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Abstract. Adversarial attacks on image classification aim to make visu-
ally imperceptible changes to induce misclassification. Popular computa-
tional definitions of imperceptibility are largely based on mathematical
convenience such as pixel p-norms. We perform a behavioral study that
allows us to quantitatively demonstrate the mismatch between human
perception and popular imperceptibility measures such as pixel p-norms,
earth mover’s distance, structural similarity index, and deep net embed-
ding. Our results call for a reassessment of current adversarial attack
formulation.

Keywords: Adversarial machine learning · Imperceptibility · Just
noticeable difference

1 Introduction

Recent visual adversarial attack research frequently uses the following formula-
tion [10,17]. Let x0 be an image in an appropriate vector space, y be its true
class label, θ a trained classifier, and " the learner’s loss function. The attacker
seeks a perturbed image x to make the true label y seem unlikely (by maximizing
the loss):

max
x

"(x, y, θ)

s.t. d(x,x0) ≤ ε. (1)

The feasible set is defined by a distance function d() and a threshold ε. A com-
mon choice for d() is the infinite norm in the pixel space: d(x,x0) := ‖x−x0‖∞,
although other p-norms (especially for p = 1, 2) and several other measures
(defined in the next section) are popular, too. An alternative formulation mini-
mizes the distance function d(x,x0) subject to wrong label prediction.

Implicit in such formulations is the assumption that the feasible set
defined by d(x,x0) ≤ ε coincides with imperceptible perturbations as
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observed by human inspectors [3,7,15,20,26,27]. Then perhaps the attacker
can wreck havoc against the classifier without being noticed by humans. This
assumption has been criticized for its over-simplification of the threat model
[6,21]. Indeed, many adversarial learning researchers readily admit that popular
choices of d() are more of a mathematical convenience, and may not correspond
well with human perception. Disconcertingly, a large number of papers keep mak-
ing this assumption without verifying how good or bad the assumption really
is: Out of 32 recent papers we surveyed, 27 papers (each with over 100 cita-
tions) used pixel p-norms for d(). Among these 27, 20% assumed p-norms are a
good match to human perception without providing evidence; 50% used them
because other papers did; and the rest used them without justification. Given
the recent prominence of visual adversarial learning research, there is a need to
quantitatively study this assumption to refine the threat model.

type I

type II

human JND

d(x,x0) ≤ ε

Fig. 1. Mismatches between human perception and distance function d

What is the harm if d() and human perception differ? Consider the image
space around image x0 in Fig. 1. The feasible set {x : d(x,x0) ≤ ε} is the region
within the gray contour, while the human imperceptibility region is within the
green contour: intuitively, any image in this region looks like x0 to an average
human (precise definition below).

– The yellow region is type I error: humans perceive images there, e.g. x1, the
same as x0 but the feasible set by definition thinks otherwise. Type I errors
are dangerous because it lets the machine’s guard down: the machine does
not even consider x1 to be a valid attack (while x1 may in fact change the
label prediction), and human inspection will not notice the attack.
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– The blue region is type II error: humans perceive images there, e.g. z2, as
noticeably different from x0 but the feasible set thinks they cannot be distin-
guished. Type II errors waste the machine’s resources by defending against
fictitious threats.

Both types of error have occurred in practice, as shown in Fig. 2. In both exam-
ples we used d(x,x0) = ‖x − x0‖∞ and ε = 8 (out of pixel value 0–255), as is
commonly used in adversarial machine learning [1,31].

