4KB 64KB
Packet size Packet size Packet size

Figure 10. Packet rates in the host network, vanilla overlay, and Farcon overlay under a UDP stress test.

falcon. Underpinning FALCON’s implementation, there are
two specific techniques:

Stage transition functions. To realize softirq pipelining
and splitting, FALCON re-purposes a state transition function,
netif_rx (line 4-14 of Algorithm 1), and explicitly inserts it
at the end of each network device’s processing path. There-
fore, once a packet finishes its processing on one network
device, it could be steered by netif_rx to a different CPU
core for the subsequent processing. The netif_rx function
relies on the CPU-selection function get_falcon_cpu (line
17-27) to choose a target CPU (line 7), enqueues the packet
to the target CPU’s packet processing queue (line 8), and
raises a softirq to signal the target CPU (also line 8).

Furthermore, in the current implementation of softirq split-
ting, FaLcon splits two heavy processing functions of the
first network device (i.e., physical NIC) — skb_allocation
and napi_gro_receive — onto two separate cores by insert-
ing netif_rx right before the napi_gro_receive function.
We call this approach “GRO-splitting”. Note that, to apply
such a splitting approach, we need to identify that the two
split functions are “stateless” — the processing of one func-
tion does not depend on the other function.

Hashing mechanism. As stated in Section 4.3, FALCON em-
ploys a two-choice dynamic load balancing algorithm (line
17-27), which relies on a new hashing mechanism to pick
up the target CPU. Specifically, the first CPU choice is deter-
mined by the hash value (line 19) calculated upon both the
flow information skb. hash and device information ifindex
— skb.hash represents the flow hash, calculated only once
when a packet enters the first network device and based on
the flow key (flow_keys); ifindex represents the unique de-
vice index of a network device. With this hash value, FaLcon
ensures that 1) given the same flow but different network
devices, hash values are distinct — a flow’s multiple process
stages of devices can be distinguished; 2) given the same
network device, all packets of the same flow will always be
processed on the same core — preserving processing depen-
dencies and avoiding “out-of-order” delivery; 3) FaLcon does
not need to store the “core-to-device” mapping information;
instead, such mapping information is captured by the hash
value, inherently. Furthermore, if the first CPU choice fails
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(i.e., the selected CPU is busy), FALcon simply generates a
new hash value for the second choice (line 25).

FaLcon is enabled when the average system load (i.e., CPU
usage) is lower than FALCON_LOAD_THRESHOLD (line 6); other-
wise, it is disabled (line 11) indicating no sufficient CPU
resources for packet parallelization. FALcon maintains the
average system load in a global variable L,,, and updates
it every N timer interrupts within the global timer inter-
rupt handler (i.e., do_timer), via reading the system state
information (i.e., /proc/stat) to detect each core’s load.

6 Evaluation

We evaluate both the effectiveness of FALcoN in improving
the performance of container overlay networks. Results with
micro-benchmarks demonstrate that 1) FALcoN improves
throughput up to within 87% of the native performance in
UDP stress tests with a single flow (Section 6.1), 2) signifi-
cantly improves latency for both UDP and TCP (Section 6.1),
and 3) achieves even higher than native throughput in multi-
flow TCP tests (Section 6.1). Experiments with two genera-
tions of Linux kernels that have undergone major changes in
the network stack prove FALCON’s effectiveness and general-
ity. Results with real applications show similar performance
benefits (Section 6.2). Nevertheless, overhead analysis (Sec-
tion 6.3) reveals that FALCON exploits fine-grained intra-flow
parallelism at a cost of increased CPU usage due to queue
operations and loss of locality, which in certain cases could
diminish the performance gain.

