
Sequential Attacks on Kalman Filter-based Forward Collision Warning Systems

Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, Xiaojin Zhu
Department of Computer Sciences, University of Wisconsin–Madison

{yzm234, sharp-jr, ruizhe, earlence, jerryzhu}@cs.wisc.edu

Abstract
Kalman Filter (KF) is widely used in various domains to per-
form sequential learning or variable estimation. In the context
of autonomous vehicles, KF constitutes the core component
of many Advanced Driver Assistance Systems (ADAS), such
as Forward Collision Warning (FCW). It tracks the states (dis-
tance, velocity etc.) of relevant traffic objects based on sensor
measurements. The tracking output of KF is often fed into
downstream logic to produce alerts, which will then be used
by human drivers to make driving decisions in near-collision
scenarios. In this paper, we study adversarial attacks on KF as
part of the more complex machine-human hybrid system of
Forward Collision Warning. Our attack goal is to negatively
affect human braking decisions by causing KF to output in-
correct state estimations that lead to false or delayed alerts.
We accomplish this by sequentially manipulating measure-
ments fed into the KF, and propose a novel Model Predictive
Control (MPC) approach to compute the optimal manipula-
tion. Via experiments conducted in a simulated driving en-
vironment, we show that the attacker is able to successfully
change FCW alert signals through planned manipulation over
measurements prior to the desired target time. These results
demonstrate that our attack can stealthily mislead a distracted
human driver and cause vehicle collisions.

1 Introduction
Advanced Driver Assistance Systems (ADAS) are hy-
brid human-machine systems that are widely deployed on
production passenger vehicles (National Highway Traffic
Safety Administration 2020). They use sensing, traditional
signal processing and machine learning to detect and raise
alerts about unsafe road situations and rely on the human
driver to take corrective actions. Popular ADAS examples
include Forward Collision Warning (FCW), Adaptive Cruise
Control and Autonomous Emergency Braking (AEB).

Although ADAS hybrid systems are designed to increase
road safety when drivers are distracted, attackers can negate
their benefits by strategically tampering with their behavior.
For example, an attacker could convince an FCW or AEB
system that there is no imminent collision until it is too late
for a human driver to avoid the crash.

We study the robustness of ADAS to attacks. The core
of ADAS typically involves tracking the states (e.g., dis-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tance and velocity) of road objects using Kalman filter (KF).
Downstream logic uses this tracking output to detect unsafe
situations before they happen. We focus our efforts on For-
ward Collision Warning (FCW), a popular ADAS deployed
on production vehicles today. FCW uses KF state predic-
tions to detect whether the ego vehicle (vehicle employing
the ADAS system) is about to collide with the most impor-
tant object in front of it and will alert the human driver in a
timely manner. Thus, our concrete attack goal is to trick the
KF that FCW uses and make it output incorrect state predic-
tions that would induce false or delayed alerts depending on
the specific physical situation.

Recent work has examined the robustness of road ob-
ject state tracking for autonomous vehicles (Jia et al. 2020).
Their attacks create an instantaneous manipulation to the
Kalman filter inputs without considering its sequential na-
ture, the downstream logic that depends on filter output,
or the physical dynamics of involved vehicles. This leads
to temporarily hijacked Kalman filter state predictions that
are incapable of ensuring that downstream logic is reliably
tricked into producing false alerts. By contrast, we adopt an
online planning view of attacking KFs that accounts for: (1)
their sequential nature where current predictions depend on
past measurements; and (2) the downstream logic that uses
KF output to produce warnings. Our attack technique also
considers a simplified model of human reaction to manipu-
lated FCW warning lights.

We propose a novel Model Predictive Control (MPC)-
based attack that can sequentially manipulate measurement
inputs to a KF with the goal of stealthily hijacking its behav-
ior. Our attacks force FCW alerts that mask the true nature
of the physical situation involving the vehicles until it is too
late for a distracted human driver to take corrective actions.

We evaluate our attack framework by creating a high-
fidelity driving simulation using CARLA (Dosovitskiy et al.
2017), a popular tool for autonomous vehicle research and
development. We create test scenarios based on real-world
driving data (National Highway Traffic Safety Adminis-
tration 2011; European New Car Assessment Programme
2018) and demonstrate the practicality of the attack in
causing crashes involving the victim vehicle. Anonymized
CARLA simulation videos of our attacks are available at
https://sites.google.com/view/attack-kalman-filter.
Main Contributions:

ar
X

iv
:2

01
2.

08
70

4v
1

 [c
s.R

O
]

16
 D

ec
 2

02
0

https://sites.google.com/view/attack-kalman-filter

• We develop an optimal control-based attack against the
popular FCW driver assistance system. Our attack targets
several critical parts of the FCW pipeline – Kalman fil-
ter tracking and prediction, FCW alert logic and human
decision making in crash and near-crash scenarios.

• We evaluate our control-based attacks in a high-fidelity
simulation environment demonstrating that an attacker
can compromise only the camera-based measurement data
and accomplish their goals of creating end-to-end unsafe
situations for an FCW system, even under the constraint
of limited manipulation to measurements.

• We show that attack planning in advance of the targeted
point is beneficial to the attack compared to without plan-
ning. Given 25 steps of planning (or 1.25 seconds based
on specific physical situations in our evaluation) before
the targeted time point, the attacker can cause the desired
effect, while the attack fails without planning. Further-
more, via comparisons against a baseline greedy attack,
we show that our attack can find near-optimal planning
that achieves better overall performance.

2 Background
Forward Collision Warning provides audio-visual alerts to
warn human drivers of imminent collisions. Fig. 1 shows the
pipeline of a prototypical FCW hybrid system (MATLAB
2020b): (1) It uses camera and RADAR sensors to perceive
the environment; (2) It processes sensor data using a combi-
nation of traditional signal processing and machine learning
algorithms to derive object velocities and distances; (3) A
Kalman filter tracks the Most Important Object (MIO) state
and makes predictions about its future states; (4) FCW logic
uses Kalman filter predictions to determine whether a col-
lision is about to occur and creates audio-visual warnings;
(5) A human driver reacts to FCW alerts. These alerts can
be either: green – indicating no danger, yellow – indicating
potential danger of forward collision, and red – indicating
imminent danger where braking action must be taken.

We focus on attacking the core steps of FCW (shaded
parts of Fig. 1). Thus, we assume there is a single MIO in
front of the ego vehicle and a single Kalman filter actively
tracking its state. The steps of measurement assignment and
MIO identification will not be considered in this paper.

We have two attack goals that will comprehensively
demonstrate the vulnerability of FCW hybrid systems — the
attacker should trick FCW into showing no red alerts when
there is an imminent collision with the most important ob-
ject (MIO), and vice versa — the attacker should trick FCW
into showing red alerts when there is no collision, inducing
a human to react with braking that can potentially lead to a
rear-end crash with a trailing vehicle.

