
Proceedings of Machine Learning Research vol 120:1–10, 2020 2nd Annual Conference on Learning for Dynamics and Control

Online Data Poisoning Attacks

Xuezhou Zhang ZHANGXZ1123@CS.WISC.EDU
Department of Computer Sciences, University of Wisconsin-Madison

Xiaojin Zhu JERRYZHU@CS.WISC.EDU
Department of Computer Sciences, University of Wisconsin-Madison

Laurent Lessard LAURENT.LESSARD@WISC.EDU

Department of Electrical and Computer Engineering, University of Wisconsin-Madison

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M.Zeilinger

Abstract

We study data poisoning attacks in the online learning setting, where training data arrive sequentially,
and the attacker is eavesdropping the data stream and has the ability to contaminate the current
data point to affect the online learning process. We formulate the optimal online attack problem
as a stochastic optimal control problem, and provide a systematic solution using tools from model
predictive control and deep reinforcement learning. We further provide theoretical analysis on the
regret suffered by the attacker for not knowing the true data sequence. Experiments validate our
control approach in generating near-optimal attacks on both supervised and unsupervised learning
tasks.

1. Introduction

Data poisoning attacks are a family of adversarial attack where an attacker contaminates the training
data of a victim learner to control the learning process Xiao et al. (2015); Mei and Zhu (2015);
Burkard and Lagesse (2017); Chen and Zhu (2019); Jun et al. (2018); Li et al. (2016). Prior work
on data poisoning focused almost exclusively on the offline learning setting, where the attacker
contaminates a set of pre-collected training points, and then the victim learner learns from the
contaminated dataset. Biggio et al. (2012); Muñoz-González et al. (2017); Xiao et al. (2015); Mei
and Zhu (2015); Sen et al. (2018); Chen et al. (2017). However, real-world machine learning systems
often update in an online fashion. For example, in e-commerce applications, user-generated data
arrives sequentially, and the learner usually updates daily to learn from the newly-acquired data.

Compared to the offline setting, the online attacker faces several unique challenges: (1) In the
offline setting, it is often assumed that the attacker observes the whole dataset. However, in the online
setting, the attacker can only observe the current data when making decision. (2) In the offline setting,
the attacker only needs to make one decision, while in the online setting, the attacker is required to
make a sequence of decisions to perform the attack through time. These unique challenges makes
classic data poisoning attack framework unapplicable to the online regime.

This paper presents a principled study of online data poisoning attacks. Our key contributions
inlcude: (1) we provide a mathematical framework for online poisoning attacks based on optimal
control, (2) we design and implement two practical algorithms that achieve near-optimal attack
performance in both synthetic and real-data experiments, and (3) We develop a theoretical analysis
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upper-bounding the regret suffered by the attacker for not knowing the real data sequence. Taken
together, this paper builds a foundation for future studies of defense against online data poisoning.

Environment
zt

i.i.d.⇠ P

Attacker
at = �(zt, ✓t)

Victim learner
✓t+1 = f(✓t,at)

{✓t}
{zt} {at}

Figure 1: Online data poisoning attack diagram. At time t, the attacker observes the training sample
zt and the learner’s model ✓t in an online fashion, and perturb zt into at.

2. Related Work

Data poisoning attacks have been studied against a wide range of learning systems, while focusing
almsot exclusively on the offline settings. Examples of offline or batch poisoning attacks against
SVM include Biggio et al. (2012); Burkard and Lagesse (2017); Xiao et al. (2015). Such attacks
are generalized into a bilevel optimization framework against general offline learners with a convex
objective function in Mei and Zhu (2015). A variety of attacks against other learners have been
developed, including neural networks Koh and Liang (2017); Muñoz-González et al. (2017), autore-
gressive models Alfeld et al. (2016); Chen and Zhu (2019), linear and stochastic bandits Jun et al.
(2018); Ma et al. (2018), collaborative filtering Li et al. (2016), and models for sentiment analysis
Newell et al. (2014). In contrast, our paper focuses on the online setting, where the attacker has to
act sequentially during the training process.

