
Robust Policy Gradient against Strong Data Corruption

Xuezhou Zhang 1 Yiding Chen 1 Xiaojin Zhu 1 Wen Sun 2

Abstract
We study the problem of robust reinforcement
learning under adversarial corruption on both re-
wards and transitions. Our attack model assumes
an adaptive adversary who can arbitrarily corrupt
the reward and transition at every step within an
episode, for at most "-fraction of the learning
episodes. Our attack model is strictly stronger
than those considered in prior works. Our first
result shows that no algorithm can find a bet-
ter than O(")-optimal policy under our attack
model. Next, we show that surprisingly the nat-
ural policy gradient (NPG) method retains a nat-
ural robustness property if the reward corruption
is bounded, and can find an O(

p
")-optimal pol-

icy. Consequently, we develop a Filtered Pol-
icy Gradient (FPG) algorithm that can tolerate
even unbounded reward corruption and can find
an O("1/4)-optimal policy. We emphasize that
FPG is the first that can achieve a meaningful
learning guarantee when a constant fraction of
episodes are corrupted. Complimentary to the
theoretical results, we show that a neural imple-
mentation of FPG achieves strong robust learning
performance on the MuJoCo continuous control
benchmarks.

1. Introduction
Policy gradient methods are a popular class of Reinforce-
ment Learning (RL) methods among practitioners, as they
are amenable to parametric policy classes (Schulman et al.,
2015b; 2017), resilient to modeling assumption mismatches
(Agarwal et al., 2019; 2020a), and they directly optimizing
the cost function of interest. However, one current drawback
of these methods and most existing RL algorithms is the lack
of robustness to data corruption, which severely limits their
applications to high-stack decision-making domains with
highly noisy data, such as autonomous driving, quantitative

1University of Wisconsin–Madison 2Cornell University. Corre-
spondence to: Xuezhou Zhang <xzhang784@wisc.edu>, Wen Sun
<ws455@cornell.com>.

trading, or medical diagnosis.

In fact, data corruption can be a larger threat in the RL
paradigm than in traditional supervised learning, because
supervised learning is often applied in a controlled environ-
ment where data are collected and cleaned by highly-skilled
data scientists and domain experts, whereas RL agents are
developed to learn in the wild using raw feedbacks from
the environment. While the increasing autonomy and less
supervision mark a step closer to the goal of general artifi-
cial intelligence, they also make the learning system more
susceptible to data corruption: autonomous vehicles can
misread traffic signs when the signs are contaminated by
adversarial stickers (Eykholt et al., 2018); chatbot can be
mistaught by a small group of tweeter users to make misog-
ynistic and racist remarks (Neff & Nagy, 2016); recom-
mendation systems can be fooled by a small number of
fake clicks/reviews/comments to rank products higher than
they should be. Despite the many vulnerabilities, robust-
ness against data corruption in RL has not been extensively
studied only until recently.

The existing works on robust RL are mostly theoretical and
can be viewed as a successor of the adversarial bandit litera-
ture. However, several drawbacks of this line of approach
make them insufficient to modern real-world threats faced
by RL agents. We elaborate them below:

1. Reward vs. transition contamination: The majority of
prior works on adversarial RL focus on reward contam-
ination (Even-Dar et al., 2009; Neu et al., 2010; 2012;
Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jin
et al., 2020a), while in reality the adversary often has
stronger control during the adversarial interactions. For
example, when a chatbot interacts with an adversarial
user, the user has full control over both the rewards and
transitions during that conversation episode.

2. Density of contamination: The existing works that do
handle adversarial/time-varying transitions can only tol-
erate sublinear number of interactions being corrupted
(Lykouris et al., 2019; Cheung et al., 2019; Ornik &
Topcu, 2019; Ortner et al., 2019). These methods would
fail when the adversary’s attack budget also grows lin-
early with time, which is often the case in practice.

3. Practicability: The majority of these work focuses on
the setting of tabular MDPs and cannot be applied to

ar
X

iv
:2

10
2.

05
80

0v
3

 [c
s.L

G
]

8
Ju

n
20

21

Robust Policy Gradient against Strong Data Corruption

real-world RL problems that have large state and action
spaces and require function approximations.

In this work, we address the above shortcomings by devel-
oping a variant of natural policy gradient (NPG) methods
that, under the linear value function assumption, are prov-
ably robust against strongly adaptive adversaries, who can
arbitrarily contaminate both rewards and transitions in "
fraction of all learning episodes. Our algorithm does not
need to know ", and is adaptive to the contamination level.
Specifically, it guarantees to find an Õ("1/4)-optimal policy
in a polynomial number of steps. Complementarily, we also
present a corresponding lower-bound, showing that no algo-
rithm can consistently find a better than ⌦(") optimal policy,
even with infinite data. In addition to the theoretical results,
we also develop a neural network implementation of our
algorithm which is shown to achieve strong robustness per-
formance on the MuJoCo continuous control benchmarks
(Todorov et al., 2012), proving that our algorithm can be
applied to real-world, high-dimensional RL problems.

2. Related Work
RL in standard MDPs. Learning MDPs with stochastic
rewards and transitions is relatively well-studied for the
tabular case (that is, a finite number of states and actions).
For example, in the episodic setting, the UCRL2 algorithm
(Auer et al., 2009) achieves O(

p

H4S2AT) regret, where
H is the episode length, S is the state space size, A is
the action space size, and T is the total number of steps.
Later the UCBVI algorithm (Azar et al., 2017; Dann et al.,
2017) achieves the optimal O(

p

H2SAT) regret matching
the lower-bound (Osband & Van Roy, 2016; Dann & Brun-
skill, 2015). Recent work extends the analysis to various
linear setting (Jin et al., 2020b; Yang & Wang, 2019b;a;
Zanette et al., 2020; Ayoub et al., 2020; Zhou et al., 2020;
Cai et al., 2019; Du et al., 2019; Kakade et al., 2020) with
known linear feature. For unknown feature, (Agarwal et al.,
2020b) proposes a sample efficient algorithm that explic-
itly learns feature representation under the assumption that
the transition matrix is low rank. Beyond the linear set-
tings, there are works assuming the function class has low
Eluder dimension which so far is known to be small only for
linear functions and generalized linear models (Osband &
Van Roy, 2014). For more general function approximation,
(Jiang et al., 2017; Sun et al., 2019) showed that polynomial
sample complexity is achievable as long as the MDP and
the given function class together induce low Bellman rank
and Witness rank, which include almost all prior models
such as tabular MDP, linear MDPs (Yang & Wang, 2019b;
Jin et al., 2020b), Kernelized nonlinear regulators (Kakade
et al., 2020), low rank MDP (Agarwal et al., 2020b), and
Bellman completion under linear functions (Zanette et al.,
2020).

Policy Gradient and Policy Optimization Policy Gradi-
ent (Williams, 1992; Sutton et al., 1999) and Policy opti-
mization methods are widely used in practice (Kakade &
Langford, 2002; Schulman et al., 2015b; 2017) and have
demonstrated amazing performance on challenging appli-
cations (Berner et al., 2019; Akkaya et al., 2019). Un-
like model-based approach or Bellman-backup based ap-
proaches, PG methods directly optimize the objective func-
tion and are often more robust to model-misspecification
(Agarwal et al., 2020a). In addition to being robust to model-
misspecification, we show in this work that vanilla NPG
is also robust to constant fraction and bounded adversarial
corruption on both rewards and transitions.