2.1 Kalman Filtering
At the core of FCW is the Kalman Filter, which estimates
the state of the MIO based on sensor measurements. In
this paper, the state of the MIO is represented as xt =
(d1t , v

1
t , a

1
t , d

2
t , v

2
t , a

2
t), where d1t , v1t , a1t are the distance, ve-

locity and acceleration of the MIO along the driving direc-
tion, and d

2
t , v

2
t , a

2
t for the lateral direction (perpendicular to

Figure 1: Overview of Forward Collision Warning (FCW)
hybrid human-machine system. We take a first step to un-
derstanding the robustness of this system to attackers who
can compromise sensor measurements. Therefore, we filter
the problem to its essence (shaded parts) — the Kalman filter
that tracks the most important object (MIO) and the down-
stream logic that decides how to warn the driver.

driving direction). Then KF models the evolution of xt as

xt+1 = Axt + !t, t � 1, (1)

where A is the state-transition matrix and !t ⇠ N(0,⌦) is
Gaussian noise. The underlying state xt is unknown, but one
can obtain measurements yt of the state as

yt = Cxt + t, t � 1, (2)

where C is the measurement matrix and t ⇠ N(0,)
is the measurement noise. In our paper, yt 2 R8 con-
tains vision and radar measurements of the MIO dis-
tance and velocity along two directions, i.e., yt =
(d1,⌫t , v

1,⌫
t , d

2,⌫
t , v

2,⌫
t , d

1,r
t , v

1,r
t , d

2,r
t , v

2,r
t), where we use

superscripts ⌫, r for vision and radar, and numbers 1, 2 for
driving and lateral direction, respectively. Given the state dy-
namics (1) and measurement model (2), KF provides a recur-
sive formula to estimate the state based on sequential mea-
surements obtained over time. Concretely, KF starts from
some initial state and covariance prediction x̂1 and ⌃̂1. Then
for any t � 2, KF first applies (3) to correct the predictions
based on measurements yt. The corrected state and covari-
ance matrix are denoted by x̄t and ⌃̄t.

x̄t = (I �Ht�1C)x̂t�1 +Ht�1yt,

⌃̄t = (I �Ht�1C)⌃̂t�1.
(3)

where Ht�1 = ⌃̂t�1C
>(C⌃̂t�1C

> +)�1. Next, KF ap-
plies (4) to predict state and covariance for the next step.

x̂t = Ax̄t, ⌃̂t = A⌃̄tA
> + ⌦. (4)

The correction and prediction steps are applied recursively
as t grows. Note that the derivation of covariance matrix is
independent of yt, thus can be computed beforehand.

2.2 Warning Alert Logic and Human Model
In this paper, we follow the FCW alert logic used
in (MATLAB 2020b). Let the state prediction be x̂t =
(d̂1t , v̂

1
t , â

1
t , d̂

2
t , v̂

2
t , â

2
t), then the warning light `t output by

FCW at step t is one of the following three cases:

• Safe (Green): The MIO is moving away, or the distance to
MIO remains constant, i.e., v̂1t � 0.

• Caution (Yellow): The MIO is moving closer, but still at
a distance further than the minimum safe distance d⇤(v̂1t),
i.e., v̂1t < 0 and d̂

1
t > d

⇤(v̂1t). We define the safe distance
as d⇤(v̂1t) = �1.2v̂1t + (v̂1t)

2
/0.8g, where g is 9.8 m/s

2.

• Warn (Red): The MIO is moving closer, and at a distance
less than the minimum safe distance, i.e., v̂1t < 0 and
d̂
1
t d

⇤(v̂1t).

The FCW alert logic can be summarized as:

F (x̂t) =

8
<

:

green if v̂1t � 0,
yellow if v̂1t < 0, d̂1t > d

⇤(v̂1t),
red if v̂1t < 0, d̂1t d

⇤(v̂1t).
(5)

Given the FCW warning light, the human driver could be in
one of the following two states – applying the brake pedal,
or not applying/releasing the brake. We take into account
human reaction time h⇤; warning lights must sustain at least
h
⇤ steps before the human driver switches state. That is, the

driver brakes after h⇤ steps since the first red light, and re-
leases the brake after h

⇤ steps since the first yellow/green
light. Note that the yellow and green lights are treated iden-
tically in both cases because the MIO is outside the safe dis-
tance and no brake is needed. In appendix E, we provide an
algorithmic description of the human model.

3 Attack Problem Formulation
We assume white-box setting where the attacker can access
the KF parameters (e.g., through reverse engineering). The
attacker can directly manipulate measurements (i.e., false
data injection), but only pertaining to the vision component,
and not the RADAR data. Our attack framework is agnos-
tic of whether the attacker manipulates camera or RADAR,
but we choose to only manipulate camera because of the in-
creasing presence of deep learning techniques in ADAS and
their general vulnerability to adversarial examples (Szegedy
et al. 2013; Eykholt et al. 2018b; Athalye et al. 2017; Sharif
et al. 2016). We envision that future work can integrate our
results into adversarial examples to create physical attacks.

We further restrict the attacker to only making physically
plausible changes to the vision measurements. This is be-
cause an anomaly detection system might filter out phys-
ically implausible measurements (e.g., change of 104m/s
over one second). Concretely, we require that the distance
and velocity measurement after attack must lie in [d, d̄] and
[v, v̄] respectively. We let [d, d̄] = [0, 75] and [v, v̄] =

[�30, 30]. Finally, we assume that at any time step, the at-
tacker knows the true measurement only for that time step,
but does not know future measurements. To address this dif-
ficulty of an unknown future, we propose a model predictive
control (MPC)-based attack framework that consists of an
outer problem and an inner problem, where the inner prob-
lem is an instantiation of the outer problem with respect to
attacker-envisioned future in every step of MPC. In the fol-
lowing, we first introduce the outer problem formulation.

3.1 Outer Attack Problem
Our attacker has a pre-specified target interval T †, and aims
at changing the warning lights output by FCW in T †. As a
result, the human driver sees different lights and takes unsafe
actions. Specifically, for any time t 2 T †, the attacker hopes
to cause the FCW to output a desired target light `†t , as char-
acterized by (12), in which F (·) is the FCW alert logic (5).
To accomplish this, the attacker manipulates measurements
in an attack interval T a. In our paper, we assume T † ⇢ T a.
Furthermore, we consider only the scenario where T † and
T a have the same last step, since attacking after the target
interval is not needed. Let �t be the manipulation at step
t, and ỹt = yt + �t be measurement after attack. We re-
fer to the i-th component of �t as �it. We next define the
attack effort as the cumulative change over measurements
J =

P
t2T a �

>
t R�t. where R � 0 is the effort matrix. The

attacker hopes to minimize the attack effort.
Meanwhile, the attacker cannot arbitrarily manipulate

measurements. We consider two constraints on the manip-
ulation. First, MIO distance and velocity are limited by sim-
ple natural physics, as shown in (11). Moreover, similar
to the norm ball used in adversarial examples, we impose
another constraint that restricts the attacker’s manipulation
k�tk1 � (see (10)). We refer to T s = T a\T †, the dif-
ference between T a and T †, as the stealthy (or planning) in-
terval. During T s, the attacker can induce manipulations be-
fore the target interval with advance planning, and by doing
so, hopefully better achieve the desired effect in the target
interval. However, for the sake of stealthiness, the planned
manipulation should not change the original lights `t during
T s. This is characterized by the stealthiness constraint (13).