Our main contribution is a new human experiment design that allows us
to quantitatively gauge the mismatch between human perception and popular
imperceptibility measures d(), specifically pixel p-norms, EMD, 1-SSIM, and
DNN representation p-norms. Our results call for a reassessment of the adver-
sarial attack formulation (1) vis-à-vis real threats.
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(a) type I error (b) type II error

Fig. 2. (a) x0=cat photo, v=M RGB Box (see Sect. 3), x = x0 + av. d(x,x0) = ‖x −
x0‖∞ and ε = 8 as in the literature [1,31]; this corresponds to a = 8. On the other hand,
our experiments showed that human JND is not until a = 35. The images produced by
a ∈ (8, 35) are type I errors: a machine defender will not consider them, and humans
cannot tell them apart from x0. Critically, Inception V3 classifier [25] will classify
a ≥ 20 as lynx, meaning images in a ∈ [20, 35) are dangerous attacks. (b) x0=panda
photo, v=FGSM [7] attack direction. Again d is the infinite norm, and ε = 8. Along
this direction humans are good at detecting changes: our experiments showed that
human JND happens at ‖x − x0‖∞ = 4 already. An attack produced by FGSM with
‖x − x0‖∞ ∈ {4, 5, . . . , 8} will get caught. Therefore, the specific FGSM attack will
likely be detected by humans. The issue on the surface may look like an inappropriate
ε threshold used by FGSM, but keep in mind that along different directions v the
human JND threshold can vary, and there may not be a correct global ε. The root
cause is an inappropriate d() used by adversarial attacks.

2 Study Overview

Our study is designed to facilitate human experiments. Given a natural image x0,
consider an arbitrary direction v as shown in Fig. 1. The ray centered at x0 in the
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direction v is parametrized as {x := x0+ av | a ≥ 0} with a scalar parameter a.
Larger a leads to more changes to x0. We expect to find a threshold value av for
direction v, above which an average human inspector will notice the difference
between x0 and x0+avv. These are images x1,x2 in Fig. 1 for directions v1,v2,
respectively.

Now, an adversarial attack feasible set in (1) is defined by distance measure
d() and threshold ε. Our primary interest is the appropriateness of d() com-
pared to human perception. ε is a nuisance parameter; fortunately, we do not
need to know its value. The key insight is that, if d() correctly models human
perception, then under this measure the distance

d(x0 + avv,x0) (2)

is a constant for all directions v. In other words, the “just noticeably different”
images by humans form a sphere around x0 under the correct d(). Conversely, we
may summarize how far off some d() is from human perception by the condition
number

κ(d) :=
maxv d(x0 + avv,x0)
minv d(x0 + avv,x0)

. (3)

The larger κ(d) is, the worse d() is. The smallest possible value of κ(d) is 1. It
is analogous to the ratio of major vs. minor axes for an ellipsoid. Note κ(d) is
center-image x0 dependent.

We will empirically estimate κ(d) for popular d()’s. Because this involves
human experiments, practically we can only consider a finite, small number of
center images x0. Furthermore, for each x0 we can only consider a small number
of directions V = {v1, . . . ,vk}. From these, we obtain an empirical estimate of
condition number

κ̂(d) :=
maxv∈V d(x0 + avv,x0)
minv∈V d(x0 + avv,x0)

, (4)

where max and min only go over the directions in V . Clearly, this is an under-
estimate: κ̂(d) ≤ κ(d). If our measured κ̂(d) is large (and thus κ(d) potentially
even larger), we conclude that d() is inappropriate.

2.1 Human Just Noticeable Difference (JND)

We define the just noticeable difference (JND) [5,32] with respect to a center
image x0 and direction v as the image x0+avv where an average human observer
starts to perceive a difference. Equivalently, human JND is characterized by the
scalar av. We discuss how to empirically measure human JND in Sect. 3.

2.2 Popular Imperceptibility Measures d()

Pixel p-Norm. For any p ∈ [0,∞] it measures the amount of perturbation by

‖x − x0‖p:=
(∑d

i=1 |xi − x0,i|p
)1/p

. We define the 0-norm to be the number of
nonzero elements.
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Earth Mover’s Distance (EMD). Also known as Wasserstein distance, it is a
distance function defined between two probability distributions on a given metric
space. The metric computes the minimum cost of converting one distribution to
the other one. EMD has been used as a distance metric in the image space also,
e.g. for image retrieval [19]. Given two images x0 and x, EMD is calculated as
EMD(x0,x) = infγ∈Γ (x0,x)

∫
R×R |a − b|dγ(a, b). Here, Γ (x0,x) is the set of joint

distributions whose marginals are x0 and x (treated as histograms), respectively.

