
Automatically Identifying Bug Reports with
Tactical Vulnerabilities by Deep Feature Learning

Wei Zheng†, Manqing Zhang†∗, Hui Tang†, Yuanfang Cai‡, Xiang Chen§, Xiaoxue Wu¶,
and Abubakar Omari Abdallah Semasaba†

†School of Software, Northwestern Polytechnical University, China. wzheng@nwpu.edu.cn,
{zmqgeek, th1605285104}@gmail.com, abubakar.semasaba@hotmail.com

‡Department of Computer Science, Drexel University, USA. yfcai@cs.drexel.edu
§School of Information Science and Technology, Nantong University, China. xchencs@ntu.edu.cn
¶School of Information Engineering, Yangzhou University, China. xiaoxuewu@yzu.edu.cn

Abstract—Identifying and fixing bug reports with tactical vul-
nerabilities in a timely and accurate manner is essential to ensure
the security of the software architecture. Manually identifying
the bug reports with tactical vulnerabilities is labor-intensive
and challenging. This paper presents Itactivul, an approach to
automatically identify bug reports with tactical vulnerabilities and
recommend their tactical categories to guide the fix. Unlike the
existing security bug report prediction approach, we are the first
attempt to use deep learning to mine discriminative tactical text
features only from the vulnerability descriptions of the National
Vulnerability Database (NVD) and apply them to identify bug
reports with tactical vulnerabilities. We evaluate Itactivul on three
bug reports datasets gathered from three large-scale open-source
projects, including Chromium, PHP, and Thunderbird. The
experimental results show that Itactivul outperforms baselines
by an average of 8.88%, 13.58%, and 6.61% in the F1-score
of three datasets, respectively. To improve the explainability of
the features mined by Itactivul, we manually analyze the high-
weight phrases extracted by using attention backtracking. The
results show that Itactivul can mine key and potential tactical
vulnerabilities text features.

Index Terms—Tactical Vulnerability, Model explainability, Bug
Report, Text mining

I. INTRODUCTION

More and more attention has been paid to security inci-
dents caused by architectural weaknesses [1]–[7]. Previous
research [8] showed that weaknesses in software design ac-
count for about 50% of security problems. To ensure software
security, architects need to consider security quality attributes
at the design stage [9]–[11]. Security tactics [12] are suites of
techniques, which have been widely used to address various
security concerns [13]. Architects need to make decisions
and choose proper security tactics to meet system security
requirements.

Despite the application of proper security tactics at the
beginning of the project, the security of the architecture
might erode with the evolution of the software or incorrect
implementation in the code [14]–[16]. Mirakhorli and Cleland-
Huang’s study [17] showed that due to developers’ lack of
security coding experience, the improper implementation or
deterioration of security tactics in the development and main-
tenance process could lead to severe tactical vulnerability [18].

* Manqing Zhang is the corresponding author.

Security engineers need to manually identify security bug
reports (e.g., tactical vulnerability) in the bug-tracking system,
and fix vulnerabilities in a timely and effective manner, thereby
improving software security assurance [19]. However, this task
is labor-intensive and time-consuming [20].

To automate identify security bug report for reducing human
efforts, some mining-based models have been proposed [20]–
[25]. However, these efforts only identify security reports and
do not classify different types of vulnerabilities to determine
the priority of repair. Tactical vulnerabilities are more sub-
tle and sophisticated than code-level vulnerabilities (such as
buffer overflows [26]). More importantly, tactical vulnerabili-
ties related to the architecture usually have a broader impact,
which makes them more difficult to fix and requires archi-
tectural knowledge. For example, Authorize Actors’ tactical
weakness in Intel’s processor chips [27] forced a significant
redesign of Linux and Windows. Therefore, it is necessary to
separately identify these system-level tactical vulnerabilities
so that they can be identified and fixed more effectively.

Observations and Insights. In this study, we want to ex-
plore an automated approach to identify tactical vulnerabilities
and their categories in bug reports to solve this problem. This
approach can help developers fix them in a timely and accurate
manner. However, only a few bug reports are related to security
tactics, and it is difficult to mine their features automatically.
Inspired by the study of Bhuiyan et al. [28], it is possible
to learn and mine vulnerability text features from the NVD1

vulnerability descriptions. We use deep learning to mine the
text features of tactical vulnerabilities in NVD vulnerability
descriptions automatically. Then we apply the trained model
to identify bug reports with tactical vulnerabilities. To the best
of our knowledge, there is no prior work focusing on automat-
ically identifying bug reports with tactical vulnerabilities.

Mining architecture security tactical features from the NVD
vulnerability descriptions automatically is a challenging task.
First, the proportion of different types of tactical vulnerability
description data varies significantly. This results in a class im-
balance issue for the tactical vulnerability feature mining task.
Second, since the vocabulary of the NVD vulnerability de-

1https://nvd.nist.gov/vuln/



scriptions is different from the bug reports, out-of-vocabulary
(OOV) words are widespread in the bug reports. Therefore,
OOV words of the new bug report cannot be appropriately
mapped to pre-trained word embeddings. Third, the neural
network is a black-box model, which uses metrics (such as
F1-score) to determine the effectiveness of text feature mining.
However, there is no practical explanation about the specific
characteristics of the automatically mined text features.

Our solution. This paper presents Itactivul, an effective
approach to automatically identify bug reports with tactical
vulnerabilities by using deep learning. First, Itactivul lever-
ages attention-based Bi-directional Long Short Term Memory
(BiLSTM) to automatically capture text features from the
NVD vulnerability description. In the training process, we
designed a weighted focal loss function to deal with the
class imbalanced problem. At the same time, to solve the
representation of OOV words, we adopt Fasttext [29], [30] to
train word embeddings. Then, we extract the attention weight
to highlight the prominent text feature phrases in the input data
that help identify tactical vulnerabilities. The prominent key
phrases provide an intuitive explanation for the text features
automatically mined by Itactivul. After the model construction
process, the trained model can be applied to identify bug
reports with tactical vulnerabilities.

In our empirical study, we first collected 91,122 vulnerabil-
ity descriptions in the NVD. By leveraging Santos et al.’s Com-
mon Architectural Weaknesses Enumeration (CAWE) [31] as
the foundation, we labeled these data to different tactical
vulnerability classes. The gathered NVD dataset is applied
to the training model to realize in-depth tactical vulnerability
text feature mining. After that, we evaluate the performance
of Itactivul and the baselines on the bug report datasets of
three projects (i.e., Chromium, PHP, and Thunderbird). The
evaluation results show that (1) Itactivul outperforms baselines
in terms of all metrics Accuracy, Precision, Recall, and F1-
score. (2) The Attention, Fasttext embedding, and Focal loss
function are effective and helpful for boosting the effectiveness
of Itactivul. (3) After manually analyzing the high-weight
phrases extracted by attention backtracking, we find that the
majority of key phrases learned by Itactivul are related to the
classification of tactical vulnerabilities.

We summarize the contributions of our study as follows:

• We propose Itactivul, an approach to automatically iden-
tify bug reports with different tactical vulnerabilities.
Itactivul can learn the tactical vulnerability characteristics
from the NVD vulnerability descriptions and alleviate the
OOV word problem and the class imbalance problem.

• We designed an attention backtracking method to extract
and highlight prominent text feature phrases in the in-
put data, which intuitively explains the effectiveness of
automatically mined text features.