Given all above, the attack can be formulated as:
min�t J =

X

t2T a

�
>
t R�t, (6)

s.t. ỹt = yt + �t, 8t 2 T a
, (7)

x̃t = A(I �Ht�1C)x̃t�1 +AHt�1ỹt, (8)
�
i
t = 0, 8i 2 Iradar, 8t 2 T a

, (9)
k�tk �, 8t 2 T a

, (10)
d̃
1,⌫
t 2 [d, d̄], ṽ1,⌫t 2 [v, v̄], 8t 2 T a

, (11)

F (x̃t) = `
†
t , 8t 2 T †

, (12)
F (x̃t) = `t, 8t 2 T s

. (13)
The constraint (8) specifies the evolution of the state pre-
diction under the attacked measurements ỹt. (9) enforces no
change on radar measurements, where Iradar = {5, 6, 7, 8}
contains indexes of all radar components . The attack opti-
mization is hard to solve due to three reasons:

(1). The problem could be non-convex.
(2). The problem could be be infeasible.
(3). The optimization is defined on measurements yt that

are not visible until after T a, while the attacker must
design manipulations �t during T a in an online manner.

We now explain how to address the above three issues.
The only potential sources of non-convexity in our attack

are (12) and (13). We now explain how to derive a surro-
gate convex problem using `†t = `

o
t = red as an example.

The other scenarios are similar, thus we leave the details to
Appendix B. The constraint F (x̃t) = red is equivalent to

ṽ
1,⌫
t < 0, (14)

d̃
1,⌫
t �1.2ṽ1,⌫t +

1

0.8g
(ṽ1,⌫t)2., (15)

The above constraints result in non-convex optimzation
mainly because (15) is nonlinear. To formulate a convex
problem, we now introduce surrogate constraints that are
tighter than (14), (15) but guarantee convexity.

Proposition 1 Let U(d) = 0.48g�
p
(0.48g)2 + 0.8gd. Let

✏ > 0 be any positive number. Then for any d0 � 0, the

surrogate constraints (16), (17) are tighter than F (x̃t) =
red, and induce convex attack optimization.

ṽ
1,⌫
t �✏, (16)
ṽ
1,⌫
t U

0(d0)(d̃
1,⌫
t � d0) + U(d0)� ✏. (17)

We provide a proof and guidance on how to select d0 in
Appendix B. With the surrogate constraints, the attack opti-
mization becomes convex. However, the surrogate optimiza-
tion might still be infeasible. To address the feasibility issue,
we further introduce slack variables into (16), (17) to allow
violation of stealthiness and target lights:

ṽ
1,⌫
t �✏+ ⇠t, (18)
ṽ
1,⌫
t U

0(d0)(d̃
1,⌫
t � d0) + U(d0)� ✏+ ⇣t. (19)

We include these slack variables in the objective function:

J =
X

t2T a

�
>
t R�t

| {z }
total manipulation J1

+�
X

t2T s

(⇠2t + ⇣
2
t)

| {z }
stealthiness violation J2

+�
X

t2T †

(⇠2t + ⇣
2
t)

| {z }
target violation J3

.

(20)
Then, the surrogate attack optimization is

min�t J = J1 + �J2 + �J3, (21)
s.t. (7)-(11), (18), (19). (22)

Proposition 2 The attack optimization (21)-(22) with surro-

gate constraints and slack variables is convex and feasible.

3.2 Inner Attack Problem: MPC-based Attack
In the outer surrogate attack (21)-(22), we need to assume
the attacker knows the measurements yt in the entire attack
interval T a beforehand. However, the attacker cannot know
the future. Instead, he can only observe and manipulate the
current measurement in an online manner. To address the un-
known future issue, we adopt a control perspective and view

Input : target interval T †, target lights `†t , t 2 T †,
stealthy interval T s, original lights
`t, t 2 T s.

Initialize x̂1 and ⌃̂1. Let x̃1 = x̂1, T a = T s [T †;
for t 2 to T do

environment generates measurement yt;
if t 2 T a then

attacker infers clean state x̂t without attack;
attacker predicts future ŷt with (23);
attacker solves (24)-(26) to obtain �⌧ (⌧ � t);
attacker manipulates yt to ỹt = yt + �t;
x̃t evolves to x̃t+1 according to ỹt

else x̃t evolves to x̃t+1 according yt ;
end

Algorithm 1: MPC-based attack.

the attacker as an adversarial controller of the KF, where the
control action is the manipulation �t. We then apply MPC,
an iterative control method that progressively solves (21)-
(22). By using MPC, the attacker is able to adapt the manip-
ulation to the instantiated measurements revealed over time
while accounting for unknown future measurements.

Specifically, in each step t, the attacker has observed all
past measurements y1, ...yt�1 and the current measurement
yt. Thus, the attacker can infer the clean state x̂t in the case
of no attacker intervention. Based on x̂t, the attacker can
recursively predict future measurements by simulating the
environmental dynamics without noise, i.e., 8⌧ > t:

x
0
⌧ = Ax

0
⌧�1, ŷ⌧ = Cx

0
⌧ . (23)

The recursion starts from x
0
t = x̂t. The attacker then re-

places the unknown measurements in the outer attack by its
prediction ŷ⌧ (⌧ > t) to derive the following inner attack:

min�⌧:⌧�t
J =

X

⌧2T a

�
>
⌧ R�⌧ + �

X

⌧2T a

(⇠2⌧ + ⇣
2
⌧), (24)

s.t. ỹ⌧ = ŷ⌧ + �⌧ , 8⌧ � t, (25)
(8)-(11), (18), (19) (defined on ⌧ � t). (26)

The attacker solves the above inner attack in every step t.
Assume the solution is �⌧ (⌧ � t). Then, the attacker only
implements the manipulation on the current measurement,
i.e., ỹt = yt + �t, and discards the future manipulations.
After that, the attacker enters step t + 1 and applies MPC
again to manipulate the next measurement. This procedure
continues until the last step of the attack interval T a. We
briefly illustrate the MPC-based attack in algorithm 1.

4 Experiments on CARLA Simulation
In this section, we empirically study the performance of the
MPC-based attack. We first describe the simulation setup.

4.1 Simulation Setup
We use CARLA (Dosovitskiy et al. 2017), a high-fidelity ve-
hicle simulation environment, to generate measurement data
that we input to the Kalman filter-based FCW. CARLA sup-
ports configurable sensors and test tracks. We configure the

simulated vehicle to contain a single forward-facing RGB
camera (800x600 pixels), a forward-facing depth camera of
the same resolution, and a single forward-facing RADAR
(15� vertical detection range, 6000 points/sec, 85 m maxi-
mum detection distance). We took this configuration from a
publicly-available FCW implementation (MATLAB 2020b).
The simulation runs at 20 frames/sec and thus, each sensor
receives data at that rate. Furthermore, this configuration is
commonly available on production vehicles today (Joseph
A. Gregor 2017), and thus, our simulation setup matches
real-world FCW systems from a hardware perspective.

For each time step of the simulation, CARLA outputs a
single RGB image, a depth map image, and variable num-
ber of RADAR points. We use YOLOv2 (Redmon et al.
2016) to produce vehicle bounding boxes, the Hungarian
pairwise matching algorithm (Kuhn 1955) to match boxes
between frames, and the first derivative of paired depth map
image readings to produce vehicle detections from vision
with location and velocity components. Details of process-
ing and formatting of CARLA output can be found in Ap-
pendix A. This process produces measurements that match
ground truth velocity and distance closely.