Structural Similarity (SSIM). This measure is intended to be a perceptual
similarity measure that quantifies image quality loss due to compression [29],
and used as a signal fidelity measure with respect to humans in multiple research
works [22,28]. SSIM has three elements: luminance, contrast and similarity of
local structure. Given two images x0 and x, SSIM is defined by SSIM(x0,x) =(

2µx0µx+C1

µ2
x0

+µ2
x+C1

) (
2σx0σx+C2

σ2
x0

+σ2
x+C2

) (
σx0x+C3

σx0σx+C3

)
. µx0 and µx are the sample means; σx0 ,

σx and σx0x are the standard deviation and sample cross correlation of x0 and
x (after subtracting the mean) respectively. To compute SSIM we use window
size 7 without Gaussian weights. Since SSIM is a similarity score, we define
d(x,x0) = 1 − SSIM(x,x0).

Deep Neural Network (DNN) Representation. Even though DNNs are
designed with engineering goals in mind, studies comparing their internal repre-
sentations to primate brains have found similarities [11]. Let ξ(x) ∈ RD denote
the last hidden layer representation of input image x in a DNN. We define
d(x,x0) = ‖ξ(x) − ξ(x0)‖p as a potential distance metric for our purpose. We
use Inception V3 [25] representations with D = 2048.

3 Human JND Experiments

Center Images x0 and Perturbation Directions v: We chose three natu-
ral images (from the Imagenet dataset [4]) popular in adversarial research: a
panda [7], a macaw [16] and a cat [1] as x0 in our experiments. We resized the
images to 299 × 299 to match the input dimension of the Inception V3 image
classification network [25].

As indicated in Fig. 1, we consider x generated along the ray defined by a
perturbation direction v ∈ Rd with a perturbation scale a > 0. To render the
image for display, we project it to the image space: x = Π (x0 + av), namely,
clipping pixel values to [0, 255] and rounding to integers.

For each natural image x0 we considered 10 perturbation directions v, see
Fig. 3. Eight are specially crafted ±1-perturbation (i.e., v has elements -1, 0, 1)
directions varying in three attributes (Table 1). Specifically, the nonzero elements
vi depend on the value of the corresponding element x0,i in x0: vi = 1 if x0,i <
128, and -1 otherwise. For ±1-perturbations v and integer a ∈ {1, . . . , 128} it is
easy to see that the projection Π is not needed: x = Π (x0 + av) = x0 + av.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. All 10 perturbation directions v with severe perturbation scale a = 128.
(a) S Red Box: the red channel of the center pixel. (b) S Red Dot: a randomly selected
red channel. (c) M Red Dot: 288 randomly selected red channels. (d) M RGB Dot: all
three color channels of 96 randomly selected pixels (s = 3×96 = 288). (e) M Red Eye:
288 red channels around the eyes of the animals. (f) M RGB Box: all colors of a cen-
tered 8×12 rectangle. (g) L RGB Box: all colors of a centered 101×101 rectangle. (h)
X RGB Box: all dimensions. (i) FGSM. (j) PGD.

The remaining two perturbation directions are adversarial directions. We
used Fast Gradient Sign Method (FGSM) [7] and Projected Gradient Descent
(PGD) [14] to generate two adversarial images xFGSM ,xPGD for each x0, with
Inception V3 as the victim network. All attack parameters are set as suggested
in the methods’ respective papers. PGD is a directed attack and requires a
target label; we choose gibbon (on panda) and guacamole (on cat) following
the papers, and cleaver (on macaw) arbitrarily. We then define the adversarial
perturbation directions by vFGSM = 127.5(xFGSM − x0)/‖xFGSM − x0‖2 and
vPGD = 127.5(xPGD − x0)/‖xPGD − x0‖2. We use the factor 127.5 based on a
pilot study to ensure that changes between consecutive images in the adversarial
perturbation directions are not too small or too big.
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Table 1. Naming convention for perturbation directions v

# Dimensions changed S = 1, M = 288

L = 30603, X = 268203

(mnemonic: garment size)