RL with adversarial rewards. Almost all prior works
on adversarial RL study the setting where the reward func-
tions can be adversarial but the transitions are still stochas-
tic and remain unchanged throughout the learning process.
Specifically, at the beginning of each episode, the adversary
must decide on a reward function for this episode, and can
not change it for the rest of the episode. Also, the major-
ity of these works focus on tabular MDPs. Early works
on adversarial MDPs assume a known transition function
and full-information feedback. For example, (Even-Dar
et al., 2009) proposes the algorithm MDP-E and proves a
regret bound of Õ(⌧

p
T logA) in the non-episodic setting,

where ⌧ is the mixing time of the MDP; Later, (Zimin &
Neu, 2013) consider the episodic setting and propose the O-
REPS algorithm which applies Online Mirror Descent over
the space of occupancy measures, a key component adopted
by (Rosenberg & Mansour, 2019) and (Jin et al., 2020a).
O-REPS achieves the optimal regret Õ(

p
H2T log(SA))

in this setting. Several works consider the harder bandit
feedback model while still assuming known transitions. The
work (Neu et al., 2010) achieves regret Õ(

p

H3AT/↵) as-
suming that all states are reachable with some probability ↵
under all policies. Later, (Neu et al., 2010) eliminates the
dependence on ↵ but only achieves O(T 2/3) regret. The O-
REPS algorithm of (Zimin & Neu, 2013) again achieves the
optimal regret Õ(

p

H3SAT). To deal with unknown transi-
tions, (Neu et al., 2012) proposes the Follow the Perturbed
Optimistic Policy algorithm and achieves Õ(

p

H2S2A2T)
regret given full-information feedback. Combining the idea
of confidence sets and Online Mirror Descent, the UC-O-
REPS algorithm of (Rosenberg & Mansour, 2019) improves
the regret to Õ(

p

H2S2AT). A few recent works start to
consider the hardest setting assuming unknown transition
as well as bandit feedback. (Rosenberg & Mansour, 2019)
achieves O(T 3/4) regret, which is improved by (Jin et al.,
2020a) to Õ(

p

H2S2AT), matching the regret of UC-O-
REPS in the full information setting. Also, note that the
lower bound of ⌦(

p

H2SAT) (Jin et al., 2018) still ap-
plies. In summary, it is found that on tabular MDPs with
oblivious reward contamination, an O(

p
T) regret can still

Robust Policy Gradient against Strong Data Corruption

be achieved. Recent improvements include best-of-both-
worlds algorithms (Jin & Luo, 2020), data-dependent bound
(Lee et al., 2020) and extension to linear function approxi-
mation (Neu & Olkhovskaya, 2020).

RL with adversarial transitions and rewards. Very few
prior works study the problem of both adversarial transitions
and adversarial rewards, in fact, only one that we are aware
of (Lykouris et al., 2019). They study a setting where only
a constant C number of episodes can be corrupted by the
adversary, and most of their technical effort dedicate to de-
signing an algorithm that is agnostic to C, i.e. the algorithm
doesn’t need to know the contamination level ahead of time.
As a result, their algorithm takes a multi-layer structure
and cannot be easily implemented in practice. Their algo-
rithm achieves a regret of O(C

p
T) for tabular MDPs and

O(C2
p
T) for linear MDPs, which unfortunately becomes

vacuous when C � ⌦(
p
T) and C � ⌦(T 1/4), respec-

tively. Note that the contamination ratio C/T approaches
zero when T increases, and hence their algorithm cannot
handle constant fraction contamination. Notably, in all of
the above works, the adversary can partially adapt to the
learner’s behavior, in the sense that the adversary can pick
an adversary MDP Mk or reward function rk at the start of
episode k based on the history of interactions so far. How-
ever, it can no longer adapt its strategy after the episode
starts, and therefore, the learner can still use a randomiza-
tion strategy to trick the adversary.

A separate line of work studies the online MDP setting,
where the MDP is not adversarial but slowly change over
time, and the amount of change is bounded under a total-
variation metric (Cheung et al., 2019; Ornik & Topcu, 2019;
Ortner et al., 2019; Domingues et al., 2020). Due to the
slow-changing nature of the environment, algorithms in
these works typically uses a sliding window approach where
the algorithm keeps throwing away old data and only learns
a policy from recent data, assuming that most of them come
from the MDP that the agent is currently experiencing.
These methods typically achieve a regret in the form of
O(�cK1�c), where � is the total variation bound. It is
worth noting that all of these regrets become vacuous when
the amount of variation is linear in time, i.e. � � ⌦(T).
Separately, it is shown that when both the transitions and
the rewards are adversarial in every episode, the problem
is at least as hard as stochastic parity problem, for which
no computationally efficient algorithm exists (Yadkori et al.,
2013).

Learning robust controller. A different type of robust-
ness has also been considered in RL (Pinto et al., 2017; Der-
man et al., 2020) and robust control (Zhou & Doyle, 1998;
Petersen et al., 2012), where the goal is to learn a control
policy that is robust to potential misalignment between the

training and deployment environment. Such approaches are
often conservative, i.e. the learned polices are sub-optimal
even if there is no corruption. In comparison, our approach
can learn as effectively as standard RL algorithms with-
out corruption. Interestingly, parallel to our work, a line
of concurrent work in the robust control literature (Zhang
et al., 2020a;b; 2021) has also found that policy optimiza-
tion method enjoys some implicit regularization/robustness
property that can automatically converge to robust control
policies. An interesting future direction could be to under-
stand the connection between these two kind of robustness.

Robust statistics. One of the most important discover-
ies in modern robust statistics is that there exists computa-
tionally efficient and robust estimator that can learn near-
optimally even under the strongest adaptive adversary. For
example, in the classic problem of Gaussian mean esti-
mation, the recent works (Diakonikolas et al., 2016; Lai
et al., 2016) present the first computational and sample-
efficient algorithms. The algorithm in (Diakonikolas et al.,
2016) can generate a robust mean estimate µ̂, such that
kµ̂�µk2 O("

p
log (1/")) under " corruption. Crucially,

the error bound does not scale with the dimension d of the
problem, suggesting that the estimator remains robust even
in high dimensional problems. Similar results have since
been developed for robust mean estimation under weaker
assumptions (Diakonikolas et al., 2017), and for supervised
learning and unsupervised learning tasks (Charikar et al.,
2017; Diakonikolas et al., 2019). We refer readers to (Di-
akonikolas & Kane, 2019) for a more thorough survey of
recent advances in high-dimensional robust statistics.

3. Problem Definitions
A Markov Decision Process (MDP) M =
(S,A, P, r, �, µ0) is specified by a state space S, an action
space A, a transition model P : S ⇥ A ! �(S) (where
�(S) denotes a distribution over S), a (stochastic and
possibly unbounded) reward function r : S⇥A! �(R), a
discounting factor � 2 [0, 1), and an initial state distribution
µ0 2 �(S), i.e. s0 ⇠ µ0. In this paper, we assume that
A is a small and finite set, and denote A = |A|. A policy
⇡ : S ! �(A) specifies a decision-making strategy in
which the agent chooses actions based on the current state,
i.e., a ⇠ ⇡(·|s).

The value function V ⇡ : S ! R is defined as the expected
discounted sum of future rewards, starting at state s and ex-
ecuting ⇡, i.e. V ⇡(s) := E [

P
1

t=0 �
tr(st, at)|⇡, s0 = s] ,

where the expectation is taken with respect to the random-
ness of the policy and environment M. Similarly, the state-
action value function Q⇡ : S ⇥ A ! R is defined as
Q⇡(s, a) := E [

P
1

t=0 �
tr(st, at)|⇡, s0 = s, a0 = a] .

We define the discounted state-action distribution d⇡
s

of a

Robust Policy Gradient against Strong Data Corruption

policy ⇡: d⇡
s0(s, a) := (1 � �)

P
1

t=0 �
tP⇡(st = s, at =

a|s0 = s0), where P⇡(st = s, at = a|s0 = s0) is
the probability that st = s and at = a, after we exe-
cute ⇡ from t = 0 onwards starting at state s0 in model
M. Similarly, we define d⇡

s0,a0(s, a) as: d⇡
s0,a0(s, a) :=

(1 � �)
P

1

t=0 �
tP⇡(st = s, at = s|s0 = s0, a0 = a0).

For any state-action distribution ⌫, we write d⇡
⌫
(s, a) :=P

(s0,a0)2S⇥A
⌫(s0, a0)d⇡

s0,a0(s, a). For ease of presentation,
we assume that the agent can reset to s0 ⇠ µ0 at any point
in the trajectory. We denote d⇡

⌫
(s) =

P
a
d⇡
⌫
(s, a).

The goal of the agent is to find a policy ⇡ that maximizes the
expected value from the starting state s0, i.e. the optimiza-
tion problem is: max⇡ V ⇡(µ0) := Es⇠µ0V

⇡(s), where the
max is over some policy class.