There is an intermediate attack setting between offline and online, which we call clairvoyant

online attacks, where the attacker performs actions sequentially but has full knowledge of all

future input data zt+1, zt+2, . . . Examples include heuristic attacks against SVM learning from
data streams Burkard and Lagesse (2017) and binary classification with an online gradient descent
learner Wang and Chaudhuri (2018). Our paper focuses instead on the more realistic setting where
the attacker has no knowledge of the future data stream. More broadly, our paper advocates for a
general optimal control viewpoint that is not restricted to specific learners such as SVM.

The parallel line of work studying online teaching also considers the sequential control problem
of machine learners, where the goal is to choose a sequence of training examples that accelerates
learning Liu et al. (2017); Lessard et al. (2018). However, Liu et al. (2017) solves the problem
using a greedy heuristic that we show in Section 6 performs poorly compared to our optimal control
approach. On the other hand, Lessard et al. (2018) finds optimal teaching sequences but is restricted
to an ordinary linear regression learner.

3. Problem Definition

Figure 1 provides a overview of the online data poisoning problem. We consider three entities in
this problem: a stochastic environment, a sequential learning victim, and the online attacker. In the
absence of attacks, at time t the environment draws a training data zt

i.i.d.⇠ P. For example, zt can be
a feature-label pair zt := (xt, yt) in supervised learning or just the features zt := xt in unsupervised
learning. The victim maintains a model ✓t 2 ⇥. Upon receiving zt, the victim performs one step of
the sequential update defined by a function f : ✓t+1 = f(✓t, zt). For example, f can be the online

2



ONLINE ATTACK

gradient descent f(✓t, zt) := ✓t�⌘r`(✓t, zt) under learner loss ` and step size ⌘. We now introduce
the attacker by defining its knowledge, allowed actions, and goals:

• Knowledge: We assume that at time t, the attacker has knowledge of the victim’s update function
f , the victim’s current model ✓t, data z0:t generated by the environment so far, and optionally
n “pre-attack” data z�n:�1

i.i.d.⇠ P . However, at time t the attacker does not have the clairvoyant
knowledge of future data points zt+1, zt+2, . . ., nor does it have the knowledge of the environment
distribution P . The knowledge of f and ✓t are classic assumptions in the white-box attack setting
Xiao et al. (2015); Mei and Zhu (2015); Burkard and Lagesse (2017); Chen and Zhu (2019); Jun
et al. (2018); Li et al. (2016).

• Action: The attacker can perform only one type of action: At time step t, after the environment
draws a data point zt, the attacker can perturb the data point into at 2 Z . However, he is not able
to go back to perturb any data points generated in previous iterations, which is distinct from the
assumption in prior work Wang and Chaudhuri (2018). The perturbation incurs a perturbation
cost gper(zt,at), which reflects the price to attack. For example, gper(zt,at) := kat � ztkp if Z is
endowed with an appropriate p-norm.

• Objective: The attacker’s goal, informally, is to force the victim’s learned models ✓t to satisfy
certain nefarious properties at each step while paying a small perturbation cost. These “nefarious
properties” (rather the inability to achieve them) are captured by a nefarious cost gnef(✓). For
example, if the attacker wants to force the victim to learn/maintain a target model ✓†, we can define
gnef(✓) = k✓ � ✓

†k2. To balance nefarious properties with perturbation cost, the attacker defines a
running cost g at time t:

g(✓t, zt,at) := gper(zt,at) + �gnef(✓t), (1)

where � is a weight chosen by the attacker to balance the two. The attacker desires small cumulative
running costs, which is the topic of Section 4.

4. An Optimal Control Formulation

We now precisely define the notion of optimal online data poisoning attacks. To do so, we cast the
online data poisoning attack as a Markov Decision Process (MDP) M = (S,A, T, g, �, s0).

• State: The state st at time t is the stacked vector st := [✓t, zt]T consisting of the victim’s current
model ✓t and the incoming environment data point zt. The state space is S := ⇥⇥ Z .

• Action: The attacker’s action is the perturbed training point at. The action space is A := Z .

• Transition: The state transition function T : S ⇥A ! �S describes the conditional probability
on the next state given current state and attack action, where �S is the probability simplex over
S. In our online attack problem, T (st+1 | st,at) = T ([✓t+1, zt+1]T | st,at) = Pr(f(✓t,at) =
✓t+1) ·P (zt+1). For concreteness, in this paper, we focus on the case where f is deterministic, and
thus the stochasticity is solely in the zt+1 component inside st+1, which has a marginal distribution
P . Therefore, T

�
[f(✓t,at), zt+1]T

�� st,at
�
= P (zt+1).