Color channels affected Red = only the red channel of a pixel

RGB = all three channels of a pixel

Box = a centered rectangle

Shape of perturbed pixels Dot = scattered random dots

Eye = on the eye of the animal

Fig. 4. Experiment procedure. The green, red and blue cells denote ±1-perturbation,
adversarial, and guard trials, respectively.The letters P, M and C denote the panda,
macaw and cat x0, respectively. (Color figure online)

Experimental Procedure : See Fig. 4. Each participant was first presented
with instructions and then completed a sequence of 34 trials, of which 30 were
±1-perturbation or adversarial trials, and 4 were guard trials. The order of these
trials was randomized then fixed (see figure). During each trial the participants
were presented with an image x0. They were instructed to increase (decrease)
perturbations to this image by using right/left arrow keys or buttons. Moving
right (left) incremented (decremented) a by 1, and the subject was then presented
with the new perturbed image x = Π (x0 + av). We did not divulge the nature
of the perturbations v beforehand, nor the current perturbation scale a the
participant had added to x0 at any step of the trial. The participants were
instructed to submit the perturbed image x when they think it became
just noticeably different from the original image x0. The participants had
to hold x0 in memory, though they could also go all the way left back to see x0

again. We hosted the experiment using the NEXT platform [9,23].
In a ±1-perturbation trial, the perturbation direction v is one of the eight

±1-perturbations. We allowed the participants to vary a within {0, 1, . . . , 128}
to avoid value cropping. If a participant was not able to detect any change even
after a = 128, then they were encouraged to “give up”.
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In an adversarial trial, the perturbation direction is vFGSM or vPGD. We
allowed the participants to increment a indefinitely, though no one went beyond
a = 80.

The guard trials were designed to filter out participates who clicked through
the experiment without performing the task. In a guard trial, we showed a novel
fixed natural image (not panda, macaw or cat) for a < 20. Then for a ≥ 20, a
highly noisy version of that image is displayed. An attentive participant should
readily notice this sudden change at a = 20 and submit it. We disregarded guard
trials in our analysis.

Participants and Data Inclusion Criterion : We enrolled 68 participants
using Amazon Mechanical Turk [2] master workers. A master worker is a person
who has consistently displayed a high degree of success in performing a wide
range of tasks. All participants used a desktop, laptop or a tablet device; none
used a mobile device where the screen would be too small. On average the par-
ticipants took 33 minutes to finish the experiment. Each participant was paid
$5. As mentioned before, we use guard trials to identify inattentive participants.
While the change happens at exactly a = 20 in a guard trial, our data indicates a
natural spread in participant submissions around 20 with sharp decays. We spec-
ulate that the spread was due to keyboard/mouse auto repeat. We set a range
for an acceptable guard trial if a participant submitted a ∈ {18, 19, 20, 21, 22}. A
participant is deemed inattentive if any one of the four guard trials was outside
the acceptable range. Only n = 42 out of 68 participants survived this stringent
inclusion condition. All our analyses below are on these 42 participants.

4 Results

For each center image x0 and perturbation direction v, the jth participant (j =
1 . . . n) gave us their individual JND threshold scale parameter a(j)v . That is, the
image x(j) = Π(x0 + a(j)v v) is the one participant j thinks has just-noticeable-
difference to x0 along direction v.

Because our participants can sometimes choose to “give up” if they did not
notice a change, we have right censored data on av. All we know from a given-up
trial is that a ≥ 129, but not what larger a value will cause the participant to
noticed a difference. For example, many participants failed to notice a difference
along the S Red Box and S Red Dot perturbation directions, thus many av’s in
those directions (50.8% and 51.6% respectively) were censored. A total of 13.2%
av’s were censored along all directions.

4.1 Qualitative Assessment

Recall if a distance measure d() is a good match to human perception, then
by (2) along any direction v the human JND image x = x0 + avv has the same
d(x,x0). We present box plots to qualitatively assess the different d()’s in Figs. 5
and 6. We selectively show only one center image x0 for each of the measures for
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panda 1-norm macaw 2-norm cat 3-norm panda ∞-norm

Fig. 5. Participant JND x’s pixel norm ‖x − x0‖p. Within a plot, each vertical box is
for a perturbation direction v. The box plot depicts the median, quartiles, and outliers.