Although there are infinitely many possible physical sit-
uations where an FCW alert could occur involving two ve-
hicles, they reside in a small set of equivalence classes. The
National Highway Traffic Safety Administration (NHTSA)
has outlined a set of testing conditions for assessing the ef-
ficacy of FCW alerts (National Highway Traffic Safety Ad-
ministration 2011). It involves a two vehicles on a straight
test track at varying speeds. Based on these real-world test-
ing guidelines, we develop the following two scenarios:

MIO-10: Collision between two moving vehicles The
ego and MIO travel on a straight road, with a negative rela-
tive velocity between the two vehicles. Specifically, the ego
travels at 27 m/s (˜60 mph) and the MIO at 17 m/s (˜38 mph).
These correspond to typical freeway speed differences of ad-
jacent vehicles. In the absence of any other action, the ego
will eventually collide with the MIO. In our simulations, we
let this collision occur and record camera and RADAR mea-
surements throughout. Since the relative velocity of the MIO
to the ego is -10m/s, we refer to this dataset as MIO-10.

MIO+1: No collision The ego and MIO travel on a
straight road, with a positive relative velocity between the
two vehicles. Specifically, the ego travels at 27 m/s (˜60
mph) and the MIO at 28 m/s (˜63 mph). A trailing vehicle
moving at 27 m/s follows the ego 7 m behind. In the absence
of any other action, the ego and trailing vehicle will not col-
lide. We collect measurements until the MIO moves out of
sensor range of the ego. We refer to this dataset as MIO+1.

The above scenarios correspond to basic situations where
the ego vehicle has an unobstructed view of the MIO and
represents a best-case for the FCW system. Attacks on these
two settings are the hardest to achieve and comprehensively
demonstrate the efficacy of our MPC-based attack.

4.2 Attack Setup
We perform preprocessing of CARLA measurements to
remove outliers and interpolate missing data (see Ap-

pendix C). Each step of our KF corresponds to one frame of
the CARLA simulated video sequence (i.e., 0.05 seconds).
We assume that the KF initializes its distance and veloc-
ity prediction to the average of the first vision and RADAR
measurements. The acceleration is initialized to 0 in both
directions. The covariance matrix is initialized to that used
by Matlab FCW (MATLAB 2020b). Throughout the experi-
ments, we let the effort matrix R = I , the margin parameter
✏ = 10�3, and � = 1010. We assume the human reaction
time is h⇤ = 24 steps (i.e., 1.2 seconds in our simulation).

MIO-10 dataset We first simulate FCW to obtain the orig-
inal warning lights without attack. The first red light appears
at step 98. Before this step, the lights are all yellow. With-
out attack, the human driver will notice the red warning at
step 98. After 1.2 seconds of reaction time (24 steps), the
driver will start braking at step 122. The ground-truth dis-
tance to the MIO at the first application of brakes is 14.57m.
During braking, the distance between the ego vehicle and
the MIO reduces by 102/0.8g ⇡ 12.76m before stabilizing.
Since this is less than the ground-truth distance of 14.58m
before braking, the crash can be avoided. This validates the
potential effectiveness of FCW.

Our attacker aims to cause a crash. To accomplish this,
the attacker suppresses the first 10 red warnings, so that the
first red warning is delayed to step 108. As a result, the
driver starts braking at step 132. The ground-truth distance
to MIO at this step is 9.58m, which is below the minimum
distance needed to avoid collision (12.76m). As such, a colli-
sion will occur. Therefore, we let the target interval be T † =
[98, 107], and the target lights be `†t = green, 8t 2 T †.

MIO+1 dataset In this scenario, the original warning
lights without attack are all green. There is a trailing vehi-
cle 7 m behind the ego vehicle, driving at the same velocity
as the ego vehicle. Our attacker aims at causing the FCW
to output red lights, so that the ego vehicle suddenly brakes
unnecessarily and causes a rear collision with the trailing
vehicle. To this end, the attacker changes the green lights in
the interval [100, 139] to red, in which case the ego vehicle
driver starts braking at step 124, after 1.2 seconds of reac-
tion time. If the warning returns to green at step 140, the
driver will react after 1.2 seconds and stop braking at step
164. Therefore, the driver continuously brakes for at least
(164�124)⇥0.05 = 2 seconds. Assuming the driver of the
trailing vehicle is distracted, then during those 2 seconds, the
distance between the trailing and the ego vehicle reduces by
0.2g ⇥ 22 = 7.84m > 7m, thus causing a rear-collision.
Therefore, we let the target interval be T † = [100, 139] and
the target lights be `†t = red, 8t 2 T †.

4.3 The MPC-based Attack Is Successful
Our first result shows that the MPC-based attack can suc-
cessfully cause the FCW to output the desired warning lights
in the target interval T †. In this experiment, we let � = 1
and the stealthy interval T s start at step 2. In Fig. 2a and 3a,
we show the warning lights in T † (shaded in red). For MIO-
10, the attacker achieves the desired red lights in the entire
T †, while maintaining the original yellow lights in T s. For

(a) The warning lights. (b) The manipulation on distance. (c) The manipulation on velocity. (d) The state trajectory.

Figure 2: Attacks on the MIO-10 dataset.

(a) The warning lights. (b) The manipulation on distance. (c) The manipulation on velocity. (d) The state trajectory.

Figure 3: Attacks on the MIO+1 dataset.

MIO+1, the attacker failed to achieve the red warning at step
100, but is successful in all later steps. We verified that the
attack still leads to a collision. In fact, the attacker can tol-
erate at most two steps of failure in the beginning of T †

while still ensuring that the collision occurs. There is an un-
intended side effect in T s where green lights are changed
to yellow. However, this side effect is minor since the driver
will not brake when yellow lights are produced. In many
production vehicles, green and yellow lights are not shown
to the driver — only the red warnings are shown.

In Fig. 2b, 2c, we note that for MIO-10, the manipulation
is mostly on velocity, and there are early planned manip-
ulations starting from step 70. A large increase in velocity
happens at step 100 (the first step of T †), which causes the
KF’s velocity estimation to be positive, resulting in a green
light. After that, velocity measurements are further increased
to maintain a positive velocity estimation. In Fig. 3b, 3c, we
show manipulations on MIO+1. The overall trend is that the
attacker reduces the perceived MIO distance and velocity.
As a result, KF estimates the MIO to be close than the safe
distance in T †, thus red lights are produced. During interval
[88,96], There is an exceptional increase of velocity. We pro-
vide a detailed explanation for that increase in Appendix D.

In Fig. 2d, 3d, we show the trajectory of KF state predic-
tion projected onto the distance-velocity space during inter-
val T a. We partition the 2D space into three regions, green
(G), yellow (Y) and red (R). Each region contains the states
that trigger the corresponding warning light. The trajectory
without attack (blue) starts from location 1 and ends at 2.
After attack, the trajectory (dark) is steered into the region
of the desired warning light, ending at location 3. Note that
during T †, the state after attack lies on the boundary of the
desired region. This is because our attack minimizes manip-
ulation effort. Forcing a state deeper into the desired region

would require more effort, increasing the attacker’s cost.

4.4 Attack Is Easier with More Planning Space
Our second result shows that the attack is easier when the
attacker has more time to plan, or equivalently, a longer
stealthy interval T s. The stealthy interval is initially of full
length, which starts from step 2 until the last step prior to
T †. Then, we gradually reduce the length by 1/4 of the
full length until the interval is empty. This corresponds to
5, 3.75, 2.5, 1.25 and 0 seconds of planning space before
the target interval T †. We denote the number of light viola-
tions in T † as V

† =
P

t2T †
˜̀
t 6= `

†
t , and similarly V

s for
T s. We let � = 1. In Table 1 and 2, we show V

†, V s to-
gether with J1, J2, J3 and J as defined in (20) for MIO-10
and MIO+1 respectively. Note that on both datasets, the vio-
lation V

† and the total objective J decrease as the length of
T s grows, showing that the attacker can better accomplish
the attack goal given a longer interval of planning.

