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Abstract. Spatial transcriptomics techniques such as STARmap [15]
enable the subcellular detection of RNA transcripts within complex tis-
sue sections. The data from these techniques are impacted by optical
microscopy limitations, such as shading or vignetting effects from uneven
illumination during image capture. Downstream analysis of these sparse
spatially resolved transcripts is dependent upon the correction of these
artefacts. This paper introduces a novel non-parametric vignetting cor-
rection tool for spatial transcriptomic images, which estimates the illumi-
nation field and background using an efficient iterative sliced histogram
normalization routine. We show that our method outperforms the state-
of-the-art shading correction techniques both in terms of illumination
and background field estimation and requires fewer input images to per-
form the estimation adequately. We further demonstrate an important
downstream application of our technique, showing that spatial transcrip-
tomic volumes corrected by our method yield a higher and more uniform
gene expression spot-calling in the rodent hippocampus. Python code
and a demo file to reproduce our results are provided in the supplemen-
tary material and at this github page: https://github.com/BoveyRao/
Non-parametric-vc-for-sparse-st.
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Fig. 1. Overview of the proposed method. A: Vignetting in individual FOVs results
in discontinuities in pixel intensities in stitched volumes. B: After applying our pro-
posed technique, the pixel intensities are made uniform across the entire FOV, yielding
seamless intensity profiles in stitched volumes. C: Our method estimates the “flat-field”
and “dark-field” pixel transformation matrices by iteratively scaling and shifting the
histograms of vertical and horizontal strips of all FOVs to match the histograms of
“central” strips of the FOVs. The iteratively estimated parameters are then used to
derive “flat-field” and “dark-field” matrices. These matrices are then applied to each
FOV to ensure that all marginal histograms match closely with the histogram of cen-
tral regions, ensuring uniformity of pixel intensities throughout all FOVs, countering
the effects of vignetting.

1 Introduction

Complex neural representations necessitate experimental and analytical schemes
to assess genetically defined cellular populations with spatial resolution. in situ
sequencing [6,7] affords the ability to interrogate neural circuits within a histo-
logical context but is subject to optical limitations. Uneven illumination fields,
optical vignetting, chromatic aberration, and detection noise are inherent to
imaging platforms and are a significant obstacle to accurately determine the
precise number and location of gene expression in situ.

In addition to a wealth of literature on vignetting correction in natural images
[3,17], several techniques have been introduced in recent years for microscopy
applications [9–12]. These techniques address non-uniformity in illumination but
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underperform when applied to spatial transcriptomic images, given the inherent
sparsity. Furthermore, they often require tedious parameter settings to reflect
the sparsity of the cell population under view.

In this paper, we posit that if there was no vignetting, aggregated marginal
regions of images in a large sample would follow roughly similar intensity dis-
tributions due to spatial randomization of objects in view. This property exists
regardless of the sparsity of cells in the field of view (FOV), but rather as a
consequence of the uniform distribution of objects in arbitrarily imaged tissue
sections. Thus, the objective of vignetting correction can be cast as a marginal
histogram matching problem [4] aiming to minimize differences in the intensity
profiles across different regions of images. To accomplish this, we propose an
algorithm that first generates histograms corresponding to horizontal and ver-
tical strips from each FOV. Then, these histograms are iteratively normalized
to a reference histogram. The scaling and offsets used to normalize histograms
are then used to estimate global transformation terms that reflect the level of
spatial amplification needed to uniformize the pixel intensities throughout the
slice samples within each FOV.

We extensively evaluate our method in a real rodent spatial transcrip-
tomics dataset and show that it significantly outperforms the state-of-the-art
microscopy vignetting correction tools, BASIC [9,10] and CIDRE [12]. Further-
more, we demonstrate an important downstream application of our method by
using it to assist in STARmap [15] in situ sequencing imaging-based detection
of transcripts within the CA1 region of the mouse hippocampus, demonstrating
significantly enhanced detection of transcript specific barcodes [1].

2 Method

We first introduce notation. Let I ∈ RN,M denote a (N × M) observed spatial
transcriptomics FOV such that Ii,j denotes the pixel intensity at the (i, j)th pixel
(row/column). We model the observed pixel value as having been transformed
from the “true” pixel value, I0

i,j , through a transformation by a multiplicative
“flat-field” matrix, S ∈ RN,M and an additive “dark-field” matrix, D ∈ RN,M :

Ii,j = I0
i,jSi,j + Di,j + ε (1)

The “flat-field” and “dark-field” matrices model the shading inhomogeneities of
foreground and background of the images, respectively [9].