Experimental configurations. The experiments were per-
formed on two DELL PowerEdge R640 servers equipped with
dual 10-core Intel Xeon Silver 4114 processors (2.2 GHz)
and 128 GB memory. Hyperthreading and turbo boost were
enabled, and the CPU frequency was set to the maximum.
The two machines were connected directly by two physical
links: Intel X550T 10-Gigabit Ethernet (denoted as 10G), and
Mellanox ConnectX-5 EN 100-Gigabit Ethernet (denoted as
100G). We used Ubuntu 18.04 with Linux kernel 4.19 and
5.4 as the host OSes. We used the Docker overlay network
mode in Docker version 19.03.6 as the container overlay net-
work. Docker overlay network uses Linux’s builtin VXLAN
to encapsulate container network packets. Network optimiza-
tions (e.g., TSO, GRO, GSO, RPS) and interrupt mitigation
(e.g., adaptive interrupt coalescing) were enabled for all tests.
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For comparisons, we evaluated the following three cases:

e Native host: running tests on the physical host network
without containers (denoted as Host).

e Vanilla overlay: running tests on containers with de-
fault docker overlay network (denoted as Con).

e Falcon overlay: running tests on containers with Falcon-
enabled overlay network (denoted as Falcon).

6.1 Micro-benchmarks

Single-flow stress test. As shown in Figure 2, UDP work-
loads suffer higher performance degradation in overlay net-
works compared to TCP. Unlike TCP, which is a connection-
oriented protocol that has congestion (traffic) control, UDP
allows multiple clients to send packets to an open port, be-
ing able to press the network stack to its limit on handling
a single flow. Since FALcon addresses softirq serialization,
the UDP stress test evaluates its maximum potential in ac-
celerating single flows. If not otherwise stated, we used 3
sockperf clients to overload a UDP server. Experiments were
performed in Linux version 4.19 and 5.4. The new Linux ker-
nel had major changes in sk_buff allocation, a data structure
used throughout the network stack. Our study revealed that
the new kernel achieves performance improvements as well
as causing regressions.

Figure 10 shows that FALcon achieved significant through-
put improvements over Docker overlay, especially with large
packet sizes. It delivered near-native throughput in the 10
Gbps Ethernet while bringing packet rate up to 87% of the
host network in the 100 Gbps Ethernet. However, there still
existed a considerable gap between FaLcon and the host net-
work for packets smaller than the maximum transmission
unit (MTU) in Ethernet (i.e., 1500 bytes).

Figure 11 shows the breakdown of CPU usage on multiple
cores for the 16B single-flow UDP test in the 100 Gbps net-
work. With the help of packet steering, network processing
in the vanilla Linux can utilize at most three cores — core-0 for
hardirgs and the first softirq responsible for packet steering,
core-1 for the rest of softirgs, and core-2 for copying received
packets to user space and running application threads. It can
be clearly seen that core-1 in the vanilla overlay was over-
loaded by the prolonged data path with three softirgs. In
comparison, FALCON is able to utilize two additional cores to
process the two extra softirqs. The CPU usage also reveals
that both the host network and FaLcon were bottlenecked
by user space packet receiving on core-2. Since FALCON in-
volves packet processing on multiple cores, it is inevitably
more expensive for applications to access packets due to loss
of locality. This explains the remaining gap between FALcon
and the host network. To further narrow the gap, the user
space applications need to be parallelized, which we leave
for future work.

Single-flow latency. Figure 12 depicts per-packet latency
in single-flow UDP and TCP tests. We are interested in la-
tency in both 1) underloaded tests, wherein client sending
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Figure 11. CPU utilization of a single UDP flow.

rate is fixed in all three cases to avoid overloading any cores
on the receiving side, and 2) overloaded tests, in which each
case is driven to its respective maximum throughput before
packet drop occurs. In the underloaded UDP test in Figure 12
(a), FaLcoN had modest improvements on the average and
90*" percentile latency and more pronounced improvements
towards the tail. Note that fine-grained softirq splitting, such
as GRO splitting, did not take effect in UDP since GRO was
not the bottleneck. In contrast, Figure 12 (c) suggests that
softirq pipelining helped tremendously in the overloaded
UDP test wherein packets processed on multiple cores expe-
rienced less queuing delay than that on a single core.
Figure 12 (b) and (d) shows the effect of FALcon on TCP
latency. Our experiments found that in the overloaded TCP
test (Figure 12 (d)), latency is largely dominated by queuing
delays at each network device and hence the improvement is
mainly due to softirq pipelining while softirq splitting may
also have helped. It is worth noting that FaLcon was able to
achieve near-native latency across the spectrum of average
and tail latency. For underloaded TCP test with packets less
than 4 KB (not listed in the figures), neither softirq splitting
nor pipelining had much effect on latency. For 4 KB under-
loaded TCP test (Figure 12 (b)), GRO splitting helped to attain
near-native average and the 90" percentile latency but failed
to contained the long tail latency. We believe this is due to
the possible delays in inter-processor interrupts needed for
raising softirqs on multiple cores. It is worth noting that
despite the gap from the host network FALcoN consistently
outperformed the vanilla overlay in all cases.