• Cost: The quality of control at time t is specified by the running cost g(✓t, zt,at) in (1), to be
minimized. From now on, we overload the notation and write the running cost as g(st,at).
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• Discounting factor: We present online data poisoning attack with an infinite time horizon (the
finite horizon case is similar but omitted due to space). We assume that the attacker cares about
discounted cost with discounting factor �.

• Initial state distribution: We assume that the initial model ✓0 is fixed and known to the attacker
while the first data point z0 is sampled from P , i.e. the initial state distribution is defined as
µ0(✓0, z0) = P (z0).

A policy is a function � : S ! A that the attacker uses to choose the attack action at := �(st) =
�([✓t, zt]T) based on the current victim model ✓t and the current environment input zt. The value

V
�
M(s) of a state s is the expected discounted cumulative cost starting at s and following policy �:

V
�
M(s) := EM

1X

t=0

�
t
g(st,�(st))

����
s0=s

(2)

where the expectation is over the transition T . Overall, the attacker wants to find the optimal attack
policy �

?
M that minimizes the expected value at the initial state. Denote the attacker’s objective as

JM(�) := Es⇠µ0 V
�
M(s) , and the attacker’s optimal attack policy as �?

M = argmin� JM(�).
It may seem fortunate for the victim that the attacker cannot directly solve this optimal attack

problem because it does not know the environment data distribution P and thus cannot evaluate
the expectation. However, as we show next, the attacker can use model predictive control to
approximately and incrementally solve for the optimal attack policy as it gathers more information
about P .

5. Practical Attack Algorithms via Model Predictive Control

The key obstacle that prevents the attacker from obtaining an optimal attack is the unknown data
distribution P . However, the attacker can build an increasingly accurate empirical distribution

P̂t from the data seen so far. With P̂t at time t, the attacker can construct a surrogate MDP
M̂t = (S,A, T̂t, g, �, µ̂t), solve for the optimal policy �

?
M̂t

= argmin� JM̂t
(�) on M̂t, and use

�
?
M̂t

to perform the current attack action: at = �
?
M̂t

(st). This repeated procedure of (re)-planning
ahead but only executing one action is called Model Predictive Control (MPC) Borrelli et al. (2017);
Mayne et al. (2000). Next, we present two algorithms that practically solve the surrogate MDP, and
discuss occasions in which we would prefer one over the other.

5.1. Algorithm NLP: Trajectory Planning with Model-based Nonlinear Programming

To perform exact planning over uncertain future trajectories, the attacker further approximates the sur-
rogate objective as JM̂t

(�) ⇡ EP̂t

hPt+h�1
⌧=t �

⌧�t
g(s⌧ ,�(s⌧ ))

i
⇡

Pt+h�1
⌧=t �

⌧�t
g(s⌧ ,a⌧ )

���
zt:t+h�1

.

The first approximation truncates at h steps after t, making it a finite-horizon control problem. The
second approximation does two things: (i) It replaces the expectation by one sampled trajectory of
the future input sequence, i.e. zt:t+h�1 ⇠ P̂t. (ii) Instead of optimizing over a policy �, it locally
searches for the action sequence at:t+h�1 2 Z . The attacker now solves the following nonlinear
optimization problem at every time t: minat:t+h�1

Pt+h�1
⌧=t �

⌧�t
g(s⌧ ,a⌧ ). Let a?t:t+h�1 be a solution.

The NLP algorithm then performs a?t and moves on to t + 1. In practice, the attacker can solve
modest-sized problems using modern nonlinear programming solvers such as IPOPT Wächter and
Biegler (2006).
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5.2. Algorithm DDPG: Policy Learning with Deep Reinforcement Learning

Instead of truncating and sampling to approximate the surrogate attack problem with a deterministic
nonlinear program, one can directly solve for the optimal surrogate policy �

?
M̂t

using reinforcement
learning. In this paper, we utilize deep deterministic policy gradient (DDPG) Lillicrap et al.
(2015) to handle a continuous action space. DDPG learns a deterministic policy with an actor-critic
framework. Roughly speaking, it simultaneously learns an actor network µ(s) parametrized by ✓

µ

and a critic network Q(s, a) parametrized by ✓
Q. The critic network represents the current estimate

of the action-value function, while the actor network tries to approximate maxaQ(s, a). We refer
the reader to the original paper Lillicrap et al. (2015) for a more detailed discussion of this algorithm.