For completeness, we specify a d⇡
⌫

-sampler and an unbiased
estimator of Q⇡(s, a) in Algorithm 1, which are standard
in discounted MDPs (Agarwal et al., 2019; 2020a). The d⇡

⌫

sampler samples (s, a) i.i.d from d⇡
⌫

, and the Q⇡ sampler
returns an unbiased estimate of Q⇡(s, a) for a given pair
(s, a) by a single roll-out from (s, a). Later, when we de-
fine the contamination model and the sample complexity
of learning, we treat each call of d⇡

⌫
-sampler (optionally

followed by a Q⇡(s, a)-estimator) as a single episode, as in
practice both of these procedures can be achieved in a single
roll-out from µ0.
Assumption 3.1 (Linear Q function). For the theoretical
analysis, we focus on the setting of linear value function
approximation. In particular, we assume that there exists
a feature map � : S ⇥A! Rd, such that for any (s, a) 2
S ⇥A and any policy ⇡ : S ! �A, we have

Q⇡(s, a) = �(s, a)>w⇡ , for some kw⇡
k W (1)

We also assume that the feature is bounded, i.e.
maxs,a k�(s, a)k2 1, and the reward function has
bounded first and second moments, i.e. E [r(s, a)] 2 [0, 1]
and Var(r(s, a)) �2 for all (s, a).

Remark 3.1. Assumption 3.1 is satisfied, for example, in
tabular MDPs and linear MDPs of (Jin et al., 2020b) or
(Yang & Wang, 2019a). Unlike most theoretical RL litera-
ture, we allow the reward to be stochastic and unbounded.
Such a setup aligns better with applications with a low
signal-to-noise ratio and motivates the requirement for non-
trivial robust learning techniques.

Notation. When clear from context, we write d⇡(s, a)
and d⇡(s) to denote d⇡

µ0
(s, a) and d⇡

µ0
(s) respectively. For

iterative algorithms which obtain policies at each episode,
we let V i,Qi and Ai denote the corresponding quantities
associated with episode i. For a vector v, we denote kvk2 =pP

i
v2
i
, kvk1 =

P
i
|vi|, and kvk1 = maxi |vi|. We

use Uniform(A) (in short UnifA) to represent a uniform
distribution over the set A.

3.1. The Contamination Model

In this paper, we study the robustness of policy gradient
methods under the "-contamination model, a widely studied
adversarial model in the robust statistics literature, e.g. see
(Diakonikolas et al., 2016). In the classic robust mean esti-
mation problem, given a dataset D and a learning algorithm
f , the "-contamination model assumes that the adversary has
full knowledge of the dataset D and the learning algorithm
f , and can arbitrarily change "-fraction of the data in the
dataset and then send the contaminated data to the learner.
The goal of the learner is to identify an O(poly("))-optimal
estimator of the mean despite the "-contamination.

Unfortunately, the original "-contamination model is de-
fined for the offline learning setting and does not directly
generalize to the online setting, because it doesn’t spec-
ify the availability of knowledge and the order of actions
between the adversary and the learner in the time dimen-
sion. In this paper, we define the "-contamination model for
online learning as follows:

Definition 3.1 ("-contamination model for Reinforce-
ment Learning). Given " and the clean MDP M, an "-
contamination adversary operates as follows:

1. The adversary has full knowledge of the MDP M and
the learning algorithm, and observes all the historical
interactions.I

2. At any time step t, the adversary observes the current
state-action pair (st, at), as well as the reward and next
state returned by the environment, (rt, st+1). He then
can decide whether to replace (rt, st+1) with an arbitrary
reward and next state (r†

t
, s†

t+1) 2 R⇥ S .
3. The only constraint on the adversary is that if the learning

process terminates after K episodes, he can contaminate
in at most "K episodes.

Compared to the standard adversarial models studied in
online learning (Shalev-Shwartz et al., 2011), adversarial
bandits (Bubeck & Cesa-Bianchi, 2012; Lykouris et al.,
2018; Gupta et al., 2019) and adversarial RL (Lykouris
et al., 2019; Jin et al., 2020a), the "-contamination model in
Definition 3.1 is stronger in several ways: (1) The adversary
can adaptively attack after observing the action of the learner
as well as the feedback from the clean environments; (2) the
adversary can perturb the data arbitrarily (any real-valued
reward and any next state from the state space) rather than
sampling it from a pre-specified bounded adversarial reward
function or adversarial MDP.

Given the contamination model, our first result is a lower-
bound, showing that under the "-contamination model, one
can only hope to find an O(")-optimal policy. Exact optimal
policy identification is not possible even with infinite data.

Theorem 3.1 (lower bound). For any algorithm, there exists

Robust Policy Gradient against Strong Data Corruption

an MDP such that the algorithm fails to find an
⇣

"

2(1��)

⌘
-

optimal policy under the "-contamination model with a
probability of at least 1/4.

The high-level idea is that we can construct two MDPs, M
and M 0, with the following properties: 1. No policy can
be O("/(1� �)) optimal on both MDP simultaneously. 2.
An "-contamination adversary can with large probability
mimic one MDP via contamination in the other, regardless
of the learner’s behavior. Therefore, under contamination,
the learner will not be able to distinguish M and M 0 and
must suffer ⌦("/(1� �)) gap on at least one of them.

3.2. Background on NPG

Given a differentiable parameterized policy ⇡✓ : S !

�(A), NPG can be written in the following actor-critc
style update form. With the dataset {si, ai, bQ⇡✓ (si, ai)}Ni=1

where si, ai ⇠ d⇡✓
⌫

, and bQ⇡✓ (si, ai) is unbiased estimate of
Q⇡✓ (s, a) (e.g., via Q⇡-estimator), we have

bw 2 argmin
w:kwk2W

NX

i=1

⇣
w>
r log ⇡✓(ai|si)� bQ⇡✓ (si, ai)

⌘2

✓0 = ✓ + ⌘ bw. (2)

In theoretical part of this work, we focus on softmax linear
policy, i.e., ⇡✓(a|s) / exp(✓>�(s, a)). In this case, note
that r log ⇡✓(a|s) = �(s, a), and it is not hard to verify
that the policy update procedure is equivalent to:

⇡✓0(a|s) / ⇡✓(a|s) exp
�
⌘ bw>�(s, a)

�
, 8s, a,

which is equivalent to running Mirror Descent on each state
with a reward vector bw>�(s, ·) 2 R|A|. We refer readers to
(Agarwal et al., 2019) for more detailed explanation of NPG
and the equivalence between the form in Eq. (2) and the
classic form that uses Fisher information matrix. Similar to
(Agarwal et al., 2019), we make the following assumption
of having access to an exploratory reset distribution, under
which it has been shown that NPG can converge to the
optimal policy without contamination.

Assumption 3.2 (Relative condition number). With respect
to any state-action distribution �, define:

⌃� = Es,a⇠�

⇥
�s,a�

>

s,a

⇤
,

and define

sup
w2Rd

w>⌃d?w

w>⌃⌫w
= , where d⇤(s, a) = d⇡

⇤

µ0
(s) �Unif

A
(a)

We assume is finite and small w.r.t. a reset distribution ⌫
available to the learner at training time.

4. The Natural Robustness of NPG Against
Bounded corruption

Our first result shows that, surprisingly, NPG can already
be robust against "-contamination, if the adversary can only
generate small and bounded rewards. In particular, we as-
sume that the adversarial rewards is bounded in [0, 1] (the
feature �(s, a) is already bounded).

Theorem 4.1 (Natural robustness of NPG). Under assump-
tions 3.1 and 3.2, given a desired optimality gap ↵, there
exists a set of hyperparameters agnostic to the contami-
nation level ", such that Algorithm 2 guarantees with a
poly(1/↵, 1/(1� �), |A|,W,�,) sample complexity that
under "-contamination with adversarial rewards bounded
in [0, 1], we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
 Õ

max

"
↵,W

s
|A|"

(1� �)3

#!

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

A few remarks are in order.

Remark 4.1 (Agnostic to the contamination level "). It is
worth emphasizing that to achieve the above bound, the
hyperparameters of NPG are agnostic to the value of ",
and so the algorithm can be applied in the more realistic
setting where the agent does not have knowledge of the con-
tamination level ", similar to what’s achieved in (Lykouris
et al., 2019) with a complicated nested structure. The same
property is also achieved by the FPG algorithm in the next
section.

Remark 4.2 (Dimension-independent robustness guaran-
tee). Theorem 4.1 guarantees that NPG can find an O("1/2)-
optimal policy after polynomial number of episodes, pro-
vided that |A| and are small. Conceptually, the relative
condition number indicates how well-aligned the initial
state distribution is to the occupancy distribution of the opti-
mal policy. A good initial distribution can have a as small
as 1, and so is independent of d. Interested readers can
refer to (Agarwal et al., 2019) (Remark 6.3) for additional
discussion on the relative condition number. Here, impor-
tantly, the optimality gap does not directly scale with d,
and so the guarantee will not blow up on high-dimensional
problems. This is an important attribute of robust learn-
ing algorithms heavily emphasized in the traditional robust
statistics literature.