Multi-flow throughput. This sections compares FALCON
with existing packet steering techniques (i.e., RSS/RPS) in
multi-flow tests — multiple flows were hosted within one
container. In all tests, both RSS and RPS were enabled and
we used dedicated cores in FALCON_CPUS. This ensures that
Farcon always has access to idle cores for flow paralleliza-
tion. As previously discussed, GRO-splitting is only effective
for TCP workloads and hence does not take effect in UDP
tests. The packet sizes were set to 16 B and 4 KB for UDP
and TCP, respectively. Unlike the UDP stress test, which
used multiple clients to press a single flow, the multi-flow
test used one client per flow. Figure 13 (a) and (b) show that
FALcoN can consistently outperform the vanilla overlay with
packet steering by as much as 63%, within 58% to 75% of that
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Figure 12. Effect of FALCON on per-packet latency. Packet size is 16 B in (a, ¢, d) and 4 KB in (b).
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Figure 13. Packet rates in the host network, vanilla overlay, and FaLcon under multi-flow UDP and TCP tests.

in the host network. Note that FALcon neither improved nor
degraded performance for a single flow. It is because, for
UDP tests with 16 B packets without using multiple clients,
the sender was the bottleneck.

For TCP multi-flow tests, we further enabled GRO-splitting
for the host network (denoted as Host+). Figure 13 (c) and
(d) show that GRO processing is a significant bottleneck
even for the host network. GRO-splitting helped achieve
up to 56% throughput improvement in Host+ than that in
the vanilla host network. With Farcon, the overlay network
even outperformed Host by as much as 37%.

Multi-container throughput in busy systems. This sec-
tion evaluates FALCON in more realistic scenarios in which
multiple containers, each hosting one flow, are running in a
busy system. Unlike the multi-flow tests that used dedicated,
idle cores for flow parallelization, in the multi-container tests
all cores were actively processing either hardirgs, softirgs,
or application threads. FALcoN needed to exploit idle CPU
cycles on unsaturated cores for flow parallelization. This
evaluates the effectiveness of the dynamic balancing algo-
rithm. We limited the packet receiving CPUs to 6 cores * and
configured them as FALCON_CPUS. As illustrated in Figure 14,
we gradually increased the number of containers from 6 to
40 in order to drive the receiving cores from around 70% busy
until overloaded. We observed that: 1) when the system had
idle CPU cycles (e.g., under 6 or 10 containers), FALCON was
able to improve overall throughput by up to 27% and 17%

41t was impractical for us to saturate a 40-core system due to limited client
machines; hence we selected a subset of cores for evaluation.
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under UDP and TCP, respectively. In addition, FALcON’s per-
formance was more consistent across runs compared to the
vanilla container network; 2) when the system was pressed
towards fully saturated (e.g., 100% utilization with 20 and
more containers), FALCON’s gain diminished but never under-
performed RSS/RPS. Figure 14 (b) and (d) show that FALCON’s
diminishing gain was observed during high CPU utilization
and FarLcon was disabled once system is overloaded.

Parameter sensitivity. FaLcon is disabled when the sys-
tem load is high since there is a lack of CPU cycles for par-
allelization. In this section, we evaluate the effect of param-
eter FALCON_LOAD_THRESHOLD, which specifies the utilization
threshold for disabling FaLcon. Figure 15 shows that always
enabling Farcon (denoted as always-on) hurt performance
when the system was highly loaded while setting a low uti-
lization threshold (e.g., 70% and lower) missed the opportuni-
ties for parallelization. Our empirical studies suggested that a
threshold between 80-90% resulted in the best performance.