• We evaluated our approach on three bug report datasets
gathered from three large-scale open-source projects (i.e.,
Chromium, PHP, and Thunderbird). The evaluation re-
sults show that our approach significantly outperforms

the baselines. Our gathered dataset and the scripts of our
study are publicly available2.

The remainder of this paper is organized as follows. Section
II describes the background of our study. Section III presents
our approach in detail. Section IV presents our experimental
settings. Section V analyzes our experimental results of each
research question respectively. Section VI discusses the per-
formance of various hidden layers of our method and analyzes
the potential threats to the validity of our study. After a brief
review of related work in Section VII, we conclude this paper
and point out potential future directions in Section VIII.

II. BACKGROUND

A. Tactical vulnerability

To build a security software system, software engineers
have to implement specific security quality concerns in the
design phase. Security tactics are used to ensure the confi-
dentiality, integrity, and availability of the software system to
achieve system security and resistance to attacks. Specifically,
different security tactics are designed to meet four types of
security quality attributes [32]: detect attacks (e.g., Detect
Intrusion), resist attacks (e.g., Limit Exposure), react to attacks
(e.g., Revoke Access), and recover from attacks (e.g., Service
Restoration).

However, the lack of experience of architects or developers
may cause the lack, misuse, and improper implementation
of architectural tactics. Tactical vulnerabilities are defined as
vulnerabilities caused by the above-mentioned architectural
tactics-related issues. Tactical vulnerabilities are mapped into
three types according to their three reasons: Omission, Com-
mission, and Realization [31]. For example, Ruby’s paranoid2
package3 has led to Realization-type tactical vulnerability
(CVE-2019-135894, CVSS score: 9.8 CRITICAL) due to the
improper implementation of Limit Exposure tactics. Specifi-
cally, Limit Exposure tactics minimize the attack surface by
designing a system with the least number of entry points. How-
ever, paranoid2 package includes a code-execution backdoor
because there is no strict restriction on the entry point of the
third-party code during the implementation process.

B. Common Architectural Weaknesses Enumeration

In our study, the Common Architectural Weakness Enumer-
ation (CAWE) refers to the classification catalog of security
architecture weakness proposed by Santos et al. [31]. Their
paper analyzed Common Weakness Enumeration (CWE) into
different types of tactical weaknesses and common coding
bugs through security tactical keyword search and manual
analysis of CWE descriptions.

The CAWE catalog5 is created by combining the CWE and
security tactics, which describes the architecture weaknesses
in the software system and provides mitigation techniques to

2https://github.com/zmqgeek/Itactivul
3https://rubygems.org/gems/paranoid2/
4https://nvd.nist.gov/vuln/detail/CVE-2019-13589
5https://cwe.mitre.org/data/definitions/1008.html



Embedding
Vector

Security Entity 
Recognition 

Pre-trained Word 
Embedding

Entity
Corpus

NVD 
Vulnerability
Description

Model

Bug Report
Embedding

Vector

Detection 
Results

Detection 
Results

3. Apply Bug Report Detection

1. Tactical Vulnerability Feature Learning

Corpus

Tactical 
vulnerability

Pattern

Trained
Model

Attention
Weight

2. Tactical Vulnerability Pattern Identification

word 
weight

Fig. 1. Overview of the proposed method.

address them. At present, the CAWE catalog is classified based
on the impact of 12 security tactics and contains 224 weak-
nesses. Each CAWE entry consists of several parts, including
impacted security tactics, text descriptions, weakness types,
source code examples, mitigation techniques, and detection
methods. Santos et al. [31] used a web-based interactive
method to help architects and developers follow the guidelines
of security tactics to identify potential weaknesses related to
a specific security tactic.

III. OUR PROPOSED APPROACH

In this section, we show an overview of our approach and
technical details for each pahse.

A. Overview of Itactivul

Fig. 1 demonstrates the overall framework of Itactivul,
which includes three phases: Tactical Vulnerability Feature
Learning, Tactical Vulnerability Pattern Identification, Apply
Bug Report Detection.

Phase 1: Tactical Vulnerability Feature Learning. We aim
to learn tactical features in the vulnerability by attention-
based BiLSTM in this phase. Specifically, We crawled and
labeled NVD vulnerability descriptions as our feature learning
data. Then, we built a corpus of NVD descriptions for learn-
ing domain-specific word embedding vectors. Following that,
NVD data was fed into an attention-based BiLSTM to learn
tactical vulnerability characteristics automatically. During the
training process, we designed a focal loss function to solve
the class imbalance problem.

Phase 2: Tactical Vulnerability Pattern Identification. We
extracted the weight matrix of the attention layer of the model.
The weight matrix reflects the contribution of different input
words to the recognition result. Next, we used name entity
recognition to extract phrases in vulnerability descriptions.

Finally, we obtained the key tactical pattern features according
to the word and phrase weight ranking.

Phase 3: Bug Report Detection. In this phase, the bug report
includes a bug summary and bug description as the input of the
trained model in Phase 1. Then, the bug report is mapped to a
word embedding matrix based on the trained word embedding
dictionary. The model will output two types of information as
a detection report: the tactical vulnerability category and the
attention weight of each word in the new bug report.

B. Tactical Vulnerability Feature Learning

We automatically learn the tactical vulnerability features
in the vulnerability description using attention-based BiL-
STM. This subsection introduces our word embedding method,
attention-based BiLSTM architecture, and our designed focal
loss function.

1) Word Embedding: Word embedding as the input of
neural networks can help capture the grammatical and se-
mantic information of sentences. An accurate and effective
word embedding representation can significantly improve the
performance of downstream deep learning tasks [33] [34].
For example, Sui et al. [33] proposed a value-flow-based
precise code embedding method, which effectively improves
the performance of code classification and code summarization
tasks. In classification tasks, we often use Word2vec [35] to
generate word vectors of words. However, Word2vec cannot
generate word vectors for OOV words. Furthermore, some
low-frequency words in the vulnerability description may have
more significant meanings. To this end, we use FastText [36],
[37] to generate our word vector dictionary. It can better
generate word vectors of low-frequency words and OOV
words by learning character-based embedding representation
of subwords.



To learn domain-specific word embeddings, we use the
NVD vulnerability description as the corpus for word vector
training. For the generated corpus, we learn domain-specific
word embeddings using FastText provided by open-source
Python library gensim6. The output of FastText represents
each word as a 300-dimensional vector. The vector of each
dimension represents a specific feature value of the word.
Finally, the pre-trained word vector is used to convert the input
sentence into an embedding matrix in the embedding layer of
the model.

sofmax

ℎ�

��

…… … …

ℎ�

+

…

��

��

��

Word embedding BiLSTM Attention Fully connected Output

��

��

��

��

ℎ�

ℎ�ℎ�

ℎ�ℎ�

ℎ�ℎ�

ℎ�

ℎ�

ℎ�

Fig. 2. The architecture of our model

2) The Architecture of Attention-Based BiLSTM: Fig. 2
shows the architecture of our Attention-based BiLSTM model.
Our model takes as input an vulnerability description X =
[x1, x2, x3, · · · , xn]. Through the word embedding layer, each
word xi in the sentence is mapped into a fixed-length vector
ei. The mapping of the dictionary learned through the word
embedding phases, we get an input matrix of n× 300 (300 is
the dimension of word embedding).