One major advantage of policy learning over planning is that the policy �
?
M̂t

can be used for
multiple steps with minimal computational overhead, whereas the planning approach requires solving
a nonlinear program at every step. To demonstrate the generalizability of the learned policy, in our
experiments described later, we only allow the DDPG to train once at the beginning of the attack on
the surrogate MDP M̂0 based on the pre-attack data z�n:�1. The learned policy �M̂0

is then applied
to all later attack rounds without retraining.

6. Regret Analysis

The fundamental statistical limit of a realistic attacker is its lack of knowledge on the environment
data distribution P . An idealized attacker with knowledge of P can find the optimal control policy
�
?
M. In contrast, a realistic attacker will find an optimal policy with respect to its estimated MDP

M̂: �?
M̂ = argmin� JM̂(�), but �?

M̂ is in general suboptimal with respect to the true MDP M. We
are interested in the regret, defined as the optimality gap between the attack cost achieved by the
realistic attacker and the cost of the optimal attack strategy in hindsight, i.e. V

�?
M̂

M (s)� V
�?
M

M (s).
In this section, we present a theoretical analysis relating the optimality gap to the quality of

estimated P̂ . Our analysis is a natural extension to the Simulation Lemma in tabular reinforcement
learning Kearns and Singh (2002) and that of Azar et al. (2017). We assume that both Z and ⇥ are
compact, and the running cost g is continuous and thus bounded on its compact domain. Without
loss of generality, we assume g 2 [0, Cmax].

Theorem 6.1 Consider two attack MDPs M,M̂ that differ only in state transition, induced by P

and P̂ , respectively. Assume that kP̂ �Pk1 :=
R
Z
��P̂ (z)�P (z)

�� dz  ". Let �?
M denote the optimal

policy on M and �
?
M̂ the optimal policy on M̂. Then, sups2S V

�?
M̂

M (s)� V
�?
M

M (s)  �Cmax"
(1��)2 .

Theorem 6.1 implies that optimality gap is at most linear in " := kP̂ � Pk1. To relate to sample
complexity, classic Results on Kernel Density Estimation (KDE) suggest that the L1 distance between
P and the kernel density estimator P̂n based on n samples converges to zero asymptotically in a rate
of O(n�s/d+2s) for some constant s (e.g. Theorem 9 in Holmström and Klemelä (1992)).

In the experiment section below, the environment data stream is generated from a uniform
distribution on a finite data set, in which case P is a multinomial distribution. Under this special
setting, we are able to provide a finite-sample bound of order O(n�1/2) that matches with the best
achievable asymptotic rate above, i.e. as s ! 1.

Corollary 6.2 Consider an MDP M induced by a multinomial distribution P with support cardi-
nality N , and a surrogate MDP M̂ induced by the empirical distribution P̂ on n i.i.d. samples, i.e.
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P̂ (i) = 1
n

Pn
j=1 Ixj=i. Then, with probability at least 1� �, we have sups2S V

�?
M̂

M (s)� V
�?
M

M (s) 
2�Cmax

(1��)2

q
1
2n ln 2N+1

� = O(n�1/2).

7. Experiments

In this section, we empirically evaluate our attack algorithms NLP and DDPG against several
baselines on synthetic and real datasets. As an empirical measure of attack efficacy, we compare
the attack methods by their empirical discounted cumulative cost J̃(t) :=

Pt
⌧=0 �

⌧
g(✓⌧ , z⌧ ,a⌧ ),

where J̃(t) is computed on an instantiation of the environment data stream z0, . . . , zt. Better attack
methods have smaller J̃(t). We compare our algorithms with the following baseline Attackers:

Null Attack: This is the baseline without attack, namely aNull
t = zt for all t. We expect the null

attack to form an upper bound on any attack method’s empirical discounted cumulative cost J̃(t).
Greedy Attack: The greedy strategy has been applied to solve the sequential teaching problem