On MIO-10, when T s is empty, the attack fails to achieve
the desired warning in all target steps. However, given 1.25s
of planning before T †, the attacker forces the desired lights
throughout T †. Similarly, on MIO+1, when T s is empty, the
attack fails in the first three steps of T †, and the collision will
not happen. Given 1.25s of planning before T †, the attack
only fails in the first step of T †, and the collision happens.
This demonstrates that planning in T s benefits the attack.

4.5 Attack Is Easier as� Increases
In this section, we show that the attack becomes easier as
the upper bound on the manipulation � grows. In this ex-
periment, we focus on the MIO-10 dataset and let T † start
from step 2. In Fig 4, we show the manipulation on mea-
surements for � = 14, 16, 18 and1. The number of green

Table 1: V †, V s, J1, J2, J3 and J for the MIO-10 dataset.

MPC-based attack Greedy attack
T s V † V s J1 J2 J3 J V † V s J1 J2 J3 J
0 1 0 7.1e3 0 7.4 7.4e10 1 0 4.6e3 98.4 7.4 1.1e12

1.25 0 0 4.4e3 0 0 4.3e3 0 23 1.3e5 3.3e3 0 3.3e13
2.5 0 0 4.4e3 0 0 4.4e3 0 47 2.0e5 5.4e3 0 5.4e13
3.75 0 0 4.4e3 0 0 4.4e3 0 71 2.5e5 7.6e3 0 7.5e13
5 0 0 4.4e3 0 0 4.4e3 0 96 2.9e5 9.2e3 0 9.2e13

Table 2: V †, V s, J1, J2, J3 and J for the MIO+1 dataset.

MPC-based attack Greedy attack
T s V † V s J1 J2 J3 J V † V s J1 J2 J3 J
0 3 0 3.3e4 0 1.2e2 1.2e12 3 0 1.1e5 0 1.2e2 1.2e12

1.25 1 14 7.6e4 6.8 11.0 1.8e11 0 25 1.7e5 6.1e3 0 6.1e13
2.5 1 39 1.1e5 4.2 6.9 1.1e11 0 49 2.3e5 1.1e4 0 1.1e14
3.75 1 58 1.5e5 3.5 5.9 9.4e10 0 74 3.0e5 1.6e4 0 1.6e14
5 1 58 1.8e5 3.3 5.6 9.0e10 0 98 3.5e5 2.0e4 0 2.0e14

lights achieved by the attacker in the target interval is 0, 4,
10 and 10 respectively. This shows the attack is easier for
larger �. Note that for smaller �, the attacker’s manipula-
tion becomes flatter due to the constraint k�tk �. But,
more interestingly, the attacker needs to start the attack ear-
lier to compensate for the decreasing bound. We also note
that the minimum� to achieve the desired green lights over
the entire target interval (to integer precision) is 18.

(a) Manipulation on distance. (b) Manipulation on velocity.

Figure 4: Manipulation on measurements with different up-
per bound �. As � grows, the attack becomes easier.

4.6 Comparison Against Greedy Attacker
In this section, we introduce a greedy baseline attacker. For
MIO-10, since the attack goal is to achieve green lights in
T †, the greedy attacker always increases the distance and
velocity to the maximum possible value, i.e.,

d̃
1,⌫
t = min{d1,⌫t +�, d̄}, ṽ1,⌫t = min{v1,⌫t +�, v̄}, 8t 2 T a

.

Similarly, for MIO+1, the attacker always decreases the dis-
tance and velocity to the minimum possible value.

In table 1 and 2, we compare the performance of greedy
and our MPC-based attack. On both datasets, each attack
strategy achieves a small number of violations V

† in T †.
However, the greedy attack suffers significantly more vio-
lations V s in T s than does MPC. Furthermore, these viola-
tions are more severe, reflected by the much larger J2 of the
greedy attack. As an example, on MIO+1, the greedy attack
changes the original green lights in T s to red, while our at-
tack only changes green to yellow. The greedy attack also
results in larger total effort J1 and objective value J . There-
fore, we conclude that our attack outperforms the baseline
greedy attack overall. In appendix F, we provide more de-
tailed results of the greedy attack.

5 Related Work
Attacks on Object Tracking. Recent work has examined
the vulnerability of multi-object tracking (MOT) (Jia et al.
2020). Although this work does consider the downstream
logic that uses the outputs of ML-based computer vision, our
work goes beyond in several ways. First, we consider a hy-
brid system that involves both human and machine. Second,
we consider the more realistic case of sensor fusion involv-
ing RADAR and camera measurements that is deployed in
production vehicles today. Prior work assumed a system that
only uses a single camera sensor. Third, we examine a com-
plete FCW pipeline that uses object tracking data to predict
collisions and issue warnings. Prior work only considered
MOT without any further logic that is necessarily present in
realistic systems. Finally, our attack algorithm accounts for
the sequential nature of decision making in ADAS.
Vision Adversarial Examples. ML models are vulnerable
to adversarial examples (Szegedy et al. 2013), with a bulk of
research in the computer vision space (Goodfellow, Shlens,
and Szegedy 2014; Papernot et al. 2016; Carlini and Wagner
2017; Shafahi et al. 2018; Chen et al. 2017). Recent work
has demonstrated physical attacks in the real world (Brown
et al. 2017; Athalye et al. 2017; Eykholt et al. 2018a; Sharif
et al. 2016). For example, attackers can throw inconspicu-
ous stickers on stop signs and cause the model to output
a speed limit sign (Eykholt et al. 2018b). However, all of
this work studies the ML model in isolation without consid-
ering the cyber-physical system that uses model decisions.
By contrast, we contribute the first study that examines the
security of FCW — a hybrid human-machine system, and
we introduce a novel control-based attack that accounts for
these aspects while remaining stealthy to the human driver.
Control-based Attacks on KF. Prior work in control the-
ory has studied false data injection attacks on Kalman fil-
ters (Bai, Gupta, and Pasqualetti 2017; Kung, Dey, and Shi
2016; Zhang and Venkitasubramaniam 2016; Chen, Kar, and
Moura 2016; Yang, Chang, and Yu 2016; Chen, Kar, and
Moura 2017). Our work assumes a similar attack modality
– the attacker can manipulate measurements. However, prior
work does not consider the downstream logic and human be-
havior that depends on the KF output. By contrast, we pro-
vide an attack framework demonstrating end-to-end effects
that cause crashes in distracted driving scenarios.
Attacks on Sequential Systems. There are recent works
that study attacks of other sequential learning systems from
a control perspective (Chen and Zhu 2020; Zhang, Zhu, and
Lessard 2020; Zhang et al. 2020; Jun et al. 2018). Most of
them focus on analyzing theoretical attack properties, while
we contribute an application of control-based attacks in a
practical domain.

6 Conclusion
We formulate the adversarial attack of Kalman Filter as an
optimal control problem. We demonstrate that our planning-
based attack can manipulate the FCW to output incorrect
warnings, which mislead human drivers to behave unsafely
and cause crash. Our study incorporates human behaviors
and applies to general machine-human hybrid systems.