After the embedding layer, the word vector sequence is fed
into the BiLSTM to achieve a higher-level sentence vector
representation. The BiLSTM layer uses two LSTMs to learn
sentence features from the forward and reverse directions, re-
spectively. Two LSTMs respectively calculates the embedding
vector to obtain the forward output vector

−→
hi and the reverse

output vector
←−
hi of each word xi. The word vector hi of each

word xi finally output by BiLSTM is calculated as follows:

hi =
[−→
hi ⊕

←−
hi

]
(1)

where ⊕ represents the addition of each dimension of the
vector.

Generally, not all words in a vulnerability contribute equally
to the representation of tactical vulnerability, so we leverage
the word attention mechanism to capture the distinguished
influence feature word. The Attention layer considers the
weights of different words, and finally calculates the BiLSTM
output vector H = [h1, h2, · · ·hn] to form a dense vector.
Formally, the feature vector r finally learned by the attention
layer is calculated by:

M = tanh(H) (2)

w = softmax
(
αTM

)
(3)

6https://radimrehurek.com/gensim/

r = HwT (4)

where M represents the hidden representation of H obtained
through one layer of MLP. Then we measure the importance
of words by the similarity between M and the randomly
initialized word-level context vector α. After that, by learning
the parameter αT , we get a normalized importance weight
w through a softmax function. Finally, the output sentence
vector r of the attention layer is the weighted sum of H .

The attention layer is followed by two fully connected layers
with different sizes of neurons. For the attention output vector
fed into the first fully connected layer, we get the final vector
h∗ for classification through the activation function tanh.

h∗ = tanh(r) (5)

Finally, after the second fully connected layer, the output
pseudo probability value is obtained through the activation
function softmax, which represents the probability of each
category predicted by the model.

p̂(y | S) = softmax
(
W (S)h∗ + b(S)

)
(6)

3) Focal loss function: In our work, different types of tacti-
cal vulnerability description data have a very imbalanced dis-
tribution. The normal cross-entropy loss function commonly
used in multi-classification problems does not perform well in
our tactical vulnerability classification tasks. To solve the class
imbalanced problem, we can use the weighted cross-entropy
loss function to guide the training process. However, the
performance of this loss function cannot achieve satisfactory
performance in our task.

To figure out the reason, we manually checked the difference
between the pseudo-probability value output by the model and
the real label. We find that there are many Hard Examples in
the data. For example, our model output C(C = 12) pseudo
probability values 0.1, 0.2, 0.6, 0.6, 0.1, 0.5, 0.7, 0.3, 0.1, 0.6,
0.5, 0.4, where C is the number of classification categories.
The classifier outputs the seventh category with the largest
probability value of 0.7 as the prediction result, but the true
label is the fifth category, and the probability value is 0.1.
We can find that the probability of different classes in this
example is not much different, and the predicted probability
is small. The weighted cross-entropy loss function does not
perform well on this kind of Hard Examples.

To solve the above problem, we extend the weighted cross-
entropy loss function to the focal loss function. The focal loss
function can effectively solve Hard Examples and unbalanced
data. Following the study of Lin et al. [38], we define the focal
loss function FL of our model as follows:

FL = −αt (1− pt)γ log (pt) (7)

αt =
median freq

freq(t)
(8)

where t is the class label of the current sample, and pt
represents the probability value of class t predicted by the
classifier. The index γ can better control the size of the weight,



we use the common values γ = 2. Hard Examples can be
effectively solved by adding (1− pt)γ . At the same time, to
solve the problem of sample category imbalance, we add the
class weight αt.

We use median frequency balance [39] as class weight
αt, where median freq represents the median frequency of
different classes on the training set, freq(t) is the frequency
of the current sample class t. This implies that the contribution
of small samples in the training set to loss is enhanced, and
a large number of samples is weakened while retaining the
normal loss of the intermediate number of samples [40].

C. Tactical Vulnerability Pattern Identification

In this work, we use deep learning to automatically learn
the tactical vulnerability characteristics in the vulnerability
description. We are interested in understanding and explaining
what features the model has learned. Based on this, we
can summarize the pattern of tactical vulnerabilities to help
developers better distinguish them. As shown in Fig. 2, for
the attention layer, our model calculates the weight wi of each
word xi in the output of the BiLSTM layer. The w calculated
in the attention layer reflects the importance weight of each
word xi in the sentence X . wi is the weight of the i-th word in
the sentence X . The weight feature value wi in the attention
layer can be traced back to the input sentence X , therefore
deriving the importance of each word xi.

We apply the traceability of the input sentence X and the
weight matrix w to extract the most important feature words
for identifying tactical vulnerabilities. In this way, we get the
word weights of all the vulnerability description sentences.
However, certain key phrases have specific meanings, such as
“denial of service”. If we sort weight only in terms of words,
the order of these phrases may be destroyed. To solve this
problem, we extract security-related entities from unstructured
vulnerability descriptions as the basis for pattern classification.
We use Named Entity Recognition (NER) to extract the
security information in the vulnerability description. Previous
studies have shown that NER can be effectively used to
extract security entities in the field of cyber security [41]–
[45]. Since NER requires pre-labeled data, we apply the NVD
entity labeling dataset open-sourced by Bridges et al. [46]
as our training data. The corpus marked CVE vulnerability
descriptions from 2010 to 2013, involving over 650,000 tokens
and 13 security-related entity categories. We use the Stanford
NER7 to train a model for secure entity recognition on the
corpus. Then, we apply the NLTK8 python package calls the
well-trained entity model to extract the security-related entities
se from the vulnerability description.

Finally, we identify tactical vulnerability patterns based on
the extracted entity information and word weights in sentences.
Specifically, for a given vulnerability description X , we first
get the weight w of all words. Then we get the weight sew of
all phrase entities in the sentence. sew is the average weight

7https://nlp.stanford.edu/software/CRF-NER.shtml
8http://www.nltk.org/

of the phrase’s constituent words. Formally, the security entity
phrase weight sew is calculated by:

sew =
wi+1 + · · ·+ wi+m

m
(9)

where security entity phrase consists of the (i+1)-th word to
the (i+m)-th word of the sentence. wi+1 represents the weight
of the (i+1)-th word, and m represents the number of words
that make up the phrase.

We sort the security entity phrase weights sew and the rest
of the word weights wi to get the tactical vulnerability pattern
of the most important security entities phrase or words in the
sentence.

D. Apply Bug Report Detection

In Phase 1, we got a well-trained model, which automati-
cally learns the tactical vulnerability characteristics from the
vulnerability description. We can apply the well-trained model
to detect bug reports with tactical vulnerabilities.

Specifically, given a bug report, which includes bug sum-
mary and bug description, it is converted into an input em-
bedding vector matrix by the word embedding dictionary of
phase 1. The input matrix is fed to the well-trained BiLSTM
model. Finally, the output layer gives the probability of each
category, with the highest probability being the identified
tactical vulnerability category. In addition, we also output
the attention weight corresponding to each word to form a
detection report to help developers understand it in more detail.

IV. EXPERIMENTAL SETUP

In our empirical study, we aim to answer the following three
research questions (RQs):

• RQ1: How effective is Itactivul in identifying bug reports
with tactical vulnerabilities?

• RQ2: How effective are the main components of Itactivul
for learning the text feature of tactical vulnerabilities?