Adaptability test. To demonstrate the significance of FaL-
coN’s two-random choice algorithm, we created hotspots
by suddenly increasing the intensity of certain flows. In a
hashing-based balancing algorithm, such as RSS/RPS and the
first random choice in FALcON, the softirq-to-core mapping
is fixed, thereby unable to adapt to workload dynamics. In
contrast, FALCON’s two-choice dynamic re-balancing algo-
rithm allows some softirgs to be steered away from an over-
loaded core and quickly resolves the bottleneck. In the test,
we randomly increased the intensity of one flow, resulting
in one overloaded core. We compare FALCON’s two-choice
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Figure 16. FaLcoN adapts to changing workload and re-
balances softirqs, dynamically.

balancing algorithm (denoted as dynamic) with static hash-
ing (FALcoN’ balancing algorithm with the second choice
disabled, denoted as static). As shown in Figure 16, the two-
choice balancing algorithm achieved 18% higher throughput
in UDP about 15% higher throughput in TCP, respectively.
Most importantly, the performance benefit was consistent
across multiple runs. These results suggest that the two-
choice balancing algorithm can effectively resolve transient
bottlenecks without causing fluctuations.

6.2 Application Results

Web serving. We measured the performance of the Cloud-
suite’s Web Serving benchmark [5] with Farcon. Cloudsuite
Web Serving, which is a benchmark to evaluate page load
throughput and access latency, consists of four tiers: an ng-
inx web server, a mysql database, a memcached server and
clients. The web server runs the Elgg [7] social network and
connects to the cache and database servers. The clients send
requests, including login, chat, update, etc., to the social net-
work (i.e., the web server). We evaluated the performance
with our local testbed. Web server’s pm.max_children was
set to 100. The cache and database servers were running on
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two separate cores to avoid interferences. All clients and
servers ran inside containers and were connected through
Docker overlay networks on top of the 100 Gbps NIC.

Figure 17(a) shows the “success operation” rate with a
load of 200 users under the vanilla overlay network and
Farcon. Compared to the vanilla case, FALcon improves the
rate of individual operations significantly, by up to 300% (e.g.,
BrowsetoElgg). Figure 17(b) and (c) illustrate the average re-
sponse time and delay time of these operations: The response
time refers to the time to handle one request, while the de-
lay time is the difference between the target (expected time
for completion) and actual processing time. With FALcon,
both response time and delay time are significantly reduced.
For instance, compared to the vanilla case, the maximum
improvement in average response time and delay time is
63% (e.g., PostSelfWall) and 53% (e.g., BrownsetoElgg), re-
spectively. FALCON’s improvements on both throughput and
latency are mainly due to distributing softirqs to separate
cores, thus avoiding highly loaded cores.

Data caching. We further measured the average and tail
latency using Cloudsuite’s data caching benchmark, mem-
cached [15]. The client and server were running in two con-
tainers connected with Docker overlay networks. The mem-
cached server was configured with 4GB memory, 4 threads,
and an object size of 550 bytes. The client had up to 10 threads,
submitting requests through 100 connections using the Twit-
ter dataset. As shown in Figure 18, with one client, FaLcon
reduces the tail latency (99*" percentile latency) slightly by
7%, compared to the vanilla case. However, as the number
of clients grows to ten, the average and tail latency (99"
percentile latency) are reduced much further under Farcon,
by 51% and 53%. It is because, as the number of clients (and
the request rate) increases, kernel spends more time in han-
dling interrupts, and FALcoN greatly increases its efficiency
due to pipelined packet processing and balanced software
interrupts distribution, as stated in Section 6.4.

6.3 Overhead Analysis

The overhead of FALcoN mainly comes from two sources:
interrupt redistribution and loss of packet data locality. These
are inevitable, as FALcon splits one softirq into multiple
ones to help packets migrate from one CPU core to another.
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and lower response time, compared to vanilla overlay network.
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Figure 18. FaLcon reduces the average and tail latency un-

der data caching using Memcached.

Note that, the essence of FALcoN is to split and spread CPU-
consuming softirqs to multiple available CPUs instead of re-
ducing softirgs. As the overhead ultimately results in higher
CPU usage given the same traffic load, we quantify it by mea-
suring the total CPU usage with fixed packet rates. Figure 19
shows the CPU usage with a 16B single-flow UDP test under
various fixed packet rates in three network modes: native
host, vanilla overlay, and FArcon.