The proof of Theorem 4.1 relies on the following NPG
regret lemma, first developed by (Even-Dar et al., 2009)
for the MDP-Expert algorithm and later extend to NPG by
(Agarwal et al., 2019; 2020a):

Lemma 4.1 (NPG Regret Lemma). Suppose Assump-
tion 3.1 and 3.2 hold and Algorithm 2 starts with ✓(0) = 0,

Robust Policy Gradient against Strong Data Corruption

⌘ =
p
2 log |A|/(W 2T). Suppose in addition that the (ran-

dom) sequence of iterates satisfies the assumption that

E

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2��

 "(t)
stat

.

Then, we have that

E
"

TX

t=1

{V ⇤(µ0)� V (t)(µ0)}

#
(3)

W

1� �

p
2 log |A|T +

TX

t=1

s
4|A|"(t)

stat

(1� �)3
.

Intuitively, Lemma 4.1 decompose the regret of NPG into
two terms. The first term corresponds to the regret of stan-
dard mirror descent procedure, which scales with

p
T . The

second term corresponds to the estimation error on the Q
value, which acts as the reward signal for mirror descent.
When not under attack, estimation error "(t)

stat
goes to zero

as the number of samples M gets larger, which in turn im-
plies the global convergence of NPG. However, when under
bounded attack, the generalization error "(t)

stat
will not go to

zero even with infinite data. Nevertheless, we can show that
it is bounded by O("(t)) when the sample size M is large
enough, where "(t) denotes the fraction of episodes being
corrupted in iteration t. Note that by definition, we haveP

t
"(t) "T .

Lemma 4.2 (Robustness of linear regression under bounded
contamination). Suppose the adversarial rewards are
bounded in [0, 1], and in a particular iteration t, the ad-
versary contaminates "(t) fraction of the episodes, then
given M episodes, it is guaranteed that with probability at
least 1� �,

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2�

(4)

 4
�
W 2 +WH

�

"(t) +

r
8

M
log

4d

�

!
.

where H = (log � � logM)/ log � is the effective horizon.

This along with the NPG regret lemma guarantees that the
expected regret of NPG is bounded by O(

p
T +M�1/4 +

p
"T) which in turn guarantees to identify an O(

p
")-

optimal policy.

In the special case of tabular MDPs, �(s, a) will all be
one-hot vectors and W will in general by on the order of
O(
p
SA), which means that the bound given by Theorem

4.1 still scales with the size of the state space. In the follow-
ing corollary, we show that this dependency can be removed
through a tighter analysis.

Algorithm 1 d⇡
⌫

sampler and Q⇡ estimator
1: function d⇡

⌫
-SAMPLER

2: Input: A reset distribution ⌫ 2 �(S ⇥A).
3: Sample s0, a0 ⇠ ⌫.
4: Execute ⇡ from s0, a0; at any step t with (st, at),

return (st, at) with probability 1� �.
5: function Q⇡ -ESTIMATOR
6: Input: current state-action (s, a), a policy ⇡.
7: Execute ⇡ from (s0, a0) = (s, a); at step t with

(st, at), terminate with probability 1� �.
8: Return: bQ⇡(s, a) =

P
t

i=0 r(si, ai).

[In an adversarial episode, the adversary can hijack the d⇡
⌫

sampler to return any (s, a) pair and the Q⇡-estimator to
return any bQ⇡(s, a) 2 R.]

Algorithm 2 Natural Policy Gradient (NPG)
Require: Learning rate ⌘; number of episodes per iteration

M
1: Initialize ✓(0) = 0.
2: for t = 0, 1, . . . , T � 1 do
3: Call Algorithm 1 M times with ⇡(t) to obtain a

dataset that consist of si, ai ⇠ d(t)⌫ and bQ(t)(si, ai),
i 2 [M].

4: Solve the linear regression problem

w(t) = argmin
kwk2W

MX

i=1

⇣
bQ(t)(si, ai)� w>

r✓�(si, ai)
⌘2

5: Update ✓(t+1) = ✓(t) + ⌘w(t).

Corollary 4.1 (Dimension-free Robustness of NPG in tabu-
lar MDPs). Given a tabular MDP and assumption 3.2, given
a desired optimality gap ↵, there exists a set of hyperparam-
eters agnostic to the contamination level ", such that Algo-
rithm 2 guarantees with a poly(1/↵, 1/(1��), |A|,W,�,)
sample complexity that under "-contamination with adver-
sarial rewards bounded in [0, 1], we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
 Õ

max

"
↵,

s
|A|"

(1� �)5

#!

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

In the more general case of linear MDP, W will not nec-
essarily scale with d in an obvious way and thus we leave
Theorem 4.1 untouched.

Robust Policy Gradient against Strong Data Corruption

(a) Swimmer-v3 (b) Hopper-v3 (c) Walker2d-v3

(d) HalfCheetah-v3 (e) Ant-v3 (f) Humanoid-v3

Figure 1. Experiment Results on the 6 MuJoTo benchmarks.

Algorithm 3 Robust Linear Regression via SEVER

Input: Dataset {(xi, yi)}i=1:M , a standard linear regres-
sion solver L, and parameter �0

2 R+.
Initialize S {1, . . . ,M}, fi(w) = kyi � w>xik

2.
repeat

w L({(xi, yi)}i2S). . Run learner on S.
Let br = 1

|S|

P
i2S
rfi(w).

Let G = [rfi(w)� br]i2S be the |S|⇥ d matrix of
centered gradients.

Let v be the top right singular vector of G.
Compute the vector ⌧ of outlier scores defined via

⌧i =
⇣
(rfi(w)� br) · v

⌘2
.

S0
 S

if 1
|S|

P
i2S

⌧i c0 · �02, for some constant c0 > 1
then

S = S0 . We only filter out points if the variance
is larger than an appropriately chosen threshold.

else
Draw T from Uniform[0,maxi ⌧i].
S = {i 2 S : ⌧i < T}.

until S = S0.
Return w.

5. FPG: Robust NPG Against Unbounded
Corruption

Our second result is the Filtered Policy Gradient (FPG) algo-
rithm, a robust variant of the NPG algorithm (Kakade, 2001;
Agarwal et al., 2019) that can be robust against arbitrary and
potentially unbounded data corruption. Specifically, FPG

replace the standard linear regression solver in NPG with
a statistically robust alternative. In this work, we use the
SEVER algorithm (Diakonikolas et al., 2019). In practice,
one can substitute it with any computationally efficient ro-
bust linear regression solver. We show that FPG can find
an O("1/4)-optimal policy under "-contamination with a
polynomial number of samples.

Theorem 5.1. Under assumptions 3.1 and 3.2, given a de-
sired optimality gap ↵, there exists a set of hyperparameters
agnostic to the contamination level ", such that Algorithm
2, using Algorithm 3 as the linear regression solver, guar-
antees with a poly(1/↵, 1/(1 � �), |A|,W,�,) sample
complexity that under "-contamination, we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
(5)

 Õ

max

"
↵,

s
|A| (W 2 + �W)

(1� �)4
"1/4

#!
.

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

The proof of Theorem 5.1 relies on a similar result to Lemma
4.2, which shows that if we use Algorithm 3 as the linear re-
gression subroutine, then "(t)

stat
can be bounded by O(

p

"(t))
when the sample size M is large enough, even under un-
bounded "-contamination.

Lemma 5.1 (Robustness of SEVER under unbounded con-
tamination). Suppose the adversarial rewards are un-
bounded, and in a particular iteration t, the adversarial
contaminate "(t) fraction of the episodes, then given M
episodes, it is guaranteed that if "(t) c, for some absolute

Robust Policy Gradient against Strong Data Corruption

constant c, and any constant ⌧ 2 [0, 1], we have

E

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2��

(6)

 O

✓✓
W 2 +

�W

1� �

◆⇣p
"(t) + f(d, ⌧)M�

1
2 + ⌧

⌘◆
.

where f(d, ⌧) =
p
d log d+

p
log(1/⌧).