1-SSIM, x0 = panda DNN, x0 = macaw EMD, x0 = cat

Fig. 6. Box plots of different measures ρ on human JND images.

the interest of space. We will show all plots in an extended version of this paper.
The perturbation directions v are indicated on the x-axis. The y-axis shows the
median, quartiles, and outliers of the participants’ JND images, measured in the
specific d() indicated in the plots. The main qualitative observation is that
none of the popular distance measure d() has a flat median across the directions
we tested. For example, for pixel 2-norm on x0=macaw, the median is 1049
and 4402 along the PGD and X RGB Box directions respectively. Similarly for
DNN 2-norm on x0=macaw, the median is 1.8 and 13.6 respectively along the
M Red Dot and PGD directions respectively. This indicates that none of these
measures is a good fit to human JND.

4.2 Quantitative Assessment

Now we report the empirical estimate of condition number κ̂ for each distance
measure d() and center image x0. Recall that κ̂(d) must be close to 1 for a
distance measure d() to have the possibility to be a good fit to human perception.
Due to the large number of censored data along some directions, we estimate
κ̂(d) in two ways.

– Non-censored median: We discarded all “given up” data. We then estimated
the human JND distance using the median value along a direction v. This is
shown in Table 2.

– First quartile: In the second procedure, we do not discard the “given up”
values but consider those distances to be infinity. Then we estimate the human
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Table 2. Estimated κ̂(d) using non-censored median.

Center Image 1-norm 2-norm 3-norm ∞-norm EMD 1 - SSIM DNN DNN DNN

1-norm 2-norm ∞-norm

panda 73853 142.6 17.8 14 68457 27913 476 512 575

macaw 499559 95.7 11.9 14.3 48210 56933 854 683 627

Cat 46460 89.7 11.2 14 42919 11786 389 381 355

Table 3. Estimated κ̂(d) using the first quartile.

Center Image 1-norm 2-norm 3-norm ∞-norm EMD 1 - SSIM DNN DNN DNN

1-norm 2-norm ∞-norm

panda 84379 163 20.3 17.1 79777 16353 577 704 496

macaw 23752 45.9 5.7 21.6 23300 255502 442 355 341

Cat 31787 61.4 7.6 24.2 30031 68609 341 329 297

JND along a direction by the first quartile. The median would have fallen in
censored values for some directions. The first quartile is a biased estimate of
human JND d(x,x0), but has the benefit of not hitting any censored values.
This is shown in Table 3.

We highlight the smallest estimated condition number κ̂ in each table. All
of these values are much larger than 1. This quantitatively shows that popu-
lar imperceptibility measures in visual adversarial attacks are far from human
perception.

5 Discussions and Conclusion

We quantitatively show that pixel p-norms, EMD, 1 - SSIM, and DNN represen-
tation p-norms are not good matches to human perception. This paper thus calls
for a rethinking of adversarial attack formulation. The closest work to ours is [21],
which also conducted human experiments on adversarial attacks and human per-
ception. That study was limited in design: they only tested pixel 0-, 2-, ∞-norms
but not other p-norms or measures. Their test also relies on the knowledge of the
feasible set radius ε, and depended on humans (mis)-categorizing a low resolu-
tion thumbnail (MNIST [13], CIFAR10 [12]). Instead, humans may notice small
changes in a normal-sized image well before their categorization of the image
changes. The present paper addresses these issues.

We also mention some limitations of our own work: (1) We used only three
center images x0 in our human experiments. This is due to the fact that running
human experiments is time consuming and expensive. (2) We still cannot answer
“what is the correct measure d()”, noting that computationally modeling human
visual perception is still an open question in psychology [8,18,24,30]. (3) We used
a “show x0 then perturb” experiment paradigm, while in real applications the



198 A. Sen et al.

human inspector may not have access to x0. (4) We limited ourselves to the
visual domain. Addressing these limitations remain future work.
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