As depicted in Figure 19 (a), compared to vanilla overlay,
FaLcoN consumes similar (or even lower) CPU resources
when the packet rate is low, while slightly more CPU re-
sources (< 10%) when the packet rate is high. Meanwhile,
FALcoN triggers more softirgs, e.g., by 44.6% in Figure 19
(b). It indicates that though FAaLcon could result in loss of
cache locality as the processing of a packet is spread onto
multiple cores, it brings little CPU overhead compared to
the vanilla overlay. It is likely because the vanilla overlay
approach does not have good locality either, as it needs to
frequently switch between different softirq contexts (e.g.,
for NIC, VXLAN, and veth) on the same core. As expected,
Farcon consumes more CPU resources compared to native
host, and the gap widens as the packet rate increases.

6.4 Discussion

Dynamic softirq splitting. While we found softirq split-
ting is necessary for TCP workloads with large packets and

5Note that the overlay network triggers fewer softirqs in Figure 19 (b) than
that in Figure 4, as we measured it in a less loaded case (400 Kpps).
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Figure 19. Overhead of FAaLcON.

can significantly improve both throughput and latency, it
may impose overhead for UDP workloads that are not bot-
tlenecked by GRO processing. In the meantime, we employ
offline profiling to determine the functions within a softirq
that should be split and require the kernel to be recompiled.
Although Farcon can be turned on/off completely based
on the system load, there is no way to selectively disable
function-level splitting while keeping the rest part of FaLcon
running. As such, certain workloads may experience subop-
timal performance under GRO splitting. One workaround is
to configure the target CPU for softirq splitting to use the
same core so that the split function is never moved. We are
investigating a dynamic method for function-level splitting.

Real-world scenarios. FaLcon is designed to be a general
approach for all types of network traffic in container over-
lay networks. Particularly, two practical scenarios would
greatly benefit from it: 1) Real-time applications based on
“elephant” UDP flows, such as live HD streaming, VoIP, video
conferencing, and online gaming; 2) a large number of flows
with unbalanced traffic — multiple flows could co-locate on
the same core if the number of flows is larger than the core
count, where FALCON can parallelize and distribute them
evenly. Note that, FALcon’s effectiveness depends on ac-
cess to idle CPU cycles for parallelization. In a multiple-user
environment, policies on how to fairly allocate cycles for
parallelizing each user’s flows need to be further developed.
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7 Related Work

Network stack optimization. Many researchers have re-
vealed that the poor performance of network suffered from
the inefficiency and complexity inside the kernel network
stack. Therefore, lots of studies and solutions have been
proposed to optimize problems along the data path, includ-
ing the interrupt processing [31, 34, 41, 61], protocol pro-
cessing [31, 45], memory copying [31, 51, 61, 64], schedul-
ing [34, 35, 61, 70, 76, 77], interaction between the appli-
cation and kernel [37, 44], etc. Different from the above
work improving the traditional network, our work focuses
on optimizing the issues existed specifically inside the con-
tainer networks and thus the above studies are orthogonal
to ours. In addition to renovating the existing OSes, some
other papers proposed lightweight and customized network
stacks [30, 46—48, 55, 65, 78] to improve the network per-
formance. For example, Slim [78] is a connection-oriented
approach that creates overlay networks by manipulating
connection metadata. Containers can still use private IPs to
establish connections but packets use host IPs for transmis-
sion. In Slim, network virtualization is realized via connec-
tion redirection at the connection level rather than packet
transformation at the packet level. As such, Slim can bypass
the virtual bridge and the virtual network device in con-
tainers, achieving near-native performance. However, Slim
does not apply to connection-less protocols, such as UDP,
and complicates and limits the scalability of host network
management since each overlay network connection needs
a unique file descriptor and port in the host network. In
this work, we strive to salvage a commodity OS kernel to
efficiently support all network traffic in overlay networks.

Kernel scalability on multicore. As the number of CPU
core increases, how to improve the resource utilization and
the system efficiency, scalability and concurrency is becom-
ing a hot research topic. Boyd-Wickizer et al. [33] analyzed
the scalability of applications running on Linux on top of a
48-core machine and reported almost all applications trig-
gered scalability bottlenecks inside the Linux kernel. Many
researchers advocated rethinking the operating systems [28,
59] and proposed new kernel for high scalability, such as
Barrelfish [29] and Corey [32]. The availability of multi-
ple processors in computing nodes and multiple cores in a
processor also motivated proposals to utilize the multicore
hardware, including protocol onloading or offloading on ded-
icated processors [40, 63, 67, 72], network stack paralleliza-
tion [54, 57, 58, 73], packet processing alignment [60, 62],
optimized scheduling [49, 56, 62], to improve the network
performance. However, none of the above techniques are
designed on optimizing the inefficiency inside container net-
works. Instead, FALcoN addresses the serialization of softirq
execution due to overlay networks in Linux kernel.