In Lemma 5.1, c is the break point of SEVER and is an
absolute constant that does not depend on the data, and
(1�⌧) is the probability that the clean data satisfies a certain
stability condition which suffices for robust learning.

6. Robust NPG with Exploration via Policy
Cover

The Policy Cover-Policy Gradient (PC-PG) algorithm, de-
fined in Algorithm 4, is an exploratory policy gradient
methods recently developed by (Agarwal et al., 2020a).
Intuitively, PC-PG is a spiritually inheritor of the RMax

algorithm (Brafman & Tennenholtz, 2002), and encourages
exploration by adding reward bonuses in directions of the
feature space that past polices (stored in the policy cover)
haven’t visited sufficiently. Similar to the NPG algorithm,
we show that PC-PG enjoys a (weaker) natural robustness
against bounded data corruption. This gives us the following
robustness guarantee:
Theorem 6.1 (Best hyperparameters, assuming known ").
There exists a set of hyperparameters, such that Algorithm
4 guarantees with probability at least 1� �

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
 Õ

⇣
d2"1/7

⌘
(7)

with poly (d,W,�,, |A|, 1/(1� �), 1/↵) number of
episodes.
Remark 6.1 (The scaling with dimension d). Compared
to the guarantee of vanilla NPG, PC-PG alleviate the re-
quirement of a good initial distribution with small relative
conditional number. However, this process introduce a de-
pendency on d. In particular, the gap in Theorem 6.1 is on
the order of Õ

�
d2"1/7

�
. This implies that for any fixed

", the bound becomes vacuous for high dimensional prob-
lems where d � ⌦("�2/3). Intuitively, the dependency on
d is introduced because PC-PG is trying to find a initial
state-action distribution with good coverage, i.e. a distribu-
tion whose covariance matrix has a lower-bounded smallest
eigenvalue. Under the assumption that k�(s, a)k2 1, such
a distribution will have a covariance matrix whose eigen-
values are all on the order of O(1/d). and so the value of
 will be on the order of O(d), which by Theorem 5.1 will
similarly introduce a d dependency. We expect that for a
robust RL algorithm to avoid the d dependency, it must grad-
ually find a state-action distribution approaching d⇤. How
to design such an algorithm is left as an open problem.

Algorithm 4 Robust Policy Cover-Policy Gradient (PC-PG)
1: Input: iterations N , threshold �, regularizer �
2: Initialize ⇡0(a|s) to be uniform.
3: for episode n = 0, . . . N � 1 do
4: Define the policy cover’s state-action distribution

⇢ncov as

⇢ncov(s, a) =
nX

i=0

di(s, a)/(n+ 1)

5: Sample {si, ai}Ki=1 ⇠ ⇢ncov(s, a) and estimate the
covariance of ⇡n as

b⌃n = (n+ 1)

KX

i=1

�(si, ai)�(si, ai)
>/K

!
+ �I

6: Set the exploration bonus bn to reward infrequently
visited state-action under ⇢ncov

bn(s, a) =
1{(s, a) : �(s, a)>(b⌃n

cov)
�1�(s, a) � �}

1� �
.

7: Update ⇡n+1 = Robust-NPG-Update(⇢ncov, b
n)

[Alg. 7 in the appendix, similar to Alg. 2].
8: return ⇡̂ := Uniform{⇡0, ...,⇡N�1

}.

7. Experiments
In the theoretical analysis, we rely on the assumption of
linear Q function, finite action space and exploratory ini-
tial state distribution to prove the robustness guarantees for
NPG and FPG. In this section, we present a practical im-
plementation of FPG, based on the Trusted Region Policy
Optimization (TRPO) algorithm (Schulman et al., 2015a), in
which the conjugate gradient step (equivalent to the linear
regression step in Alg. 2) is robustified with SEVER. The
pseudo-code and implementation details are discussed in
appendix G1. In this section, we demonstrate its empirical
performance on the MuJoCo benchmarks (Todorov et al.,
2012), a set of high-dimensional continuous control do-
mains where both assumptions no longer holds, and show
that FPG can still consistently performs near-optimally with
and without attack.

Attack mechanism: While designing and calculating the
optimal attack strategy against a deep RL algorithm is still a
challenging problem and active area of research (Ma et al.,
2019; Zhang et al., 2020c), here we describe the poisoning

1A Pytorch Implementation of FPG-TRPO can be
found at https://github.com/zhangxz1123/

FilteredPolicyGradient

https://github.com/zhangxz1123/FilteredPolicyGradient
https://github.com/zhangxz1123/FilteredPolicyGradient

Robust Policy Gradient against Strong Data Corruption

Figure 2. Consecutive Frames of Half-Cheetah trained with TRPO (top row) and FPG (bottom row) respectively under � = 100 attack.
The dashed red line serves as a stationary reference object. TRPO was fooled to learn a ”running backward” policy, contrasted with the
normal ”running forward” policy learned by FPG.

(a) TRPO Rewards (b) FPG Rewards (c) FPG Detection Ratio

Figure 3. Detailed Results on Humanoid-v3.

strategy used in our empirical evaluation, which, despite
being simple, can fool non-robust RL algorithms with ease.
Conceptually, policy gradient methods can be viewed as a
stochastic gradient ascent method, where each iteration can
be simplified as:

✓(t+1) = ✓(t) + g(t) (8)

where g(t) is a gradient step that ideally points in the di-
rection of fastest policy improvement. Assuming that g(t)
is a good estimate of the gradient direction, then a simple
attack strategy is to try to perturb g(t) to point in the �g(t)
direction, in which case the policy, rather than improving,
will deteriorate as learning proceed. A straightforward way
to achieve this is to flip the rewards and multiply them by
a big constant � in the adversarial episodes. In the linear
regression subproblem of Alg. 2, this would result in a set
of (x, y) pairs whose y becomes ��y. This in expectation
will make the best linear regressor w point to the opposite
direction, which is precisely what we want.

This attack strategy is therefore parameterized by a single
parameter �, which guides the magnitude of the attack, and
is adaptively tuned against each learning algorithm in the
experiments: Throughout the experiment, we set the con-
tamination level " = 0.01, and tune � among the values

of [1, 2, 4, 8, 16, 32, 64] to find the most effective magni-
tude against each learning algorithm. All experiments are
repeated with 3 random seeds and the mean and standard
deviations are plotted in the figures.

Results: The experiment results are shown in Figure 1.
Consistent patterns can be observed across all environments:
vanilla TRPO performs well without attack but fails com-
pletely under the adaptive attack (which choose � = 64
in all environments). FPG, on the other hand, matches the
performance of vanilla TRPO with or without attack. Figure
2 showcase two half-cheetah control policies learned by
TRPO and FPG under attack with � = 100. Interestingly,
due to the large negative adversarial rewards, TRPO actu-
ally learns the “running backward” policy, showing that our
attack strategy indeed achieves what it’s designed for. In
contrast, FPG is still able to learn the ”running forward”
policy despite the attack.

Figure 3 shows the detailed performances of TRPO and FPG
across different �’s on the hardest Humanoid environment.
One can observe that TRPO actually learns robustly under at-
tacks of small magnitude (� = 1, 2, 4) and achieves similar
performances to itself in clean environments, verifying our
theoretical result in Theorem 4.1. In contrast, FPG remains

Robust Policy Gradient against Strong Data Corruption

robust across all values of �’s. Figure 3c shows the pro-
portion of adversary data detected and removed by FPG’s
filtering subroutine throughout the learning process. One
can observe that as the attack norm � increases, the filtering
algorithm also does a better job detecting the adversarial
data and thus protect the algorithm from getting inaccurate
gradient estimates. Similar patterns can be observed in all
the other environments, and we defer the additional figures
to the appendix.

8. Discussions
To summarize, in this work we present a robust policy gradi-
ent algorithm FPG, and show theoretically and empirically
that it can learn in the presence of strong data corruption.
Despite our results, many open questions remain unclear
and are interesting directions to pursue further:

1. FPG does not handle exploration and relies on an ex-
ploratory initial distribution. Can we design algorithms
that achieve the same dimension-free robustness guaran-
tee without such assumptions?

2. Our O("1/4) upper-bound and O(") lower-bound are not
tight. Information theoretically, what is the best robust-
ness guarantee one can achieve under "-contamination?

3. The SEVER algorithm requires computing the top eigen-
value of an n ⇥ d matrix, which is memory and time
consuming when using large neural networks (large d).
More computationally efficient robust learning method
will be extremely valuable to make FPG truly scale.