Next, we make an observation that the pixel intensity profiles captured at
different rows and columns of many random images would be indicative of poten-
tial vignetting artefacts. For example, in a large set of images, if the objects in
the bottom right of the image always tend to be darker than the objects in the
center of the image, regardless of the objects in view, we can posit that the
pixels in the bottom right of the image is subject to lower values of flat-field
transformations.

We can quantify pixel intensities using marginal histograms sampled at dif-
ferent rows and columns of images. To estimate the transformation matrices S
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and D, we propose to normalize histograms obtained from horizontal and ver-
tical strips of the FOV slices to match the histograms of a “central” reference
strip (the robustness is addressed in the Supplementary Materials). We then use
the histogram normalization parameters to decode a full spatial estimate of the
“flat-field” (S) and “dark-field” (D) matrices. The key idea behind this pro-
cedure is that a properly corrected set of images should have indistinguishable
histograms in different regions of the image space. See Fig. 1 for an illustration.

In detail, let F−1
I i,:

(q) denote the inverse cumulative distribution function
(iCDF), evaluating the qth quantile (0 ≤ q ≤ 1) of the ith row of the all
FOVs and F−1

I :,j
(q) denote the same thing for the jth column. Furthermore, let

F−1
I0

(q) denote the iCDF of a reference strip of the FOV. Note that discretely
sampling iCDF is equivalent to generating histograms. Thus, the objective of
linearly normalizing the marginally sliced histograms to the reference histogram
can be formulated as a linearly parametrized sliced Wasserstein distance [4] min-
imization problem:

min
s,d

∫ 1

0

||F−1
I0

(q) − F−1
I i,:

(q)s − d||22dq −→ [s d]T = [F−1
I i,:

1]†F−1
I0

(2)

Here the scalars s and d account for the scaling and additive offsetting of the
ith horizontal marginal histogram to match the reference histogram. These terms
can be derived by sampling the iCDFs at a discrete number of bins and solving a
linear regression problem with the closed form solution: [s d]T = [F−1

I i,:
1]†F−1

I0
,

with † denoting the Moore–Penrose pseudoinverse. If this operation is repeated
for all horizontal slices, we get the vectors Shoriz,Dhoriz ∈ RN . Next, this pro-
cedure can be repeated for all vertical slices to yield Svert,Dvert ∈ RM . If we
repeat this procedure, estimating the iterates of St,horiz,Dt,horiz,St,vert,Dt,vert

at the tth round whilst simultaneously normalizing the corresponding sliced his-
tograms, we arrive at the following formula to derive an estimate of the “flat-
field” and “dark-field” terms:

S = 11T � S′, D = −D′ � S′ (3)

where � denotes elementwise division and S′ and D′ are given by:

S′ =
(∏

t

diag(St,horiz)11T
∏
t

diag(St,vert)
)

(4)

D′ =
∑
t

Dt,horiz �
( ∏

T−t

diag(St,horiz)11T
∏
T−t

diag(St,vert)
)

+

( ∏
T−t

diag(St,horiz)11T
∏
T−t

diag(St,vert)
)

� Dt,vert.

Here � denotes row-wise or column-wise multiplication and diag(·) denotes diag-
onal matrix. The pseudocode for the routine is provided in Algorithm1.
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Parameter Setting and Histogram Slicing: Note that the procedure to
derive sliced iterates of S and D is convergent since each minimization round
monotonically reduces the Wasserstein distance to the reference histogram.
Importantly, unlike in BASIC [10] where the user has to specify the sparsity
penalty, our routine only requires the setting of the level of histogram discretiza-
tion by a number of bins. Higher number of bins provides more emphasis to mid-
dle quantiles of pixel intensities and lower number bins emphasizes the extremes,
such as min and max and may provide higher contrast levels in corrected images.

Also, the slicing of marginal histograms does not need to be at a sin-
gle pixel resolution, and “strips” consisting of multiple contiguous sets of
image rows/columns can be utilized and share the same scaling and additive
terms. Alternatively, images can be downsampled and sliced along single pixel
row/columns to estimate the transformation terms which then can be upsampled
to correct full resolution images.

Rank-One Assumption of the Vignetting Field: The estimated “flat-field”
and “dark field” are presumed to be rank one by construction. In practice such an
assumption is sufficient to capture the convex shaped vignetting field observed
in most imaging setups and is due to how we structure the histograms (by
rows/columns). Hypothetically, we can normalize arbitrary shapes of histograms,
it is possible to sample “checkerboard” patterns of histograms and model any
arbitrary rank/shape of vignetting fields.