Container network acceleration. As a new and complex
technique, many reasons could contribute to inefficiency of
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container networks. In order to diagnose bottlenecks and op-
timize container networks, many researches and techniques
have been developed in recent years. These works can be
divided in two categories. First, many researchers propose
to reduce unnecessary work to improve the performance.
Systems can offload CPU-intensive work, such as checksum
computing, onto hardwares [12, 14, 18, 71] or bypass ineffi-
cient parts inside kernel [22, 71] to improve the container
network processing. As a concrete example, advanced of-
floading techniques, e.g., Mellanox ASAP2 [19], allow for
the offloading of virtual switches and packet transformation
entirely to the NIC hardware. This technique helps deliver
near-native overlay performance as packets coming out of
the NIC are stripped off host network headers and can be
processed as ordinary packets in physical networks. How-
ever, it has several drawbacks: 1) advanced offloading is only
available in high-end hardware; 2) it has restrictions on the
configuration of overlay networks, limiting flexibility and
scalability. For example, SR-IOV has to be enabled to directly
pass virtual functions (VFs) to containers as a network de-
vice. This not only increases the coupling of containers with
the hardware but also limits the number of containers in a
host, e.g., 512 VFs in the Mellanox ConnectX®-5 100 Gbps
Ethernet adapter [27]. Another category of works, including
virtual routing [4], memory sharing [74], resource manage-
ment [43], redistribution and reassignment [75], manipulat-
ing connection-level metadata [78], focus on optimizing the
data path along container networks. Different from above
works, our work focuses on the inefficiency of interrupt pro-
cessing inside container networks and proposes solutions
to address them by leveraging the multicore hardware with
little modification to the kernel stack and data plane.

8 Conclusions

This paper demonstrates that the performance loss in over-
lay networks due to serialization in the handling of excessive,
expensive softirgs can be significant. We seek to parallelize
softirq processing in a single network flow and present FAL-
CON, a fast and balanced container network. FALCON centers
on three designs: softirq pipelining, splitting, and dynamic
balancing to enable fine-grained, low-cost flow paralleliza-
tion on multicore machines. Our experimental results show
that FALcoN can significantly improve the performance of
container overlay networks with both micro-benchmarks
and real-world applications.

9 Acknowledgments

We thank our shepherd, Michio Honda, and the anony-
mous reviewers for their insightful comments. This work
was supported by NSF under Award 1909877 and 1909486.



Parallelizing Packet Processing in Container Overlay Networks

References

——
N DN
DN =
—

(23]
(24]
[25]
(26]
[27]
(28]

[29]
(30]
(31]
(32]
(33]

(34]

(35]

8 surprising facts about real docker adoption. https://goo.gl/F94Yhn.
Apache Mesos. http://mesos.apache.org/.

Apache Mesos. https://mesos.apache.org/.

Calico. https://github.com/projectcalico/calico-containers.
cloudsuite. https://cloudsuite.ch.

Docker Swarm. https://docs.docker.com/engine/swarm/.

Elgg. https://elgg.org.

Encrypting Network Traffic. http://encryptionhowto.sourceforge.net/
Encryption-HOWTO-5.html.

Flame Graph. https://github.com/brendangregg/FlameGraph.
Flannel. https://github.com/coreos/flannel/.

Google Cloud Container. https://cloud.google.com/containers/.
Improving Overlay Solutions with Hardware-Based VXLAN Termination.
https://goo.gl/5sV8s6.

Kubernetes. https://kubernetes.io/.

Mellanox VXLAN Acceleration. https://goo.gl/QJU4BW.

Memcached. https://memcached.org/.

Open vSwitch. https://www.openvswitch.org/.

Open vSwitch. http://openvswitch.org/.

Optimizing the Virtual Network with VXLAN Overlay Offloading. https:
//goo.gl/LEquzj.