• RQ3: What are the characteristics of tactical vulnerabili-
ties learned by Itactivul?

A. Data Collection

We first crawled 136,050 CVE data from the NVD website.
These CVE data were published from 1996 to December 31,
2019, covering popular open-source projects, such as Android,
Flash Player, Leap, Firefox, Mysql, JRE, PHP, Chrome, Linux
Kernel, and Wireshark. The data contains the CVE index (such
as CVE-2018-18882), CWE ID, vulnerability descriptions,
and reference links. Among the 136,050 CVEs, we extracted
91,122 items with specific CWE ID and used these data to
train the models.

To evaluate the actual effect of Itactivul on the bug report
and compare it with baselines, we constructed the first tac-
tical bug report dataset. Benefit from the paper of Santos et
al. [47], they empirically studied the tactical vulnerability of
three large-scale open-source systems Chromium, PHP, and
Thunderbird. Their dataset classifies bug reports into different
tactical vulnerability categories, but only contain links to
project bug reports. To this end, we crawled all bug reports



(including bug summary and bug description) based on these
links as our bug report evaluation dataset.

B. Data Preprocessing

We adopt the following processes to classify and preprocess
the collected CVEs:

Data classification. CAWE categorizes the CWE ID cor-
responding to each tactical vulnerability. First, we counted
all the CWE IDs corresponding to each tactic. Then, we
classified the 91,122 NVD data into 11 tactical vulnerabilities
and non-tactical vulnerabilities based on their CWE ID. The
data distribution is shown in TABLE I. The NVD vulnerability
data set is divided into training set validation set and test set
at a ratio of 6:2:2 for training and evaluation of our approach.
The bug reports of the three projects were divided equally for
training and testing baselines.

TABLE I
DATA STATISTICS FROM NVD, CHROMIUM, PHP AND THUNDERBIRD

Num Tactical NVD Chromium PHP Thunderbird

T1 Audit 194 2 0 0
T2 Authenticate Actors 2,576 9 0 4
T3 Authorize Actors 3,826 99 10 105
T4 Cross Cutting 54 0 0 0
T5 Encrypt Data 1,164 8 2 7
T6 Identify Actors 603 26 0 33
T7 Limit Access 529 14 4 5
T8 Limit Exposure 17 107 7 8
T9 Manage User Sessions 179 0 2 0
T10 Validate Inputs 33,534 151 37 189
T11 Verify Message Integrity 130 0 0 0
NT Non-tactical 48,316 763 104 1,079

Total 12 91,122 1,179 166 1,430

Data processing. To filter out the templated and trivial
information from the data, we use regular expressions to
preprocess the NVD data. We identify and delete the following
elements from the messages: (1) punctuations, (2) URL, (3)
email addresses, (4) author information, e.g., “reported by”,
(5) acknowledgment, e.g., “Thanks to”, (6) commit date, (7)
fix references, e.g., “Fixes #25995”. Finally, we use a widely-
used NLP library NLTK to process the descriptions and save
the results in a binary file. Since the machine learning model
is standardized for the input text preprocessing, we also adopt
the above preprocessing methods for bug reports.

C. Baselines

As this is the first work on identifying tactical bug reports,
there are no corresponding baselines. For the bug report
analysis task, there are some work on security bug report
prediction [20]–[22], [48], which can be adapted to identify
tactical bug reports. Therefore, we select two recent studies
proposed by Peter et al. [21] and Shu et al. [22] as the baseline
approach in this study.

Both approaches use Random Forest (RF), Naive Bayes
(NB), KNearest Neighbor (KNN), Multilayer Perceptron
(MLP), and Logistical Regression (LR) to train classifiers
based on the textual description of bug reports. To be objective,

similar to Wu et al.’s study [49], we directly use the source
code shared by Peter et al. [21] and Shu et al. [22] to suit
our tasks and keep all the settings of the parameters (i.e., key
parameters, the default values, and the tuning range of each
key parameter). Note that the length of the input text remains
the same as our approach. At the same time, to mitigate bias of
comparison with our method, We exploit the word embedding
of our method to convert the bug report into a vector matrix
as the input of these five classifiers.

D. Evaluation Metrics

Identifying bug reports with tactical vulnerabilities is a
typical text classification task. We employ the commonly-
used metrics to evaluate the effectiveness of the models:
Accuracy, Precision, Recall and F1-score. The calculation of
these metrics requires the classification result to be expressed
as an n∗n Confusion Matrix M , where n denotes the number
of classes. The rows i represent the true categories, and the
columns j represent the predicted categories, where i, j ∈ n.
The diagonal Mij (i = j) indicates the correct category of
i-type tactics.

Accuracy represents the proportion of correctly classified
samples to all samples. Precision measures the ratio of true-
positive samples to the total prediction results. It indicates how
many of the predicted positive samples are actually positive
samples. Recall is an indicator of coverage. It measures the
ratio of true-positive samples to the total number of samples
that are actually tactical categories. F1-score is the most
effective and the most important metric of model evaluation.
It is defined as the harmonic average of Precision and Recall.
Thus, F1-score can give the most reasonable evaluation results
of the model performance. In general, Precision and Recall are
usually inversely proportional, and both of them are difficult
to balance. As a comprehensive evaluation metric, F1-score
solves this problem well. Therefore, we choose F1-score as
the main evaluation metric.

E. Model Configuration

We perform hyper-parameter optimization so that the ma-
chine learning-based model can perform better and learn better
classification rules. To select the best classification model, we
compare the loss value of the validation set during the iterative
training process and then save the model when the loss value
is lowest. We have also selected the best parameter values to
ensure the effectiveness of classification.

For example, the length of tokens varies significantly in our
dataset. It has a big gap between the shortest description (i.e.,
four tokens of CVE-2018-20596) and the longest description
(i.e., 587 tokens of CVE-2019-6568). We observe that the early
changes in max len have a significant impact on accuracy.
With the increase of max len, the accuracy of models tends
to be stable gradually. If max len is too small, it will lose
many important features, while it will run out of memory and
affect the training speed when max len is enormous. The best
range of max len is between 80 and 110. In addition, we find
that in 95% of the cases, the length of tokens is less than



80, which is our basis for parameter setting. Note that other
parameters of the classification model can be optimized in a
similar pattern.

V. EXPERIMENTAL RESULTS
A. RQ1: How effective is Itactivul in identifying bug reports
with tactical vulnerabilities?

To demonstrate the effectiveness of Itactivul in identify-
ing bug reports with tactical vulnerabilities, we evaluate our
approach in three bug report datasets. These three datasets
come from three open source projects Chromium, PHP, and
Thunderbird bug report, which is described in Section IV-A.
TABLE II presents the performance of Itactivul on three bug
report datasets and compares it with the baselines. We can
observe that Itactivul outperforms baselines in terms of all met-
rics Accuracy, Precision, Recall, and F1-score. The average
improvements in terms of the three F1-score compared to the
baselines are 8.88%, 13.58%, and 6.61% points, respectively.
These results indicate that the tactical features automatically
learned by Itactivul can be effectively applied to bug reports.
Compared to the five baselines, Itactivul can capture the key
text features more precisely to identify tactical vulnerabilities.