7 Acknowledgments
This work was supported in part by the University of
Wisconsin-Madison Office of the Vice Chancellor for Re-
search and Graduate Education with funding from the Wis-
consin Alumni Research Foundation. XZ acknowledges
NSF grants 1545481, 1704117, 1836978, 2041428, 2023239
and MADLab AF CoE FA9550-18-1-0166.

8 Ethics Statement
Our paper studies attacks on advanced driver assistance sys-
tems (ADAS) with the goal of initiating research into de-
fenses. We do not intend for the attacks to be deployed in
the real world. However, studying attacks is critical to un-
derstanding what types of defenses must be built and where
defense efforts should be focused. We take a first step to-
wards robust ADAS by studying attacks on Kalman filters
that are popularly used in these systems.

References
A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Sep.
2016. Simple Online and Realtime Tracking. 2016 IEEE

International Conference on Image Processing .
Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2017.
Synthesizing robust adversarial examples. arXiv preprint

arXiv:1707.07397 .
Bai, C.-Z.; Gupta, V.; and Pasqualetti, F. 2017. On Kalman
filtering with compromised sensors: Attack stealthiness and
performance bounds. IEEE Transactions on Automatic Con-

trol 62(12): 6641–6648.
Brown, T. B.; Mané, D.; Roy, A.; Abadi, M.; and Gilmer, J.
2017. Adversarial Patch. arXiv preprint arXiv:1712.09665 .
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on

security and privacy (sp), 39–57. IEEE.
Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Tar-
geted backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526 .
Chen, Y.; Kar, S.; and Moura, J. M. 2016. Cyber physi-
cal attacks with control objectives and detection constraints.
In 2016 IEEE 55th Conference on Decision and Control

(CDC), 1125–1130. IEEE.
Chen, Y.; Kar, S.; and Moura, J. M. 2017. Optimal at-
tack strategies subject to detection constraints against cyber-
physical systems. IEEE Transactions on Control of Network

Systems 5(3): 1157–1168.
Chen, Y.; and Zhu, X. 2020. Optimal attack against autore-
gressive models by manipulating the environment. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 3545–3552.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An Open Urban Driving Sim-
ulator. volume 78 of Proceedings of Machine Learning

Research, 1–16. PMLR. URL http://proceedings.mlr.press/
v78/dosovitskiy17a.html.

Edmund Optics. 2020. Understanding Focal Length
and Field of View. URL https://www.edmundoptics.
com/knowledge-center/application-notes/imaging/
understanding-focal-length-and-field-of-view/.

European New Car Assessment Programme. 2018.
Euro NCAP LSS Test Protocol. Version 2.0.1. URL
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-
test-protocol-v20.pdf.

Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.;
Tramèr, F.; Prakash, A.; Kohno, T.; and Song, D. 2018a.
Physical Adversarial Examples for Object Detectors. In Pro-

ceedings of the 12th USENIX Conference on Offensive Tech-

nologies, WOOT’18.

Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati,
A.; Xiao, C.; Prakash, A.; Kohno, T.; and Song, D. 2018b.
Robust Physical-World Attacks on Deep Learning Visual
Classification. In Computer Vision and Pattern Recognition

(CVPR).

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572 .

Jia, Y.; Lu, Y.; Shen, J.; Chen, Q. A.; Chen, H.; Zhong,
Z.; and Wei, T. 2020. Fooling Detection Alone is Not
Enough: Adversarial Attack against Multiple Object Track-
ing. 2020 International Conference on Learning Represen-

tations (ICLR) .

Joseph A. Gregor. 2017. Tesla Driver Assistance Sys-
tem. URL https://dms.ntsb.gov/public/59500-59999/59989/
604889.pdf.

Jun, K.-S.; Li, L.; Ma, Y.; and Zhu, J. 2018. Adversarial at-
tacks on stochastic bandits. Advances in Neural Information

Processing Systems 31: 3640–3649.

Kuhn, H. W. 1955. The Hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly, vol. 2,

no. 1–2 .

Kung, E.; Dey, S.; and Shi, L. 2016. The Performance and
Limitations of ✏-Stealthy Attacks on Higher Order Systems.
IEEE Transactions on Automatic Control 62(2): 941–947.

MATLAB. 2020a. Detect vehicles using YOLO
v2 Network - MATLAB vehicleDetectorYOLOv2.
URL https://www.mathworks.com/help/driving/ref/
vehicledetectoryolov2.html.

MATLAB. 2020b. Forward Collision Warning Using
Sensor Fusion. URL https://www.mathworks.com/help/
driving/examples/forward-collision-warning-using-sensor-
fusion.html.

Murray, S. 2017. Real-Time Multiple Object Tracking - A
Study on the Importance of Speed. arXiv:1709.03572 [cs]

URL http://arxiv.org/abs/1709.03572.

National Highway Traffic Safety Administration. 2011. A
Test Track Protocol for Assessing Forward Collision Warn-
ing Driver-Vehicle Interface Effectiveness. URL https://
www.nhtsa.gov/sites/nhtsa.dot.gov/files/811501.pdf.

http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf
https://cdn.euroncap.com/media/26996/euro-ncap-aeb-c2c-test-protocol-v20.pdf
https://dms.ntsb.gov/public/59500-59999/59989/604889.pdf
https://dms.ntsb.gov/public/59500-59999/59989/604889.pdf
https://www.mathworks.com/help/driving/ref/vehicledetectoryolov2.html
https://www.mathworks.com/help/driving/ref/vehicledetectoryolov2.html
https://www.mathworks.com/help/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/driving/examples/forward-collision-warning-using-sensor-fusion.html
https://www.mathworks.com/help/driving/examples/forward-collision-warning-using-sensor-fusion.html
http://arxiv.org/abs/1709.03572.
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/811501.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/811501.pdf

National Highway Traffic Safety Administration. 2020.
Common Driver Assistance Technologies. URL https://
www.nhtsa.gov/equipment/driver-assistance-technologies.
Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z. B.; and Swami, A. 2016. The limitations of deep learning
in adversarial settings. In 2016 IEEE European symposium

on security and privacy (EuroS&P), 372–387. IEEE.
R. Collins. 2007. Lecture 12: Camera Projection. URL http:
//www.cse.psu.edu/⇠rtc12/CSE486/lecture12.pdf.
Redmon, J.; Divvala, S.; Girshick, R. B.; and Farhadi, A.
2016. You Only Look Once: Unified, Real-Time Object De-
tection. 2016 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR) 779–788.
Shafahi, A.; Huang, W. R.; Najibi, M.; Suciu, O.; Studer,
C.; Dumitras, T.; and Goldstein, T. 2018. Poison frogs! tar-
geted clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems, 6103–
6113.
Sharif, M.; Bhagavatula, S.; Bauer, L.; and Reiter, M. K.
2016. Accessorize to a Crime: Real and Stealthy Attacks
on State-of-the-Art Face Recognition. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS ’16, 1528–1540.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing prop-
erties of neural networks. arXiv preprint arXiv:1312.6199

.
Yang, Q.; Chang, L.; and Yu, W. 2016. On false data in-
jection attacks against Kalman filtering in power system dy-
namic state estimation. Security and Communication Net-

works 9(9): 833–849.
Zhang, R.; and Venkitasubramaniam, P. 2016. Stealthy con-
trol signal attacks in vector lqg systems. In 2016 American

Control Conference (ACC), 1179–1184. IEEE.
Zhang, X.; Ma, Y.; Singla, A.; and Zhu, X. 2020. Adaptive
Reward-Poisoning Attacks against Reinforcement Learning.
arXiv preprint arXiv:2003.12613 .
Zhang, X.; Zhu, X.; and Lessard, L. 2020. Online data poi-
soning attacks. In Learning for Dynamics and Control, 201–
210. PMLR.

https://www.nhtsa.gov/equipment/driver-assistance-technologies
https://www.nhtsa.gov/equipment/driver-assistance-technologies
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf
http://www.cse.psu.edu/~rtc12/CSE486/lecture12.pdf

A Simulated Raw Data Processing
CARLA outputs a single RGB image, a depth map image,
and variable number of RADAR points for each 0.05 second
time step of the simulation. We analyze this data at each
time step to produce object detections in the same format of
MATLAB FCW (MATLAB 2020b):

⇥
d
1

v
1

d
2

v
2
⇤

where d
1 and d

2 are the distance, in meters, from the ve-
hicle sensor in directions parallel and perpendicular to the
vehicle’s motion, respectively. v1 and v

2 are the detected ob-
ject velocities, in m/s, relative to the ego along these parallel
and perpendicular axes.