OVS Offload Using ASAP2 Direct. https://docs.mellanox.com/display/
MLNXOFEDv471001/OVS+Offload+Using+ASAP2+Direct.

Receive Packet Steering. https://lwn.net/Articles/362339/.

Receive Side Scaling. https://goo.gl/BXvmA].

Scalable High-Performance User Space Networking for Containers. https:
//goo.gl/1S]jro.

Sockperf. https://github.com/Mellanox/sockperf.

TCPDump. https://www.tcpdump.org/.

Use overlay networks. https://docs.docker.com/network/overlay/.
Weave. https://github.com/weaveworks/weave.

World-Class Performance Ethernet SmartNICs Product Line. https://
www.mellanox.com/files/doc-2020/ethernet-adapter-brochure.pdf.
K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatow-
icz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al. A view of
the parallel computing landscape. Communications of the ACM, 2009.
A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania. The multikernel: a new os
architecture for scalable multicore systems. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles (SOSP), 2009.
A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. Ix: A protected dataplane operating system for high
throughput and low latency. In Proceedings of USENLX Symposium on
Operating System Design and Implementation (OSDI), 2014.

N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and
S. K. Reinhardt. Performance analysis of system overheads in tcp/ip
workloads. In Proceedings of 14th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2005.

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al. Corey: An operating
system for many cores. In Proceedings of 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2008.

S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, N. Zeldovich, et al. An analysis of linux scalability to many
cores. In Proceedings of 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

L. Cheng and C.-L. Wang. vbalance: using interrupt load balance to
improve i/o performance for smp virtual machines. In Proceedings of
the Third ACM Symposium on Cloud Computing, page 2. ACM, 2012.
F.R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized
task-aware scheduling for data center networks. In Proceedings of
ACM Special Interest Group on Data Communication (SIGCOMM), 2014.

275

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

EuroSys "21, April 26-28, 2021, Online, United Kingdom

R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs containerization
to support paas. In Proceedings of IEEE ICZE, 2014.

P. Emmerich, D. Raumer, A. Beifuf}, L. Erlacher, F. Wohlfart, T. M.
Runge, S. Gallenmiiller, and G. Carle. Optimizing latency and cpu load
in packet processing systems. In Proceedings of International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), 2015.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated per-
formance comparison of virtual machines and linux containers. In
Proceedings of IEEE ISPASS, 2015.

A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grand], J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network func-
tion control. In ACM SIGCOMM Computer Communication Review,
2014.

P. Gilfeather and A. B. Maccabe. Modeling protocol offload for message-
oriented communication. In Proceedings of the IEEE International
Cluster Computing, 2005.

A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster,
and D. Tsafrir. Eli: bare-metal performance for i/o virtualization. In
Proceedings of ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.
B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtual-
ization: Challenges and opportunities for innovations. IEEE Commu-
nications Magazine, 2015.

Y. Hu, M. Song, and T. Li. Towards full containerization in container-
ized network function virtualization. In Proceedings of ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2017.

H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu. Adaptive resource
views for containers. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC), 2019.
J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck. An in-depth study of lte: effect of network protocol
and application behavior on performance. In Proceedings of ACM
SIGCOMM, 2013.

Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling, and D. Li. Los: A high
performance and compatible user-level network operating system. In
Proceedings of the First Asia-Pacific Workshop on Networking (APNet),
2017.

M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mos: A reusable
networking stack for flow monitoring middleboxes. In Proceedings of
USENIX NSDI, 2017.

E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.
mtcp: a highly scalable user-level tcp stack for multicore systems. In
Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maziéres, and
C. Kozyrakis. Shinjuku: Preemptive scheduling for psecond-scale tail
latency. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI}), 2019.

J. Lei, K. Suo, H. Lu, and J. Rao. Tackling parallelization challenges of
kernel network stack for container overlay networks. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton,
‘WA, 2019. USENIX Association.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft. Unikernels: Library op-
erating systems for the cloud. In Proceedings of ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. Clickos and the art of network function virtualization. In
Proceedings of USENIX NSDI, 2014.

D. Merkel. Docker: lightweight linux containers for consistent devel-
opment and deployment. In Linux Journal, 2014.



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

(54]

(57]

(58]

(59]

(60]

(61]

(62]

[63]

(64]

(65]

[66]

E. M. Nahum, D. J. Yates, ]. F. Kurose, and D. Towsley. Performance
issues in parallelized network protocols. In Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation
(OSDI), 1994.