We also observe that there are significant differences in the
evaluation performance of the three projects. The performance
of Itactivul and baselines in Thunderbird bug reports is higher
than Chromium and PHP bug reports. This finding shows
that the baseline method might be sensitive to the training
dataset. Therefore, existing approaches for security bug report
prediction are limited by the size of the dataset and the single
source of information (bug report related information), cannot
perform well for bug reports with tactical vulnerabilities. The
training dataset of Itactivul is NVD vulnerability descriptions
and is not limited to bug reports for specific projects. Itactivul
is the first attempt to solve this problem. Our results have
shown that it is a promising approach and could be effective
and practical for identifying bug reports with tactical vulner-
abilities in real-world software projects.

Summary for RQ1: Itactivul outperforms the baselines in
terms of all metrics Accuracy, Precision, Recall, and F1-
score and hence is effective and practical for identifying
bug reports with tactical vulnerabilities.

B. RQ2: How effective are the main components of Itactivul
for learning the text feature of tactical vulnerabilities?

To assess the effectiveness of each component, we evaluate
Itactivul using the NVD test dataset with 18,225 vulnerability
descriptions and compare it with the combination of each
component (combination baselines). The models used for
evaluation are the best-trained models. TABLE III presents
the evaluation results, and Itactivul is referred to as BiL-
STM+Att+Fast+FL. The columns Accuracy, Precision, Recall,
and F1-score show combination baselines and Itactivul perfor-
mance in the four basic classification metrics.

We can observe that Attenion, Fasttext embedding and Focal
loss function can achieve performance improvement on all four

evaluation metrics. As shown in TABLE III, under the same
model structure, adding Attention performs better. For exam-
ple, BiLSTM+Att+Fast outperforms BiLSTM+Fast in terms of
all metrics, which means adding Attention can learn tactical
features more effectively. Fasttext embedding and Focal loss
function are similar to the observations of Attention. This
observations shows that adding Attenion, Fasttext embedding
and Focal loss function helpful for boosting the effectiveness
of our approach.

Compared with the combination baselines, Itactivul can
identify more tactical categories. As shown in TABLE III, Itac-
tivul can identify three types of tactics, T1, T9, and T11, which
are not recognized by the baselines. The main component that
causes the difference in the classification results comes from
our loss function. Our approach extends the normal cross-
entropy loss function to the focal loss function. This evaluation
result shows that our loss function can effectively deal with
the class imbalance, and is helpful for the learning of different
types of tactical vulnerability features.

Furthermore, through TABLE III, we observe that two
types of tactical vulnerabilities, T4 (Cross Cutting) and T8
(Limit Exposure), could not be identified in the test set. To
figure out the reason, we inspect the data of these two types
of tactical. We find that weaknesses in the Cross Cutting
category are related to the design and architecture of multiple
security tactics and how they affect a system. The vulnerability
description text features in the Cross Cutting category overlap
with other tactical strategies, making it difficult to abstract
and effectively learn to distinguish these features significantly.
For Limit Exposure tactical category, we find that its data is
only 17 in the NVD data set. The highly scarce amount of
Limit Exposure tactical category data makes it difficult for the
multi-class model to learn its characteristics, especially since
the training data is unbalanced.

Summary for RQ2: The Attenion, Fasttext embedding,
and Focal loss function are effective and helpful for
boosting the effectiveness of our approach. In addition,
the loss function is helpful to deal with class imbalance.

C. RQ3: What are the characteristics of tactical vulnerabili-
ties learned by Itactivul?

To understand which features the model has learned to
distinguish different tactical vulnerabilities, we retroactively
counted the weight of key phrases according to the weight of
attention. TABLE IV lists a sample description of Authenticate
Actors tactical vulnerability. As the vulnerability description
shows, the vulnerability stems from the improper processing
of authentication requests by Windows, resulting in a privi-
lege escalation vulnerability in multiple versions of Windows
servers. We can observe that the word authentication has the
highest recognition feature weight (i.e., the darkest color).
As we know, Authenticate Actors tactical vulnerability not
only needs to be related to authorization, but also requires
some specific trigger conditions. The trigger condition words
improperly and handles are the feature weights of sentences



TABLE II
PERFORMANCE RESULTS OF THE BASELINE APPROACHES AND ITACTIVUL ON CHROMIUM, PHP, AND THUNDERBIRD BUG REPORTS

Approach Chromium PHP Thunderbird

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

RF 0.6034 0.4466 0.6034 0.5065 0.6024 0.5246 0.6024 0.5057 0.7343 0.6047 0.7343 0.6485
NB 0.5881 0.3844 0.5881 0.4506 0.5542 0.4986 0.5542 0.5164 0.7217 0.5632 0.7217 0.6325

KNN 0.6186 0.4957 0.6186 0.5322 0.6145 0.5804 0.6145 0.5386 0.7287 0.5923 0.7287 0.6371
MLP 0.6051 0.3661 0.6051 0.4562 0.5783 0.3344 0.5783 0.4238 0.7287 0.5310 0.7287 0.6143
LR 0.6153 0.3785 0.6153 0.4687 0.6145 0.3776 0.6145 0.4677 0.7343 0.5391 0.7343 0.6218

Itactivul 0.6616 0.5295 0.6616 0.5717 0.6667 0.5927 0.6667 0.6263 0.7448 0.6871 0.7448 0.6970

Average +5.55% +11.63% +5.55% +8.88% +7.39% +12.95% +7.39% +13.58% +1.52% +12.10% +1.52% +6.61%
* RF, NB, KNN, MLP, and LR refer to five baseline methods. Average refers to the average difference between Itactivul and the baseline method.
* The best results are highlighted in bold.

TABLE III
EFFECTIVENESS OF EACH COMPONENT IN ITACTIVUL IN EVALUATION METRICS AND IDENTIFIABLE TACTICAL

Approach Accuracy Precision Recall F1-score Identifiable Tactical Non-Identifiable Tactical

BiLSTM+Word 0.8372 0.7997 0.8372 0.8165 T2, T3, T10, NT T1, T4, T5, T6, T7, T8, T9, T11
BiLSTM+Fast 0.8445 0.8246 0.8445 0.8331 T2, T3, T5, T10, NT T1, T4, T6, T7, T8, T9, T11
BiLSTM+Att+Word 0.8557 0.8503 0.8557 0.8496 T2, T3, T5, T6, T7, T10, NT T1, T4, T8, T9, T11
BiLSTM+Att+Fast 0.8623 0.8554 0.8623 0.8541 T2, T3, T5, T6, T7, T10, NT T1, T4, T8, T9, T11
BiLSTM+Att+Fast+FL 0.8658 0.8623 0.8658 0.8618 T1, T2, T3, T5, T6, T7, T9, T10, T11, NT T4, T8

* Word, Fast, Att and FL refer to the Word2vec embedding, the Fasttext embedding, Attention and the Focal loss function, respectively.
* The best results are highlighted in bold.

second only to authentication words, indicating that the word
weights learned by our model can effectively represent the
tactical vulnerability pattern.

TABLE IV
EXAMPLE OF ITACTIVUL EXTRACTING ATTENTION WEIGHT

VISUALIZATION

CVE ID: CVE-2019-0543
CWE ID: CWE-287 (Improper Authentication)
Tactical Type: Authenticate Actors
Vulnerability description:
An elevation of privilege vulnerability exists when Windows
improperly handles authentication requests , aka ” Microsoft

Windows Elevation of Privilege Vulnerability.” This affects Windows
7, Windows Server 2012 R2, Windows RT 8.1, Windows Server 2008,
Windows Server 2019, Windows Server 2012, Windows 8.1, Windows
Server 2016, Windows Server 2008 R2, Windows 10, Windows 10
Servers.