4. In the experiment, we focus on TRPO as the closest
variant of NPG. Can other policy gradient algorithm,
such as PPO and SAC, be robustified in similar fashions
and achieve strong empirical performance?

We believe that answering these questions will be important
steps towards more robust reinforcement learning.

9. Acknowledgements
We would like to thank Ankit Pensia and Ilias Diakoniko-
las for valuable discussions on SEVER and other robust
statistics techniques. Xiaojin Zhu acknowledges NSF grants
1545481, 1704117, 1836978, 2041428, 2023239 and MAD-
Lab AF CoE FA9550-18-1-0166. Xuezhou Zhang is sup-
ported in part by NSF Award DMS-2023239.

References
Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.

On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. arXiv preprint
arXiv:1908.00261, 2019.

Agarwal, A., Henaff, M., Kakade, S., and Sun, W. Pc-pg:

Policy cover directed exploration for provable policy gra-
dient learning. arXiv preprint arXiv:2007.08459, 2020a.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W.
Flambe: Structural complexity and representation learn-
ing of low rank mdps. Advances in Neural Information
Processing Systems, 33, 2020b.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. In Advances in neural
information processing systems, pp. 89–96, 2009.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L. F.
Model-based reinforcement learning with value-targeted
regression. arXiv preprint arXiv:2006.01107, 2020.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272, 2017.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213–231, 2002.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. arXiv
preprint arXiv:1204.5721, 2012.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from
untrusted data. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 47–60,
2017.

Cheung, W. C., Simchi-Levi, D., and Zhu, R. Non-stationary
reinforcement learning: The blessing of (more) optimism.
Available at SSRN 3397818, 2019.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 2818–2826,
2015.

Robust Policy Gradient against Strong Data Corruption

Dann, C., Lattimore, T., and Brunskill, E. Unifying pac and
regret: Uniform pac bounds for episodic reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 5713–5723, 2017.

Derman, E., Mankowitz, D., Mann, T., and Mannor, S.
A bayesian approach to robust reinforcement learning.
In Uncertainty in Artificial Intelligence, pp. 648–658.
PMLR, 2020.

Diakonikolas, I. and Kane, D. M. Recent advances in algo-
rithmic high-dimensional robust statistics. arXiv preprint
arXiv:1911.05911, 2019.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A.,
and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In 2016 IEEE
57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 655–664, 2016.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Being robust (in high dimensions)
can be practical. arXiv preprint arXiv:1703.00893, 2017.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Steinhardt,
J., and Stewart, A. Sever: A robust meta-algorithm for
stochastic optimization. In International Conference on
Machine Learning, pp. 1596–1606, 2019.

Diakonikolas, I., Kane, D. M., and Pensia, A. Outlier ro-
bust mean estimation with subgaussian rates via stability.
Advances in Neural Information Processing Systems, 33,
2020.

Domingues, O. D., Ménard, P., Pirotta, M., Kaufmann, E.,
and Valko, M. A kernel-based approach to non-stationary
reinforcement learning in metric spaces. arXiv preprint
arXiv:2007.05078, 2020.

Du, S. S., Luo, Y., Wang, R., and Zhang, H. Provably effi-
cient q-learning with function approximation via distribu-
tion shift error checking oracle. In Advances in Neural
Information Processing Systems, pp. 8060–8070, 2019.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Online
markov decision processes. Mathematics of Operations
Research, 34(3):726–736, 2009.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A.,
Xiao, C., Prakash, A., Kohno, T., and Song, D. Robust
physical-world attacks on deep learning visual classifica-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1625–1634, 2018.

Gupta, A., Koren, T., and Talwar, K. Better algorithms for
stochastic bandits with adversarial corruptions. arXiv
preprint arXiv:1902.08647, 2019.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? In Advances in Neural
Information Processing Systems, pp. 4863–4873, 2018.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan,
M. I. A short note on concentration inequalities for
random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. Learning ad-
versarial markov decision processes with bandit feedback
and unknown transition. In International Conference on
Machine Learning, pp. 4860–4869. PMLR, 2020a.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020b.

Jin, T. and Luo, H. Simultaneously learning stochastic and
adversarial episodic mdps with known transition. arXiv
preprint arXiv:2006.05606, 2020.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In ICML, volume 2, pp.
267–274, 2002.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M.,
and Sun, W. Information theoretic regret bounds for
online nonlinear control. Advances in Neural Information
Processing Systems, 33, 2020.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14:1531–1538, 2001.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 665–674. IEEE, 2016.

Lee, C.-W., Luo, H., Wei, C.-Y., and Zhang, M. Bias no
more: high-probability data-dependent regret bounds for
adversarial bandits and mdps. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Lykouris, T., Mirrokni, V., and Paes Leme, R. Stochastic
bandits robust to adversarial corruptions. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pp. 114–122, 2018.

Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W.
Corruption robust exploration in episodic reinforcement
learning. arXiv preprint arXiv:1911.08689, 2019.

Robust Policy Gradient against Strong Data Corruption

Ma, Y., Zhang, X., Sun, W., and Zhu, J. Policy poisoning
in batch reinforcement learning and control. In Advances
in Neural Information Processing Systems, pp. 14570–
14580, 2019.

Neff, G. and Nagy, P. Automation, algorithms, and politics|
talking to bots: Symbiotic agency and the case of tay.
International Journal of Communication, 10:17, 2016.

Neu, G. and Olkhovskaya, J. Online learning in mdps with
linear function approximation and bandit feedback. arXiv
preprint arXiv:2007.01612, 2020.

Neu, G., György, A., and Szepesvári, C. The online loop-
free stochastic shortest-path problem. In COLT, volume
2010, pp. 231–243. Citeseer, 2010.

Neu, G., Gyorgy, A., and Szepesvári, C. The adversarial
stochastic shortest path problem with unknown transition
probabilities. In Artificial Intelligence and Statistics, pp.
805–813, 2012.

Ornik, M. and Topcu, U. Learning and planning for
time-varying mdps using maximum likelihood estima-
tion. arXiv preprint arXiv:1911.12976, 2019.

Ortner, R., Gajane, P., and Auer, P. Variational regret bounds
for reinforcement learning. In UAI, pp. 16, 2019.

Osband, I. and Van Roy, B. Model-based reinforcement
learning and the eluder dimension. Advances in Neural
Information Processing Systems, 27:1466–1474, 2014.

Osband, I. and Van Roy, B. On lower bounds for regret in
reinforcement learning. arXiv preprint arXiv:1608.02732,
2016.

Petersen, I. R., Ugrinovskii, V. A., and Savkin, A. V. Robust
Control Design Using H-1Methods. Springer Science
& Business Media, 2012.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A.
Robust adversarial reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2817–2826.
PMLR, 2017.

Rosenberg, A. and Mansour, Y. Online convex optimization
in adversarial markov decision processes. arXiv preprint
arXiv:1905.07773, 2019.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897, 2015a.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and trends in Machine
Learning, 4(2):107–194, 2011.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and
Langford, J. Model-based rl in contextual decision pro-
cesses: Pac bounds and exponential improvements over
model-free approaches. In Conference on Learning The-
ory, pp. 2898–2933. PMLR, 2019.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, volume 99, pp. 1057–
1063, 1999.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Tropp, J. A. An introduction to matrix concentration in-
equalities. arXiv preprint arXiv:1501.01571, 2015.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Yadkori, Y. A., Bartlett, P. L., Kanade, V., Seldin, Y., and
Szepesvári, C. Online learning in markov decision pro-
cesses with adversarially chosen transition probability
distributions. In Advances in neural information process-
ing systems, pp. 2508–2516, 2013.

Yang, L. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. In Interna-
tional Conference on Machine Learning, pp. 6995–7004.
PMLR, 2019a.

Yang, L. F. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. arXiv
preprint arXiv:1905.10389, 2019b.

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M.,
and Lazaric, A. Frequentist regret bounds for randomized
least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964,
2020.

Zhang, K., Hu, B., and Basar, T. Policy optimization for h-2
linear control with h-1 robustness guarantee: Implicit
regularization and global convergence. In Learning for
Dynamics and Control, pp. 179–190. PMLR, 2020a.