To produce these detections from vision data, we first find
bounding boxes around probable vehicles in each RGB im-
age frame using an implementation of a YOLOv2 network
in MATLAB which has been pre-trained on vehicle images
(MATLAB 2020a). Each bounding box is used to create a
distinct object detection. The d1 value, or depth, of each ob-
ject is taken to be the depth recorded by the depth map at the
center pixel of each bounding box.

The d
2 value of each detection is then computed as

d
2 = u ⇤ d

1

lfoc
(27)

where u is the horizontal pixel coordinate of the center of
a bounding box in a frame, and lfoc is the focal length of the
RGB camera in pixels (R. Collins 2007). lfoc is not directly
specified by CARLA, but can be computed using the image
length, 800 pixels, and the camera field of vision, 90 degrees
(Edmund Optics 2020).

To compute v
1 and v

2 for detections of the current time
step, we also consider detections from the previous time
step. First, we attempt to match each bounding box from the
current time step to a single bounding box from the previ-
ous step. Box pairs are evaluated based on their Intersection-
Over-Union (IoU) (A. Bewley, Z. Ge, L. Ott, F. Ramos, and
B. Upcroft Sep. 2016). Valued between 0 and 1, a high IoU
indicates high similarity of size and position of two boxes,
and we enforce a minimum threshold of 0.4 for any two
boxes to be paired. For two adjacent time steps, A and B,
we take the IoU of all possible pairs of bounding boxes with
one box from step A, and one from B. These IoU values
form the cost matrix for the Hungarian matching algorithm
(Murray 2017), which produces the best possible pairings of
bounding boxes from the current time step to the previous.

This matching process results in a set of detections with
paired bounding boxes, and a set with unpaired boxes. For
each detection with a paired box, we calculate its velocity
simply as the difference between respective d1 and d

2 values
of the current detection and its paired observation from the
previous time step, multiplied by the frame rate, fpscam.
For a detection, a, paired with a previous detection, b:

< v
1
a, v

2
a >=< d

1
b � d

1
a, d

2
b � d

2
a > ⇤fpscam (28)

For each detection left unpaired after Hungarian match-
ing, we make no conclusions about v1 or v2 for that detec-
tion, and treat each as zero.

Each RADAR measurement output by CARLA represents
an additional object detection. RADAR measurements con-
tain altitude (al) and azimuth (az) angle measurements, as
well as depth (d) and velocity (v), all relative to the RADAR
sensor. We convert these measurements into object detection
parameters as follows

d
1 = d ⇤ cos az ⇤ cos al v

1 = v ⇤ cos az ⇤ cos al
d
2 = d ⇤ sin az ⇤ cos al v

2 = v ⇤ sin az ⇤ cos al

B Derivation of Surrogate Constraints
The original attack optimization (6)-(13) may not be con-
vex due to that (12) and (13) could be nonlinear. Our goal
in this section is to derive convex surrogate constraints that
are good approximations to (12) and (13). Furthermore, we
require the surrogate constraints to be tighter than the orig-
inal constraints, so that solving the attack under the surro-
gate constraints will always give us a feasible solution to
the original attack. Concretely, we want to obtain surrogate
constraints to F (x) = `, where ` 2 {green, yellow, red}.
We analyze each case of ` separately:
• ` = green

In this case, F (x) = ` is equivalent to v � 0 according
to (5). While this constraint is convex, when we actually
solve the optimization, it might be violated due to numeri-
cal inaccuracy. To avoid such numerical issues, we tighten
it by adding a margin parameter ✏ > 0, and the derived
surrogate constraint is v � ✏.

• ` = red
In this case, F (x) = ` is equivalent to

v < 0 (29)

d �1.2v + 1

0.8g
v
2
. (30)

Similar to case 1, we tighten the first constraint as

v �✏. (31)

Note that by the first constraint, we must have v < 0. The
second constraint is d �1.2v + 1

0.8g v
2. Given v < 0,

this is equivalent to

v 0.48g �
p
(0.48g)2 + 0.8gd. (32)

We next define the following function

U(d) = 0.48g �
p
(0.48g)2 + 0.8gd. (33)

The first derivative is

U
0(d) = � 0.4gp

(0.48g)2 + 0.8gd
, (34)

which is increasing when d � 0. Therefore, the function
U(d) is convex. We now fit a linear function that lower
bounds U(d). Specifically, since U(d) is convex, for any
d0 � 0, we have

U(d) � U
0(d0)(d� d0) + U(d0). (35)

Figure 5: Surrogate light constraints.

Therefore, v U
0(d0)(d� d0) + U(d0) is a tighter con-

straint than v U(d). The two constraints are equivalent
at d = d0. Again, we need to add a margin parameter
to avoid constraint violation due to numerical inaccuracy.
With this in mind, the surrogate constraint becomes

v U
0(d0)(d� d0) + U(d0)� ✏, (36)

Or, equivalently:

v �✏, (37)
v U

0(d0)(d� d0) + U(d0)� ✏, (38)

This concludes the proof of our Proposition 1.
However, we still need to pick an appropriate d0. In our
scenario, the distance d has physical limitation d 2 [d, d̄]
with d = 0 and d̄ = 75. The U(d) curve for d 2 [0, 75] is
shown in Fig 5. Based on the figure, we select d0 such that
U

0(d0) is equal to the slope of the segment connecting the
two end points of the curve, i.e.,

U
0(d0) =

U(75)� U(0)

75
=

U(75)

75
. (39)

We now derive the concrete surrogate constraints used
in our experiment section. We begin with the following
equation:

0.48g +
0.4g

U 0(d)
= U(d). (40)

From which, we can derive d0:

d0 =
1

0.8g

✓
(

30g

U(75)
)2 � (0.48g)2

◆
(41)

and

U(d0) = 0.48g +
30g

U(75)
. (42)

By substituting d0 and U(d0) into (36), we find that the
surrogate constraint is

v U(75)

75
(d� d0) + 0.48g +

30g

U(75)
+ ✏. (43)

• ` = yellow
In this case, F (x) = ` is equivalent to

v < 0 (44)

d � �1.2v + 1

0.8g
v
2
. (45)

Similarly, we tighten the first constraint to

v �✏. (46)

For the second constraint, the situation is similar to ` =
red. 8d0 > 0. We have

v � U(d0)

d0
d, 8d 2 [0, d0] (47)

The above inequality is derived by fitting a linear function
that is always above the U(d) curve. Next, we select d0 =
75 and add a margin parameter ✏ to derive the surrogate
constraint:

v �✏ (48)

v � U(75)

75
d+ ✏. (49)

To summarize, we have derived surrogate constraints for
F (x) = `, where l 2 {green, yellow, red}. When we
solve the attack optimization, we replace each individual
constraint of (12) and (13) by one of the above three sur-
rogate constraints. In Fig 5, we show the surrogate con-
straints for red and yellow lights with ✏ = 10�3.