Algorithm 1. Iterative sliced histogram normalization
Input: Observed set of n FOV’s: I = {Iu(1),v(1) , . . . , Iu(n),v(n)} ∈ RN,M

1: for t = 1, . . . number of iterations do
2: Horizontal normalization: Estimate linear regression terms to match ith hor-

izontal histogram to the reference histogram
3: for i = 1, . . . , N do
4: [S

(t,horiz)
i D

(t,horiz)
i ]T = mins,d

∫ 1

0
||F−1

I0
(q) − F−1

I i,:
(q)s − d||22dq

5: end for
6: I ←− S(t,horiz)1T

M � I + D(t,horiz)1T
M for all FOV’s

7: Vertical normalization: Estimate linear regression terms to match jth vertical
histogram to the reference histogram

8: for j = 1, . . . ,M do
9: [S

(t,vert)
j D

(t,vert)
i ]T = mins,d

∫ 1

0
||F−1

I0
(q) − F−1

I :,j
(q)s − d||22dq

10: end for
11: I ←− 1NS(t,vert)T � I + 1ND(t,vert)T for all FOV’s
12: end for
13: return Corrected set of FOV’s: {Iu(1),v(1) , . . . , Iu(n),v(n)} ∈ RN,M

“flat-field” S and “dark-field” D estimates, using Eq. (3).
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Fig. 2. Vignetting correction evaluation. A: Maximum projection comparison using 3
methods with 100 input images. B: Representative left-right overlap. C: Representative
top-bottom overlap. D: Correction scores from 4 left-right and 4 top-bottom overlap-
ping sections. E: Uniformity metric of bootstrapped 0.1% samples of Gaussian filtered
maximum projections. F: Vertical and horizontal intensity profiles for max and mean
projections compared to that of the raw image. Our method produces flatter images
for maximum projections, while having a lower uniformity metric and equal or lower
correction scores (∗p < 0.05, ∗∗p < 0.01, and ∗ ∗ ∗p < 0.001 for paired t-test). See
Supplementary Materials for additional panels. (Color figure online)

3 Results

Data and Imaging System Description: STARmap based in situ sequenc-
ing was performed as previously described [15], utilizing five rounds (of 4 color
channels each) of sequencing by ligation to detect 44 transcripts in 20 micron
sections of the murine hippocampus. Samples were imaged using an Andor Drag-
onfly spinning disk confocal microscope [8] utilizing Borealis conditioning for
each excitation wavelength and sCMOS based detection of fluorescent output to
yield 2048×2048 pixel FOV’s that cover 200µm×200µm area at 60× magnifica-
tion. The depth slices are acquired at increments of 0.22µm. Imaged sequencing
rounds were rigidly registered using fast-Fourier-transform-based phase corre-
lation [2]. Our vignetting correction was applied to this field of view with a
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downsample factor of 50 and bin size 40, over 5 iterations. After registration,
BarDensr [1] was used for spot detection using a detection threshold of 0.95,
blur level 2 pixels, tile size of 250 × 250 pixels, and 5× downsample level.

Evaluation Approaches: For real microscopy images where the ground truth
is not available, a thorough evaluation of vignetting correction methods is not
trivial. One approach is to compare the estimated flat-field term, Ŝ, with a
reference flat-field, Sref, obtained from a calibration experiment [14]. The key
challenge of such a validation is to acquire a reliable reference. As we did not
have that option, for one metric, we measured the uniformity of illumination
in corrected FOV’s by taking the std of pixel intensities in aggregated mean or
maximum projected images. This evaluation metric can be formulated as:

Uniformitymetric: u(I , σ) =

√
√
√
√(1/NM)

∑

i,j

(

f(I , σ)i,j − (1/NM)
∑

i,j

f(I , σ)i,j

)2

(5)

where f(I, σ)i,j denotes i, jth pixel of the max or mean image that has been
Gaussian filtered with a kernel width of σ pixels. We evaluate this metric on
z-scored pixel intensities (evaluated across the entire FOV) to keep the scale of
this metric normalized and enable comparison across different methods.

In addition to the Uniformity metric we described, we also implemented the
correction score (Icorr) based strategy of measured differences in overlapping
regions [9]. This value is formulated as:

Correction score [9]: Γ ′(Icorr) =
∑

x |Icorra (x) − Icorrb (x)|∑
x |Imeas

a (x) − Imeas
b (x)| (6)

This correction score generates a metric where 0 is a perfect correction, <1 is
an improvement from the uncorrected images, 1 is the same as the uncorrected
images, and >1 is worse than the uncorrected images.

Vignetting Correction Comparisons with the State-of-the-Art: We
compared our method with CIDRE [12] and BASIC [9,10]. CIDRE was the
first method to estimate both light and dark fields for image correction [12].
BASIC is another image correction method that estimates the light and dark
field and uses sparse and low-rank decomposition to correct vignetting [9,10].
For BASIC and CIDRE, we utilized the respective ImageJ plugins with their
default parameters, while using the parameters mentioned above for our method
in Python. Our test image stack was from the murine spatial transcriptomic
experiment with dimensions of 2048 × 2048 × 191. We selected random subsets
of 5, 10, 25, 50, and 100 image slices to build correction models for all three
methods.