Robust Policy Gradient against Strong Data Corruption

Zhang, K., Hu, B., and Basar, T. On the stability and
convergence of robust adversarial reinforcement learning:
A case study on linear quadratic systems. Advances in
Neural Information Processing Systems, 33, 2020b.

Zhang, K., Zhang, X., Hu, B., and Başar, T. Derivative-free
policy optimization for risk-sensitive and robust control
design: Implicit regularization and sample complexity.
arXiv preprint arXiv:2101.01041, 2021.

Zhang, X., Ma, Y., Singla, A., and Zhu, X. Adaptive reward-
poisoning attacks against reinforcement learning. arXiv
preprint arXiv:2003.12613, 2020c.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
arXiv preprint arXiv:2006.13165, 2020.

Zhou, K. and Doyle, J. C. Essentials of robust control,
volume 104. Prentice hall Upper Saddle River, NJ, 1998.

Zimin, A. and Neu, G. Online learning in episodic marko-
vian decision processes by relative entropy policy search.
In Advances in neural information processing systems,
pp. 1583–1591, 2013.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003.

Robust Policy Gradient against Strong Data Corruption

Appendices
Table of Contents

• Section A presents the proof for the lower-bound result.

• Section B derives the mean and variance of the Q-sampler.

• Section C presents the proof for the natural robustness of NPG.

• Section D presents the modified analysis of SEVER.

• Section E presents the proof for the robustness of FPG.

• Section G presents the pseudo-code of the TRPO variant of the FPG algorithm used in the experiments and additional
experiment details.

A. Proof for the lower-bound result
Theorem A.1 (Theorem 3.1). For any algorithm, there exists an MDP such that the algorithm fails to find an

⇣
"

2(1��)

⌘
-

optimal policy under the "-contamination model with a probability of at least 1/4.

Proof of Theorem A.1. Consider two MDPs M1,M2, both with 3 states and 2 actions, defined as

P1(s2|s1, a1) =
1� "

2
, P1(s3|s1, a1) =

1 + "

2
, P1(s3|s1, a2) = P1(s3|s1, a2) =

1

2
(9)

P2(s2|s1, a1) =
1 + "

2
, P2(s3|s1, a1) =

1� "

2
, P2(s3|s1, a2) = P2(s3|s1, a2) =

1

2
(10)

and for both MDPs s2, s3 are absorbing states with constant reward 1 and 0, respectively. So for M1, the optimal policy is
⇡⇤

1(s1) = a2, and for M2, the optimal policy is ⇡⇤

2(s1) = a1. In both cases, choosing the alternative action in s1 will incur a
suboptimality gap of "

2(1��) .

Let N(·) be the probability function of Bernoulli distribution on {s2, s3}: N(x) =

(
1 if x = s2
0 if x = s3

. First of all, notice

that an 2"-oblivious adversary can make the two MDPs M1,M2 indistinguishable by changing P1(· | s1, a1) to be
(1 � 2"

1+"
)P1(· | s1, a1) +

2"
1+"

N(·), which is exactly P2(· | s1, a1). Note that 2"
1+"
 2" and thus can be achieved by a

2"-oblivious adversary.

When the two MDPs are indistinguishable, any rollout has the same probability under both MDP, and thus conditioned on
any roll-out, the learner can at best obtain an "

2(1��) -optimal policy with probability 1/2 on both MDP.

What remains to be shown is that with high probability, the "-contamination adversary can simulate the oblivious adversary.

Let Xi, Yi be Bernoulli random variables s.t. Xi =

(
s2 U 1�"

2

s3 o.w.
, Yi =

(
s2 U 1+"

2

s3 o.w.
, where U is picked uniformly

random in [0, 1]. Then (Xi, Yi) is a coupling with law: P ((Xi, Yi) = (s2, s2)) = 1�"

2 , P ((Xi, Yi) = (s2, s3)) = 0,
P ((Xi, Yi) = (s3, s2)) = ", P ((Xi, Yi) = (s3, s3)) =

1�"

2 , Xi and Yi can be thought as the outcome of P1(· | s1, a1),
P2(· | s1, a1) respectively. The "-contamination adversary can simulate the oblivious adversary by changing Xi to Yi when
X1 6= Yi, which has probability ". This is possible when there are at most " fraction of index i s.t. Xi 6= Yi. Suppose there
are T episodes, then

P

TX

i=1
{a1 is taken at s1} {Xi 6=Yi}

� "T

!
 P (

TX

i=1

{Xi 6=Yi}
� T")

1

2
(11)

because the median of Binomial(n, p) is at most dnpe. Therefore, the probability that the adaptive adversary can simulate
the oblivious adversary throughout T episodes is at least 1/2. Assuming that when the adversary fails to simulate, the

Robust Policy Gradient against Strong Data Corruption

learner automatically succeed in finding the optimal policy, then we’ve established that the learner will still fail to find an⇣
"

2(1��)

⌘
-optimal policy with probability 1/4 on both MDPs.

B. Property of Q̂(s, a) sampled from Algorithm 1

To prepare for the analysis that follows, we first show that the Q̂(s, a) sampled from Algorithm 1 is unbiased and has
bounded variance.
Lemma B.1. E

h
Q̂⇡(s, a)

i
= Q⇡(s, a), Var(Q̂⇡(s, a)) �

(1��)2 + �
2

1��
. The bound for variance is tight.

Proof of Lemma B.1. In the following, we treat (s0, a0) as deterministic.

E
h
Q̂⇡(s0, a0)

i
=

1X

k=0

E
"

TX

t=0

r(st, at)

�����T = k

#
P (T = k) (by law of total expectation)

=
1X

k=0

E
"

kX

t=0

r(st, at)

#
(1� �)�k (each r(s, a) is independent of T)

=(1� �)
1X

k=0

�k

1� �
E [r(ak, sk)]

=Q⇡(s0, a0)

Now, we upperbound the variance. Let r̄(s, a) := r(s, a) � e(s, a) be the expected reward over the zero-mean noise.
Because the zero-mean noise is independent of state transition, we observe that:

E [r(s, a)] =E [r̄(s, a)]

E
⇥
r(s, a)2

⇤
=E

⇥
(r̄(s, a) + e(s, a))2

⇤
= E

⇥
r̄(s, a)2

⇤
+ E

⇥
e(s, a)2

⇤
 E

⇥
r̄(s, a)2

⇤
+ �2

E [r(si, ai)r(sj , aj)] =E [(r̄(si, ai) + e(si, ai))(r̄(sj , aj) + e(sj , aj))] = E [r̄(si, ai)r̄(sj , aj)] ,

for i 6= j.

Given the above observations, we can bound the variance as follows

Var(Q̂⇡(s0, a0))

 �2 + E
h
(Q̂⇡(s0, a0)� r̄(s0, a0))

2
i
�

⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2
(separate the variance of r(s0, a0))

= �2 +
1X

k=1

(1� �)�kE

2

4

kX

t=1

r(st, at)

!2
3

5�
⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

= �2 +
1X

k=1

(1� �)�k

0

@
kX

t=1

E
⇥
r(st, at)

2
⇤
+ 2

kX

i=1

kX

j=i+1

E [r(si, ai)r(sj , aj)]

1

A�
⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

= �2 +
1X

t=1

�tE
⇥
r(st, at)

2
⇤
+ 2

1X

i=1

1X

j=i+1

�jE [r(si, ai)r(sj , aj)]�
⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

�2

1� �
+

1X

t=1

�tE
⇥
r̄(st, at)

2
⇤
+ 2

1X

i=1

1X

j=i+1

�jE [r̄(si, ai)r̄(sj , aj)]�
⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

�2

1� �
+

1X

t=1

�tE [r̄(st, at)] + 2
1X

i=1

1X

j=i+1

�jE [r̄(si, ai)]�
⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

=
�2

1� �
+

1X

t=1

�tE [r̄(st, at)] + 2
1X

i=1

�i+1

1� �
E [r̄(si, ai)]�

⇣
E
h
Q̂⇡(s0, a0)

i
� r̄(s0, a0)

⌘2

Robust Policy Gradient against Strong Data Corruption

=
�2

1� �
+

1 + �

1� �

1X

t=1

�tE [r̄(st, at)]�

1X

t=1

�tE [r̄(st, at)]

!2

= �

1X

t=1

�tE [r̄(st, at)]�
1 + �

2(1� �)

!2

+
(1 + �)2

4(1� �)2
+

�2

1� �

 �

1X

t=1

�t
�

1 + �

2(1� �)

!2

+
(1 + �)2

4(1� �)2
+

�2

1� �
=

�

(1� �)2
+

�2

1� �

The last line is because:
1X

t=1

�tE [r̄(st, at)]
1X

t=1

�t =
�

1� �

1 + �

2(1� �)
.