Z.Niu, H. Xu, D. Han, P. Cheng, Y. Xiong, G. Chen, and K. Winstein.
Network stack as a service in the cloud. In Proceedings of the 16th
ACM Workshop on Hot Topics in Networks (HotNets), 2017.

A. Ousterhout, ]. Fried, J. Behrens, A. Belay, and H. Balakrishnan.
Shenango: Achieving high {CPU} efficiency for latency-sensitive data-
center workloads. In 16th { USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI}), 2019.

S.Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker. E2: a framework for nfv applications. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP), 2015.
A.Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Net-
bricks: Taking the V out of NFV. In Proceedings of USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2016.

D. Patterson. The parallel revolution has started: Are you part of the
solution or part of the problem? In International Conference on High
Performance Computing for Computational Science (SC), 2010.

A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving
network connection locality on multicore systems. In Proceedings of
the 7th ACM european conference on Computer Systems (Eurosys), 2012.
S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy, T. An-
derson, and T. Roscoe. Arrakis: The operating system is the control
plane. In Proceedings of USENIX Symposium on Operating System
Design and Implementation (OSDI), 2014.

G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail
latency for microsecond-scale networked tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), 2017.

G. Regnier, S. Makineni, L Illikkal, R. Iyer, D. Minturn, R. Huggahalli,
D. Newell, L. Cline, and A. Foong. TCP onloading for data center
servers. IEEE Computer, 2004.

L. Rizzo. Netmap: a novel framework for fast packet i/o. In Proceedings
of 21st USENIX Security Symposium (USENLX Security), 2012.

L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual ma-
chines. In Proceedings of the 8th international conference on Emerging
networking experiments and technologies (CONEXT), 2012.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay. Containers and
virtual machines at scale: A comparative study. In Proceedings of ACM

276

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao

Middleware, 2016.

P. Shivam and J. S. Chase. On the elusive benefits of protocol of-
fload. In Proceedings of the ACM SIGCOMM workshop on Network-I/O
convergence: experience, lessons, implications, 2003.

K. Suo, Y. Zhao, W. Chen, and J. Rao. An analysis and empirical study
of container networks. In Proceedings of IEEE INFOCOM, 2018.

K. Suo, Y. Zhao, W. Chen, and J. Rao. vNetTracer: Efficient and pro-
grammable packet tracing in virtualized networks. In Proceedings of
IEEE ICDCS, 2018.

K. Suo, Y. Zhao, J. Rao, L. Cheng, X. Zhou, and F. C. Lau. Preserving
i/o prioritization in virtualized oses. In Proceedings of the Symposium
on Cloud Computing (SoCC), 2017.

J. Weerasinghe and F. Abel. On the cost of tunnel endpoint processing
in overlay virtual networks. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), 2014.
R. Westrelin, N. Fugier, E. Nordmark, K. Kunze, and E. Lemoine. Study-
ing network protocol offload with emulation: approach and prelimi-
nary results. In Proceedings of 12th IEEE Symposium on High Perfor-
mance Interconnects (HOTI), 2004.

P. Willmann, S. Rixner, and A. L. Cox. An evaluation of network stack
parallelization strategies in modern operating systems. In Proceedings

of the USENIX Annual Technical Conference (USENIX ATC), 2006.
T.Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar. Freeflow:

High performance container networking. In Proceedings of ACM Hot-
Net, 2016.

Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang. A
communication-aware container re-distribution approach for high
performance vnfs. In Proceedings of IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017.

Y. Zhao, K. Suo, L. Cheng, and ]J. Rao. Scheduler activations for
interference-resilient smp virtual machine scheduling. In Proceed-
ings of the ACM/IFIP/USENIX Middleware Conference (Middleware),
2017.

Y. Zhao, K. Suo, X. Wu, J. Rao, S. Wu, and H. Jin. Preemptive multi-
queue fair queuing. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC), 2019.
D. Zhuo, K. Zhang, Y. Zhu, H. Liu, M. Rockett, A. Krishnamurthy, and
T. Anderson. Slim: OS kernel support for a low-overhead container
overlay network. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.