All three methods showed some level of vignetting correction from the uncor-
rected images (Fig. 2A). We applied the correction score methodology on 8 sets
of overlapping regions (4 top-bottom, 4 left-right) (Fig. 2B-C). Our correction
score results across all numbers of input images were equal or lower than both
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Fig. 3. Vignetting correction improves spot calling and gene detection. A: STARmap
based detection of 44 transcripts within CA1. B: Data was rigidly registered and pro-
jected across the depth axis. C: Detection of the RGS10 transcript in uncorrected image
yields uneven spot calling and uneven localization. D: Vignetting correction enhances
spot detection of RGS10. E: Magnified fields of view from central (red) and peripheral
(blue) regions. F: RGS10 spot detected using BarDensr following vignetting correction
G: RGS10 has a higher rate of detection post vignetting correction (green). H: Abso-
lute gene count for uncorrected (blue) versus vignetting corrected images using CIDRE
(orange), BASIC (green), and our method (red). I: Gene spots detected in uncorrected
and corrected images with average log fold change (LFC). Our method improves spot
detection as compared to CIDRE and BASIC correction methods. (Color figure online)

CIDRE and BASIC (Fig. 2D). We also bootstrapped 0.1% samples of Gaussian
filtered pixels and computed the Uniformity metric, where our method had the
lowest value (Fig. 2E). We also observed the maximum and mean intensities
along the horizontal and vertical axes to provide another qualitative metric for
the corrected stack’s flatness (Fig. 2F and in the Supplementary Materials). Our
vignetting correction method works more effectively on maximum intensities
than BASIC and CIDRE with roughly equivalent results for mean intensities.

Gene spot calling techniques like BarDensr [1] utilize thresholding of high-
intensity pixels across multiple rounds of barcode imaging, so our technique,
which corrects higher quantiles such as the maximum projection, is functionally
more relevant for such types of downstream analysis.
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Downstream Gene Spot Calling Analysis: We examined the utility of our
method towards spot detection, a process critical to in situ sequencing. We per-
formed STARmap multiplexed in situ sequencing of the mouse CA1 hippocam-
pal region over five rounds, probing 44 distinct transcripts of interest (Fig. 3A).
Sample drift was accounted for by rigidly registering [2] spots round-by-round
so that the same spot appeared in a constant location across all rounds. Follow-
ing registration, the data were projected across the depth axis (Z) to create a
5 × 4 × 2048 × 2048 (rounds × channels × image area in pixels) matrix as input
into BarDensr (Fig. 3B).

We focused on RGS10, an enriched gene in the hippocampus [5]. In the
uncorrected image, detection of RGS10 was sparse and nonuniform, with poor
spatial localization (Fig. 3C). Vignetting correction using our approach increased
spot calls and their spatial distribution (Fig. 3D). It also improved homogeneity
and spot visualization when comparing uncorrected and corrected spots in the
central region (red) and periphery (blue) (Fig. 3E). An example of an RGS10 spot
fitting these criteria is shown in Fig. 3F. The detection rate of RGS10 improved
overall after vignetting correction, and is highlighted specifically in the central
region (Fig. 3G).

Absolute gene count was quantified in the uncorrected data and data cor-
rected using CIDRE, BASIC, and our method. As compared to uncorrected
data, overall transcript detection increased by an order of magnitude. Previ-
ously undetected transcripts, such as GAD2, a marker for interneurons [16],
were observed. Many markers were enhanced using our method as compared
to CIDRE and BASIC (Fig. 3H and Fig. S15). We compared the average log
fold change of spots detected using each vignetting corrected method with the
uncorrected data, and our method provided the most consistent increase in spot
detection (Fig. 3I). Correction of uneven illumination field using our method
offers enhanced analysis of transcriptional activation and localization in tissue.

Conclusion: The approach we describe offers a generalized method to con-
tend with uneven illumination fields, resulting in heightened quantification of
multiplexed in situ data. Our approach may offer value to time resolved pho-
tobleaching, enabling enhanced discrimination of metabolic flux in tissue and
address depth based intensity dropoff effects that result from scattering occur-
ring during deep tissue imaging. Although we highlight the application of this
algorithm in murine hippocampal tissue, we anticipate it will offer value towards
translational applications including spatially resolved transcriptomic studies of
cancer and neurodegenerative diseases as well as other imaging modalities such
as 2-photon calcium imaging [13].
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