C Preprocessing of CARLA Measurements
In this section, we describe how we preprocess the mea-
surements obtained from CARLA simulation. The measure-
ment in each time step takes the form of tt = [y1t , y

2
t] 2

{R [NaN}8, where y
1
t 2 {R [NaN}4 is the vision detec-

tion produced by ML-based objection detection algorithm
YOLOv2, and y

2
t is the detection generated by radar (details

in Appendix A). Both vision and radar measurements con-
tain four components: (1) the distance to MIO along driv-
ing direction, (2) the velocity of MIO along driving direc-
tion, (3) the distance to MIO along lateral direction, and (4)
the velocity of MIO along lateral direction. The radar mea-
surements are relatively accurate, and do not have missing
data or outliers. However, there are missing data (NaN) and
outliers in vision measurements. The missing data problem
arises because the MIO sometimes cannot be detected, e.g.,
in the beginning of the video sequence when the MIO is out
of the detection range of the camera. Outliers occur because
YOLOv2 may not generate an accurate bounding box of the
MIO, causing it to correspond to a depth map reading of an
object at a different physical location. As such, a small in-
accuracy in the location of the bounding box could lead to
dramatic change to the reported distance and velocity of the
MIO.

In our experiment, we preprocess detections output from
CARLA to address missing data and outlier issues. First,
we identify the outliers by the Matlab “filloutliers” method,

(a) Distance measurements. (b) Velocity measurements.

Figure 6: On the MIO-10 dataset, the preprocessed vi-
sion measurements and the radar measurements match the
ground-truth reasonably well.

(a) Distance measurements. (b) Velocity measurements.

Figure 7: On the MIO+1 dataset, the preprocessed vi-
sion measurements and the radar measurements match the
ground-truth reasonably well.

where we choose “movmedian” as the detector and use lin-
ear interpolation to replace the outliers. The concrete Matlab
command is:
filloutliers(Y , ‘linear’, ‘movmedian’, 0, ‘ThresholdFactor’, 0.5),

where Y 2 RT⇥8 is the matrix of measurements and T is the
total number steps. In our experiment T = 295. We perform
the above outlier detection and replace operation twice to
smooth the measurements.

Then, we apply the Matlab “impute” function to interpo-
late the missing vision measurements. In Fig 6 and 7, we
show the preprocessed distance and velocity measurements
from vision and radar compared with the ground-truth for
both MIO-10 and MIO+1 datasets. Note that after prepro-
cessing, both radar and vision measurements match with the
ground-truth well.

D Velocity Increase in Figure 3c
In Figure 8b, we show again the manipulation on the ve-
locity measurement for the MIO+1 dataset. The attacker’s
goal is to cause the FCW to output red warnings in the tar-
get interval [100, 139]. Intuitively, the attacker should de-
crease the distance and velocity. However, in Figure 8b, the
attacker instead chooses to increase the velocity during in-
terval [88,96]. We note that this is because the attacker hopes
to force a very negative KF acceleration estimation. To ac-
complish that, the attacker first strategically increases the ve-
locity from step 88 to 96, and then starting from step 97, the

(a) Acceleration estimation. (b) Manipulation on velocity.

Figure 8: Acceleration reduces significantly as the velocity
measurement drops after step 96. This in turn causes the KF
velocity estimation to decrease fast.

attacker suddenly decreases the velocity dramatically. This
misleads the KF to believe that the MIO has a very negative
acceleration. In Fig 8a, we show the acceleration estimation
produced by KF. At step 96, the estimated acceleration is
8.1m/s2. However, at step 97, the estimated acceleration sud-
denly drops to �16m/s2, and then stays near �30m/s2 un-
til the target interval. The very negative acceleration in turn
causes the KF velocity estimation to decrease quickly. The
resulting velocity estimation reached around�10m/s during
the target interval, which causes FCW to output red lights.

E Human Behavior Algorithm
In this section, we provide an algorithmic description of the
human behavior model.

Input: light sequence `t(1 t T), reaction time
h
⇤.

Initialize s = 0;
for t 1 to T do

if t! = 1 and `t! = `t�1 then
s = 0;

else if `t = red then
s = s+ 1;

else
s = s� 1;

end
if s � h

⇤ then
human applies pressure on pedal;

else if s �h⇤ then
human releases brake;

else
human stays in the previous state;

end
end

Algorithm 2: Human Behavior Algorithm.

F Detailed Results of Greedy Attack
In this section, we provide more detailed results of the
greedy attack, including warning lights before and after at-
tack, manipulations on measurements, and the trajectory of
KF state predictions. We notice that the results are very sim-
ilar for different lengths of the stealthy interval T s. There-

(a) The warning lights. (b) The manipulation on distance. (c) The manipulation on velocity. (d) The state trajectory.

Figure 9: Greedy attack on the MIO-10 dataset.

(a) The warning lights. (b) The manipulation on distance. (c) The manipulation on velocity. (d) The state trajectory.

Figure 10: Greedy attack on the MIO+1 dataset.

fore, here we only show the results for T s = 2.5 seconds
(i.e., half of the full length) as an example.

Fig. 9 shows the greedy attack on MIO-10, where the
stealthy interval T s = [50, 97]. By manipulating the dis-
tance and velocity to the maximum possible value, the at-
tacker successfully causes the FCW to output green lights
in the target interval T †. However, the attack induces side
effect in T s, where the original yellow lights are changed to
green. In contrast, our MPC-based attack does not have any
side effect during T s. Also note that the trajectory of the KF
state prediction enters “into” the desired green region dur-
ing T †. This is more than necessary and requires larger total
manipulation (J1) than forcing states just on the boundary
of the desired region, as does our attack.

In Fig. 10, we show the greedy attack on MIO+1. The
stealthy interval is T s = [51, 99]. Again, the attack results
in side effect during the stealthy interval T s. Furthermore,
the side effect is much more severe (green to red) than that
of our MPC-based attack (green to yellow). The KF state
trajectory enters “into” the desired red region, and requires
larger total manipulation (J1) than our attack.

	1 Introduction
	2 Background
	2.1 Kalman Filtering
	2.2 Warning Alert Logic and Human Model

	3 Attack Problem Formulation
	3.1 Outer Attack Problem
	3.2 Inner Attack Problem: MPC-based Attack

	4 Experiments on CARLA Simulation
	4.1 Simulation Setup
	4.2 Attack Setup
	4.3 The MPC-based Attack Is Successful
	4.4 Attack Is Easier with More Planning Space
	4.5 Attack Is Easier as Increases
	4.6 Comparison Against Greedy Attacker

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	8 Ethics Statement
	A Simulated Raw Data Processing
	B Derivation of Surrogate Constraints
	C Preprocessing of CARLA Measurements
	D Velocity Increase in Figure 3c
	E Human Behavior Algorithm
	F Detailed Results of Greedy Attack