* The darker the word, the higher the attention weight value.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

To obtain the pattern key phrases of each tactical category,
we summarized the pattern phrases of different tactics accord-
ing to the sum and ranking of the weight words. TABLE V
presents the top 10 key phrases for each tactical vulnerability.
We can observe that these key phrases are closely related
to the triggering conditions of different levels of tactical
vulnerability. For example, the key phrases of Encrypt Data
tactical vulnerability are related to data generation (random),
storage (stores), encryption (password, unencrypted, cleart-
ext, encryption, cryptographic), and verification (credentials,
signature, authentication). For non-tactical vulnerability (NT),
the key phrases are mainly about coding weakness phrases,

Hardware

Language File Os
Functio

n

Parameter
Update

Edition
Vendor

Versio
n

Other

Applica
tion

Security

Pattern Type

0

100

200

300

400

Nu
m

be
r

1 3 5 9 11 18 19 20
41

80

248

303

442

Fig. 3. Distribution of category of pattern key phrases. Other refer to key
phrases that cannot be classified.

such as buffer overflow, out-of-bounds, memory, etc. We
expect that the summarized tactical pattern can be used to
improve the performance of identifying bug reports with
tactical vulnerabilities and deepen developers’ awareness of
tactical vulnerabilities.

In addition, to understand the characteristics of these pat-
terns more comprehensively, we extracted the top 100 key
phrases of each tactical vulnerability to analyze the distribution
of these patterns. Fig. 3 shows the statistics of pattern key
phrases category. In this classification process, 1200 features



TABLE V
TOP-10 CHARACTERISTICS OF TACTICAL VULNERABILITY PATTERN KEY WORD AND PHRASES

Num Tactical Pattern Key Phrase

T1 Audit log, password, information, sensitive, authentication, credentials, allows, files, disclosure, exposure
T2 Authenticate Actors authentication, bypass authentication, allows, password, hard-coded, remote attackers, bypass, improper, session, credentials
T3 Authorize Actors upload, allows, permissions, authorization, vulnerability, access, permission, dll, incorrect, improper
T4 Cross Cutting check, improper, exception, vulnerability, conditions, uncaught, error, exists, denial, allows
T5 Encrypt Data credentials, unencrypted, password, cleartext, encryption, signature, stores, authentication, cryptographic, random
T6 Identify Actors verify, certificate, x.509, ssl, validation, validate, tls, verification, allows, authentication
T7 Limit Access xxe, entity, external, xml, vulnerability, injection, attack, deputy, error, allows
T8 Limit Exposure inclusion, allows, insecure, file, vulnerability, flaw, uses, error, local, unintended
T9 Manage User Sessions session, fixation, authentication, vulnerability, authorization, allows, improper, expiration, insufficient, validation
T10 Validate Inputs xss, allows, vulnerability, cross-site scripting, csrf, via, sql injection vulnerability, remote attackers, inject, injection
T11 Verify Message Integrity exception, vulnerability, uncaught, error, allows, check, exists, improper, validate, authentication
NT Non-tactical allows, buffer overflow, via, vulnerability, remote attackers, corruption, verify, out-of-bounds, memory, aka

were independently labeled by two Ph.D. students with rich
security experience. Then they met to discuss the inconsistent
marks and finally determined the classification results. The
marked kappa coefficient is 0.87, which indicates that the
initial classification is effective. We can see that security-
relevant key phrases (442) have the most number, followed by
key phrases related to the application (248) and version (80).
The results of this pattern classification show that our approach
can extract the key feature patterns (security-relevant) of
tactical vulnerabilities. In addition, our approach can also
understand the potential connection between vulnerabilities
and external information (such as applications and versions)
to extract detailed feature patterns.

Summary for RQ3: The tactical vulnerability pattern
learned by Itactivul is effective and has tactical relevance.
In addition, Itactivul can also identify potential tactical
patterns.

VI. DISCUSSION

A. How about the performance of various hidden layers of
our method?

The neural network is a “black box”, given the input and
parameters, we can observe its output. In this work, we want
to explore the learning performance of the hidden layer of our
approach instead of blindly trusting the classification results.
To this end, we use t-SNE to visualize the features of the
hidden layers. This explainability can deepen our understand-
ing and judgment of our model. t-SNE is a popular non-
linear dimensionality reduction technology that can realize
the visualization of high-dimensional data in low-dimensional
feature spaces [50].

Specifically, we first extracted the feature vector output from
various hidden layers, including embedding layer, BiLSTM
layer, Attention Layer, and the penultimate fully connected
layer. Then we use t-SNE to reduce the dimension of the high-
dimensional feature vector learned by the model to achieve
visualization. These feature vectors represent new feature
representations learned by the various hidden layer. The clearer

their separation in the feature space, the more effective the
learned features.

Fig. 4 illustrates the results of t-SNE 2-dimensional visual-
ization. We observe that FC layer embedding feature vectors
is easier to distinguish than other hidden layers. We can
also observe that as the hidden layer deepens (Fig. 4 (a) to
Fig. 4 (d)), the class separation in the feature space becomes
clearer. The results show that our approach can learn more
discriminative tactical embeddings features. Different hidden
layers make the model’s ability to learn features better.

75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

80

(a) Embedding Layer

80 60 40 20 0 20 40 60 80

75

50

25

0

25

50

75

(b) BiLSTM Layer

100 75 50 25 0 25 50 75

60

40

20

0

20

40

60

(c) Attention Layer

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

(d) FC Layer

Fig. 4. The t-SNE visualization of various layers word embeddings learned
from NVD test dataset.

B. Threats to Validity

In this section, we analyze the main threats to the validity
of our research.

Internal Validity. The threat of internal validity is related to
our code implementation and parameter settings. To minimize
this internal threat, we checked and tested our source code
in detail and made full use of third-party implementations.
Besides, we perform hyperparameter optimization and try
different parameters so that we can get the best model. We
have also publicly published our source code, datasets and



detailed our experimental parameters in this study so that other
researchers can replicate and extend our work.

External Validity. The threat to our experiment’s external
validity comes from the quality and generalization ability of
the datasets. The training dataset we use is the vulnerability
descriptions of the NVD website, which belongs to differ-
ent types of vulnerabilities, covers a long time, and comes
from different software projects and programming languages.
However, these data only come from the NVD website. To
verify the generalization ability of our proposed method in
bug reports, we demonstrated whether our method could
automatically classify Chromium, PHP, and Thunderbird bug
reports.

Construct Validity. The threat of construct validity is
related to the evaluation metrics used in our experiment.
We use five popular performance metrics to evaluate the
performance of our proposed method and the baseline model.
In addition, in order to evaluate whether the architectural
tactical vulnerability characteristics learned by our model from
the vulnerability description can be applied to bug reports. We
test the effectiveness of our method on the open source bug
report datasets. These datasets come from publicly published
papers, and the CWE corresponding to the security bug report
is marked.

VII. RELATED WORK
In this section, we mainly analyze related studies to our

work, such as software architecture for security, text mining-
based security weakness detection.