(Liu et al. (2017); Lessard et al. (2018)). At time step t the greedy attacker uses a time-invariant
attack policy which minimizes the current step’s running cost g, i.e. aGreedy

t = argmina g(✓t, zt,a).
Clairvoyant Attack: A clairvoyant attacker is an idealized attacker who knows the evaluation

horizon T and the whole data sequence z0:T�1 upfront. The clairvoyant attacker solves a finite
time-horizon optimal control problem, equivalent to the problem solved by NLP, but on the actual
data sequence. The clairvoyant attacker has strictly more information, and we expect it to form a
lower bound on realistic attack methods in terms of J̃(t).

In our experiments, we evaluate all attacks on two victim learners: online logistic regression, a
supervised learner, and online soft k-means clustering, an unsupervised learner.

Online logistic regression: Online logistic regression performs a binary classification task.
The incoming data takes the form of zt = (xt, yt), where xt 2 Rd is the feature vector and
yt 2 {�1, 1} is the binary label. In the experiments, we focus on attacking the feature part of
the data, as is done in a number of prior works Mei and Zhu (2015); Koh and Liang (2017);
Wang and Chaudhuri (2018). The learner’s update rule is one step of gradient descent on the
log likelihood with step size ⌘: f (✓, (x, y)) = ✓ + ⌘

yx
1+exp(y✓Tx)

. The attacker wants to force the
victim learner to stay close to a target parameter ✓†. The attacker’s cost function is defined as
g (✓t, (xt, y), (x0

t, y)) = kx0
t � xtk2 � � cos

�
✓t, ✓

†�.
Online soft k-means: Online soft k-means performs a k-means clustering task Bezdek et al.

(1984). The incoming data contains only the feature vector, i.e. zt = xt. The learner’s update rule is
one step of soft k-means update with step size ⌘ on all centroids, i.e. f(✓(j),a) = ✓

(j)+⌘rj(a�✓
(j)),

j = 1, . . . , k, where r = softmax
�
�ka � ✓

(1)k2, . . . ,�ka � ✓
(k)k2

�
. Similar to online logistic

regression, we consider a targeted attack objective with target centroid ✓
†(j). The attacker’s cost

function is defined as g(✓t, zt,at) = kat � ztk2 + �
Pk

j=1 kf(✓,a)(j) � ✓
†(j)k2.

7.1. Synthetic Data Experiments

We first show a synthetic data experiment where the attack policy can be visualized. The environment
is a mixture of two 1D Gaussian: P = 1

2N(✓(1), 1) + 1
2N(✓(2), 1) with ✓

(1) = �1 and ✓
(2) = +1.

The victim learner is online soft k-means with k = 2 and initial parameter ✓(1)0 = �2, ✓(2)0 = +2.
The attack target is ✓†(1) = �3 and ✓

†(2) = +3, namely the opposite of how the victim’s parameters
should move. We set the learning rate ⌘ = 0.01, cost weight � = 10, discounting factor � = 0.99,
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(a) Attack Costs (b) NULL Attack (c) GREEDY Attack (d) NLP Attack

Figure 2: Synthetic data experiments. In (b)-(d), transparent blue and red dots indicate clean positive
and negative data point zt at time step t, solid dots indicate attacker-perturbed data point at, vertical
lines in between indicate the amount of perturbation. DDPG overlaps with Clairvoyant in (a).

evaluation length T = 500 and look-ahead horizon for NLP h = 100. Following the above
specification, we run each attack method on the same data stream and compare their behaviors.

Results: Figure 2a shows the empirical discounted cumulative cost J̃(t) as the attacks go on.
On this toy example, the null attack baseline achieves J̃(T ) = 3643 at T = 500. The greedy attacker
is only slight more effective at J̃(T ) = 3372. NLP and DDPG achieve 1265 and 1267, respectively,
almost matching Clairvoyant’s 1256. As expected, the null and clairvoyant attacks form upper and
lower bounds on J̃(t). Figure 2b-d shows the victim’s ✓t trajectory as attacks go on. Without attack
(null), ✓t converges to the true parameter �1 and +1. The greedy attack only perturbs each data
point slightly, failing to force ✓t toward attack targets. This failure is due to its greedy nature: the
immediate cost gt at each round is indeed minimized, but not enough to move the model parameters
close to the target parameters. In contrast, NLP and DDPG (trajectory similar to NLP, not shown)
exhibit a different strategy in the earlier rounds. They inject larger perturbations to the data points
and sacrifice larger immediate costs in order to drive the victim’s model parameters quickly towards
the target. In later rounds they only need to stabilize the victim’s parameters near the target with a
smaller per-step cost.