A. Software Architectural Vulnerabilities
Some studies have conducted empirical research on archi-

tecture security vulnerabilities [47], [51]–[54], and Feng et
al. [55] verified that architecture design vulnerabilities and
security vulnerabilities are highly correlated through ten open-
source projects, which laid the foundation for our in-depth
understanding and development of automated tools. To ensure
the security of the software architecture, Gepalakrishnan et
al. [56] proposed an approach to recommend suitable archi-
tecture tactics based on the latent topical in source code.

The design, implementation, and modification of the archi-
tecture tactics will inevitably lead to architecture weakness.
Santos et al. [4] proposed a method to map the CAWE-
Models to the software architecture model, which can detect
architecture weakness in the design phase of critical system.
Mehdi and Jane [57] apply machine learning methods to
discover architectural tactics in the code and monitor sensitive
areas of the code to guide changes to prevent architecture
deterioration. Keim et al. [45] use BERT to check whether
the architectural tactics in the code are implemented correctly.

Different from the above research that actively detects the
tactical vulnerabilities in the code. In this study, we focus
on identifying bug reports with tactical vulnerabilities. Bug
reports record tactical vulnerabilities that have been discov-
ered during the testing and maintenance process. The tactical
vulnerabilities in the bug report need to be identified and
prioritized on time.

B. Text Mining-based Security Weakness Detection

As security issues have received more attention, researchers
in software engineering have done a lot of research to use
machine learning to automatically identify security-related text
(such as bug reports, vulnerability descriptions, commits).
Zhang et al. [58] explained the importance of bug report
analysis and possible problems. Sabetta et al. [59] use ma-
chine learning to identify security-related commits in source
code repositories automatically. Similarly, Peter et al. [21]
use text filtering and sorting to detect security bug reports
automatically. Shu et al. [22] improved the security bug report
detection performance of Peter et al. [21] through hyperparam-
eter optimization. Furthermore, Hogan et al. [60] studied the
challenge of label vulnerability-contributing commits (VCCs)
and proposed an approach to label VCCs according to the
commits listed in CVE manually.

The mining and extraction of vulnerability description infor-
mation have received a lot of attention. Han et al. [61] use the
CNN model to mine the relationship between the vulnerability
description and the security level. Palacio et al. [62] use
vulnerability description learning word embedding for the
identification of open source software security issues. Li et
al. [63] show that text mining methods can be used to mine
vulnerability features. Many existing studies have shown that
different representation characteristics can effectively improve
the performance of data-driven tasks, such as Android malware
clustering [64] and code Summarization [65]. Therefore, it
is valuable to explore whether the vulnerability description
characteristics can be exploited for tactical vulnerability bug
report identification.

For this study, Itactivul is a fine-grained classification for
identifying bug reports with tactical vulnerabilities. Specifi-
cally, we trained a deep learning model to exploit the charac-
teristics of architectural tactics described by vulnerabilities.
Thus, the model is applied to identify bug reports with
different tactical vulnerabilities.

VIII. CONCLUSION

In this paper, we propose Itactivul that uses deep learning to
identify bug reports with tactical vulnerabilities automatically.
First, we exploit attention-based BiLSTM to capture text fea-
tures from the NVD vulnerability descriptions automatically.
After that, we use attention weight to extract key phrases that
are most relevant to tactical vulnerability. Manual analysis
shows that the features learned by Itactivul are effective.
Finally, we verify Itactivul identification ability on Chromium,
PHP, and Thunderbird bug report datasets.

ACKNOWLEDGMENT

This work was supported in part by the Key Research
and Development Program of Shaanxi 2021GY-041, in part
by the Key Laboratory of Advanced Perception and Intelli-
gent Control of High-end Equipment, Ministry of Education
GDSC202006, in part by the seed Foundation of Innovation
and Creation for Graduate Students in Northwestern Polytech-
nical University CX2020246.



REFERENCES

[1] L. Braz, E. Fregnan, G. Çalikli, and A. Bacchelli, “Why don’t develop-
ers detect improper input validation?’; drop table papers;–,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 499–511.

[2] A. Sejfia and N. Medvidović, “Strategies for pattern-based detection of
architecturally-relevant software vulnerabilities,” in 2020 IEEE Interna-
tional Conference on Software Architecture (ICSA). IEEE, 2020, pp.
92–102.

[3] J. C. Santos, A. Sejfia, T. Corrello, S. Gadenkanahalli, and M. Mi-
rakhorli, “Achilles’ heel of plug-and-play software architectures: a
grounded theory based approach,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 671–
682.

[4] J. C. Santos, S. Suloglu, J. Ye, and M. Mirakhorli, “Towards an
automated approach for detecting architectural weaknesses in critical
systems,” in Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops, 2020, pp. 250–253.

[5] J. C. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster,
“An empirical study of tactical vulnerabilities,” Journal of Systems and
Software, vol. 149, pp. 263–284, 2019.

[6] X. Chen, Z. Yuan, Z. Cui, D. Zhang, and X. Ju, “Empirical studies on the
impact of filter-based ranking feature selection on security vulnerability
prediction,” IET Software, 2020.

[7] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, and Z. Wang, “Large-
scale empirical studies on effort-aware security vulnerability prediction
methods,” IEEE Transactions on Reliability, vol. 69, no. 1, pp. 70–87,
2019.

[8] G. McGraw, Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[9] K. Sahu, R. Shree, and R. Kumar, “Risk management perspective in
sdlc,” International Journal of Advanced Research in Computer Science
and Software Engineering, vol. 4, no. 3, 2014.

[10] R. Kumar, S. A. Khan, and R. A. Khan, “Revisiting software security
risks,” Journal of Advances in Mathematics and Computer Science, pp.
1–10, 2015.

[11] A. Agrawal, M. Alenezi, D. Pandey, R. Kumar, and R. A. Khan, “Usable-
security assessment through a decision making procedure,” ICIC Express
Letters, vol. 10, no. 8, pp. 665–672, 2019.

[12] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2003.

[13] M. Alenezi, A. K. Pandey, R. Verma, M. Faizan, S. Chandra, A. Agrawal,
R. Kumar, and R. A. Khan, “Evaluating the impact of software security
tactics: A design perspective.”

[14] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-
centric approach for automating traceability of quality concerns,” in 2012
34th international conference on software engineering (ICSE). IEEE,
2012, pp. 639–649.

[15] J. Van Gurp, S. Brinkkemper, and J. Bosch, “Design preservation over
subsequent releases of a software product: a case study of baan erp,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 17, no. 4, pp. 277–306, 2005.

[16] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot
study of pattern evolution,” in First International Symposium on Em-
pirical Software Engineering and Measurement (ESEM 2007). IEEE,
2007, pp. 449–451.

[17] M. Mirakhorli and J. Cleland-Huang, “Modifications, tweaks, and bug
fixes in architectural tactics,” in 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories. IEEE, 2015, pp. 377–380.

[18] J. C. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal,
and A. Sejfia, “Understanding software vulnerabilities related to archi-
tectural security tactics: An empirical investigation of chromium, php
and thunderbird,” in 2017 IEEE International Conference on Software
Architecture (ICSA). IEEE, 2017, pp. 69–78.

[19] S. C. Mayana Pereira, “Identifying security bug reports based solely on
report titles and noisy data,” https://docs.microsoft.com/en-us/security/
engineering/identifying-security-bug-reports.

[20] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010). IEEE, 2010,
pp. 11–20.

[21] F. Peters, T. T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and ranking
for security bug report prediction,” IEEE Transactions on Software
Engineering, vol. 45, no. 6, pp. 615–631, 2019.

[22] R. Shu, T. Xia, L. Williams, and T. Menzies, “Better security bug
report classification via hyperparameter optimization,” CoRR, vol.
abs/1905.06872, 2019. [Online]. Available: http://arxiv.org/abs/1905.
06872

[23] X. Wu, W. Zheng, X. Chen, Y. Zhao, T. Yu, and D. Mu, “Improving high-
impact bug report prediction with combination of interactive machine
learning and active learning,” Information and Software Technology, vol.
133, p. 106530, 2021.

[24] X. Wu, W. Zheng, X. Chen, F. Wang, and D. Mu, “Cve-assisted
large-scale security bug report dataset construction method,” Journal
of Systems and Software, vol. 160, p. 110456, 2020.

[25] W. Zheng, J. Gao, X. Wu, F. Liu, Y. Xun, G. Liu, and X. Chen,
“The impact factors on the performance of machine learning-based
vulnerability detection: A comparative study,” Journal of Systems and
Software, vol. 168, p. 110659, 2020.

[26] I. C. for Secure Design, “Avoiding the top 10 software security design
flaws,” http://cybersecurity.ieee.org/center-for-secure-design/.

[27] C. Williams, “Kernel-memory-leaking intel processor design flaw
forces linux, windows redesign,” https://www.theregister.com/2018/01/
02/intel cpu design flaw/.

[28] F. A. Bhuiyan, R. Shakya, and A. Rahman, “Can we use software bug
reports to identify vulnerability discovery strategies?” in Proceedings of
the 7th Symposium on Hot Topics in the Science of Security, 2020, pp.
1–10.

[29] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[30] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[31] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), 2017, pp. 220–223.

[32] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[33] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: Value-flow-based
precise code embedding,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–27, 2020.

[34] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet
in software engineering,” IEEE Transactions on Software Engineering,
2019.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[36] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[37] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computational Linguistics,
April 2017, pp. 427–431.

[38] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[39] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in 2015
IEEE International Conference on Computer Vision (ICCV), 2015, pp.
2650–2658.

[40] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[41] H. Binyamini, R. Bitton, M. Inokuchi, T. Yagyu, Y. Elovici, and
A. Shabtai, “An automated, end-to-end framework for modeling attacks
from vulnerability descriptions,” arXiv preprint arXiv:2008.04377, 2020.

[42] M. Tikhomirov, N. Loukachevitch, A. Sirotina, and B. Dobrov, “Using
bert and augmentation in named entity recognition for cybersecurity do-
main,” in International Conference on Applications of Natural Language
to Information Systems. Springer, 2020, pp. 16–24.

[43] K. Simran, S. Sriram, R. Vinayakumar, and K. Soman, “Deep learning
approach for intelligent named entity recognition of cyber security,” in



International Symposium on Signal Processing and Intelligent Recogni-
tion Systems. Springer, 2019, pp. 163–172.

[44] H. Gasmi, A. Bouras, and J. Laval, “Lstm recurrent neural networks for
cybersecurity named entity recognition,” ICSEA, vol. 11, p. 2018, 2018.

[45] S. Dasgupta, A. Piplai, A. Kotal, A. Joshi et al., “A comparative
study of deep learning based named entity recognition algorithms for
cybersecurity,” in 4th International Workshop on Big Data Analytics for
Cyber Intelligence and Defense, IEEE International Conference on Big
Data, 2020.

[46] R. A. Bridges, C. L. Jones, M. D. Iannacone, K. M. Testa, and J. R.
Goodall, “Automatic labeling for entity extraction in cyber security,”
arXiv preprint arXiv:1308.4941, 2013.

[47] J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal,
and A. Sejfia, “Understanding software vulnerabilities related to archi-
tectural security tactics: An empirical investigation of chromium, php
and thunderbird,” in 2017 IEEE International Conference on Software
Architecture (ICSA), 2017, pp. 69–78.

[48] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” Journal
of Systems and Software, vol. 117, pp. 166–184, 2016.

[49] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case
study on data label correctness for security bug report prediction,” IEEE
Transactions on Software Engineering, 2021.

[50] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[51] D. Gonzalez, F. Alhenaki, and M. Mirakhorli, “Architectural security
weaknesses in industrial control systems (ics) an empirical study based
on disclosed software vulnerabilities,” in 2019 IEEE International
Conference on Software Architecture (ICSA), 2019, pp. 31–40.

[52] M. Mirakhorli, M. Galster, and L. Williams, “Understanding software
security from design to deployment,” SIGSOFT Softw. Eng. Notes,
vol. 45, no. 2, p. 25–26, Apr. 2020. [Online]. Available: https:
//doi.org/10.1145/3385678.3385687

[53] A. Sejfia, “A pilot study on architecture and vulnerabilities: Lessons
learned,” in 2019 IEEE/ACM 2nd International Workshop on Establish-
ing the Community-Wide Infrastructure for Architecture-Based Software
Engineering (ECASE), 2019, pp. 42–47.

[54] L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen, “Towards
automated security design flaw detection,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering Workshop
(ASEW), 2019, pp. 49–56.

[55] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao, “Towards an
architecture-centric approach to security analysis,” in 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2016, pp.
221–230.

[56] R. Gopalakrishnan, P. Sharma, M. Mirakhorli, and M. Galster, “Can
latent topics in source code predict missing architectural tactics?” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 15–26.

[57] M. Mirakhorli and J. Cleland-Huang, “Detecting, tracing, and mon-
itoring architectural tactics in code,” IEEE Transactions on Software
Engineering, vol. 42, no. 3, pp. 205–220, 2015.

[58] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey
on bug-report analysis,” Science China Information Sciences, vol. 58,
no. 2, pp. 1–24, 2015.

[59] A. Sabetta and M. Bezzi, “A practical approach to the automatic
classification of security-relevant commits,” in 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018. IEEE Computer Society,
2018, pp. 579–582. [Online]. Available: https://doi.org/10.1109/ICSME.
2018.00058

[60] K. Hogan, N. Warford, R. Morrison, D. Miller, S. Malone, and J. Purtilo,
“The challenges of labeling vulnerability-contributing commits,” in 2019
IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, pp. 270–275.

[61] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict severity
of software vulnerability using only vulnerability description,” in 2017
IEEE International conference on software maintenance and evolution
(ICSME). IEEE, 2017, pp. 125–136.

[62] D. N. Palacio, D. McCrystal, K. Moran, C. Bernal-Cárdenas, D. Poshy-
vanyk, and C. Shenefiel, “Learning to identify security-related issues
using convolutional neural networks,” in 2019 IEEE International con-
ference on software maintenance and evolution (ICSME). IEEE, 2019,
pp. 140–144.

[63] X. Li, J. Chen, Z. Lin, L. Zhang, Z. Wang, M. Zhou, and W. Xie, “A
mining approach to obtain the software vulnerability characteristics,” in
2017 Fifth International Conference on Advanced Cloud and Big Data
(CBD). IEEE, 2017, pp. 296–301.

[64] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou,
“Familial clustering for weakly-labeled android malware using hybrid
representation learning,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3401–3414, 2019.

[65] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summarization via
hierarchical attention,” IEEE Transactions on software Engineering,
2020.