7.2. Real Data Experiments

In the real data experiments, we run each attack method on 10 data sets across two victim learners.
Datasets: We use 5 datasets for online logistic regression: Banknote Authentication (with

feature dimension d = 4), Breast Cancer (d = 9), Cardiotocography (d = 25), Sonar (d = 60),
and MNIST 1 vs. 7 (d = 784), and 5 datasets for online k-means clustering: User Knowledge
(d = 6, k = 2), Breast Cancer (d = 10, k = 2), Seeds (d = 8, k = 3), posture (d = 11, k = 5),
MNIST 1 vs. 7 (d = 784, k = 2). All datasets except for MNIST can be found in the UCI Repository
Dua and Graff (2017). Note that Breast Cancer and MNIST are shared across both tasks.

Preprocessing: To reduce the running time, for datasets with dimensionality d > 30, we reduce
the dimension to 30 via PCA projection. Then, all datasets are normalized so that each feature has
mean 0 and variance 1. Each dataset is then turned into a data stream via uniform sampling with
replacement.

Experiment Setup: In order to demonstrate the robustness of our methods, we draw both the
victim’s initial model ✓0 and the attacker’s target ✓† randomly from a standard Gaussian distribution
of the appropriate dimension. Across all datasets, we use the following parameters: ⌘ = 0.01, � =
0.99, T = 300. For online logistic regression � = 100 while for online k-means � = 10.
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(a) Banknote (b) Breast (c) CTG (d) Sonar (e) MNIST 1 vs. 7

(f) Knowledge (g) Breast (h) Seeds (i) Posture (j) MNIST 1 vs. 7

Figure 3: The empirical discounted cumulative reward J̃(t) for the five attack methods across 10 real
datasets. The first row is on online logistic regression and the second row is on online k-means.

For DDPG attacker we only perform policy learning at the beginning to obtain �M̂0
, which is

fixed and deployed. We give a pre-attack dataset z�n:�1 of size n = 1000 to DDPG and NLP. For
NLP attack we set the look-ahead horizon h such that the total runtime to perform T = 300 attacks
does not exceed the DDPG training time. This results in h = 20 for online logistic regression on
CTG, Sonar and MNIST, and h = 80 in all other experiments.

Results: The experiment results are shown in figure 3. NLP achieves clairvoyant-matching
performance on all 7 datasets in which it is given a large enough look-ahead horizon. DDPG follows
closely next to NLP and Clairvoyant on most of the datasets, indicating that the pre-trained policy
�M̂0

can achieve reasonable attack performance in most cases. On the 3 datasets where h = 20
for NLP, DDPG exceeds the short-sighted NLP, indicating that when the computational resource
is limiting, DDPG has an advantage by avoiding the iterative retraining that NLP cannot bypass.
GREEDY does not do well on any of the 10 datasets, achieving only a slightly lower cost than the
NULL baseline. This matches our observations in the synthetic experiment.

DDPG vs. NLP: As we have seen in the experiments, the NLP method enjoys stability and high
performance given enough computational resources, whereas the DDPG method has the advantage
of being able to generalize and applied without retraining. Therefore, a realistic strategy is to use
NLP when the problem is of mederate size, and the learner update is performed in a low frequency,
e.g. once per day, and to use DDPG when the problem size is large and the learner update happens in
a high frequency and does not permit retraining at every timestep.

8. Conclusion

In this paper, we formulated online poisoning attacks as an adaptive control problem. We proposed
two attack algorithms, based on model-based planning and deep reinforcement learning, and showed
that both are able to achieve near clairvoyant-level performance. We provided a regret analysis on the
cost achieved by a realistic attacker and showed that despite the restricted knowledge, the optimality
gap is upper-bounded by order of O(n�1/2), given the resource of n data samples.
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