The equality can be reached by the following reward setting: let P (1 = r̄(s1, a1) = · · · = r̄(st, at) = · · ·) = 1 and
therefore is tight.

C. Proofs for Section 4.
Lemma C.1 (Lemma 4.2). Suppose the adversarial rewards are bounded in [0, 1], and in a particular iteration t, the
adversary contaminates "(t) fraction of the episodes, then given M episodes, it is guaranteed that with probability at least
1� �,

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2�
 4

�
W 2 +WH

�

"(t) +

r
8

M
log

4d

�

!
.

where H = (log � � logM)/ log � is the effective horizon.

Proof of Lemma C.1. First of all, observe that since the adversarial reward is bounded in [0, 1], with probability 1� �, the
Q̂(s, a) estimates collected in the adversarial episodes are bounded by H := (log � � logM)/ log �.

Conditioned on the above event, consider three loss functions f̂ , f† and f , representing the loss w.r.t. clean data, corrupted
data and underlying distribution respectively, i.e.

f̂ =
1

M

MX

i=1

(yi � x>

i
w)2 (12)

f† =
1

M

"
X

i2C

(y†
i
� x†>

i
w)2 +

X

i/2C

(yi � x>

i
w)2
#

(13)

f = E(yi � x>

i
w)2 (14)

Then, for all w, we can make the following decomposition

||rwf
†
�rwf || ||rwf

†
�rwf̂ ||+ ||rwf̂ �rwf ||. (15)

We next bound each of the two terms in equation 15. For the first term,

krwf
†
�rwf̂k (16)

=

�����
2

M

X

i2C

h
(x†

i
x†>

i
� xix

>

i
)w + (y†

i
x†

i
� yixi)

i����� (17)

 4 (W +H) "(t) (18)

where the last step uses the fact that |C|/M "(t), and kxk 1, |y†| H and kwk W . For the second term

||rwf̂ �rwf || (19)

Robust Policy Gradient against Strong Data Corruption

 2

�����

E[xx>]�

1

M

MX

i=1

xix
>

i

!
w �

E[yx]� 1

M

MX

i=1

yixi

!����� (20)

 2

2

3M
log

4d

�
+

r
2

M
log

4d

�

!
W + 2

r
2

M
log

4d

�
· 2H (21)

 4

r
8

M
log

4d

�
(W +H) , for M � 2 log

4d

�
. (22)

where in step (21) we apply Matrix Bernstein inequality (Tropp, 2015) on the first term and vector Hoeffding’s inequality
(Jin et al., 2019) on the second term. The constant in Corollary 7 of (Jin et al., 2019) is instantiated to be c = 1, because
boundedness means we always have condition 2 in Lemma 2 of (Jin et al., 2019). This condition is all we need throughout
the proof for the vector Hoeffding.

Now, let M be sufficiently large, and instantiate w to be wt, i.e. the constrained linear regression solution w.r.t f†, then our
result above implies that for any vector v such that ||w + v|| W , we have rwf†(wt)>v/||v|| � 0, and thus

rwf(w
t)>v/||v|| � �4 (W +H)

"(t) +

r
8

M
log

4d

�

!
(23)

which by Lemma B.8 of (Diakonikolas et al., 2019) implies that

"(t)
stat
 4

�
W 2 +HW

�

"(t) +

r
8

M
log

4d

�

!
, w.p. 1� 2�. (24)

Theorem C.1 (Theorem 4.1). Under assumptions 3.1 (linear Q function) and 3.2 (reset distribution with small), given a
desired optimality gap ↵, there exists a set of hyperparameters agnostic to the contamination level ", such that Algorithm
2 guarantees with a poly(1/↵, 1/(1 � �), |A|,W,�,) sample complexity that under "-contamination with adversarial
rewards bounded in [0, 1], we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
 Õ

max

"
↵,W

s
|A|"

(1� �)3

#!

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

Proof of Theorem C.1. First note that "stat = Es,a⇠d(t) [
�
�(s, a)>(w(t)

� w⇤)
�2
] 4W 2, because k�(s, a)k 1 and

kw(t)
k, kw⇤

k W . As a result, the high probability bound in Lemma 4.2 can be ready translate into an expected bound:

E

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2��

 4
�
W 2 +HW

�

"(t) +

r
8

M
log

4d

�

!
+ 8�W 2 (25)

where � becomes a free parameter. Plugging this into Lemma 4.1, we get

E
"
1

T

TX

t=1

{V ⇤(µ0)� V (t)(µ0)}

#

W

1� �

r
2 log |A|

T
+

1

T

TX

t=1

s
4|A|"(t)

stat

(1� �)3

W

1� �

r
2 log |A|

T
+

1

T

TX

t=1

vuuut16|A|

✓
(W 2 +HW)

✓
"(t) +

q
8
M

log 4d
�

◆
+ 2�W 2

◆

(1� �)3

Robust Policy Gradient against Strong Data Corruption

W

1� �

r
2 log |A|

T
+

1

T

TX

t=1

vuuut16|A|

✓
(W 2 +HW)

q
8
M

log 4d
�
+ 2�W 2

◆

(1� �)3
+

1

T

TX

t=1

s
16|A| (W 2 +HW) "(t)

(1� �)3

W

1� �

r
2 log |A|

T
+

vuuut16|A|

✓
(W 2 +HW)

q
8
M

log 4d
�
+ 2�W 2

◆

(1� �)3
+

s
16|A| (W 2 +HW) "

(1� �)3

where the last step is by Cauchy Schwarz and the fact that the attacker only has " budget to distribute, which implies thatP
T

t=1 "
(t) = T". Setting

T =
2W 2 log |A|

↵2(1� �)2
(26)

� =
↵2(1� �)3

32W 2|A|
(27)

M =
512|A|

2W 2(W +H)22

↵4(1� �)6
log

4d

�
, (28)

we get

E
"
1

T

TX

t=1

{V ⇤(µ0)� V (t)(µ0)}

#
 3↵+

s
16|A| (W 2 +HW) "

(1� �)3
. (29)

with sample complexity

TM =
1024|A|

2 log |A|W 4(W +H)22

↵6(1� �)8
log

128W 2
|A|d

↵2(1� �)3
. (30)

Next, we prove this tighter version of Theorem 4.1 in the special case of tabular MDPs.
Corollary C.1 (Corollary 4.1). Given a tabular MDP and assumption 3.2, given a desired optimality gap ↵, there exists a
set of hyperparameters agnostic to the contamination level ", such that Algorithm 2 guarantees with a poly(1/↵, 1/(1�
�), |A|,W,�,) sample complexity that under "-contamination with adversarial rewards bounded in [0, 1], we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
 Õ

max

"
↵,

s
|A|"

(1� �)5

#!
(31)

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

The proof follows the exact same structure as the proof of Theorem C.1, but with a tighter robustness bound of linear
regression.
Lemma C.2. Assume a tabular MDP and the adversarial rewards are bounded in [0, 1], and in a particular iteration t, the
adversary contaminates "(t) fraction of the episodes, then given M episodes, it is guaranteed that with probability at least
1� �,

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2�
 H2"(t) + 3

�
W 2 +WH

�
r

log 1/�

M
. (32)

where H = (log � � logM)/ log � is the effective horizon.

Proof of Lemma C.2. The proof is largely based on Lemma G.1 of (Agarwal et al., 2020a). We assumed that the constrained
linear regression problem is solved using Projected Online Gradient Descent (Zinkevich, 2003) on the sequence of loss
functions (w>�i � Q̂i)2, i.e.

wi+1 = Proj
kwkW

⇣
wi � ⌘i(w

>

i
�i � Q̂i)�i

⌘
, for all i 2 [M], (33)

Robust Policy Gradient against Strong Data Corruption

where ⌘i = W 2/((W +H)
p
N) and we set w(t) = 1

M

P
M

i=1 wi.

Using the projected online gradient descent regret guarantee, we have that:
X

i2C

(w>

i
�†

i
� Q̂†

i
)2 +

X

i/2C

(w>

i
�i � Q̂i)

2

X

i2C

(w?>�†

i
� Q̂†

i
)2 +

X

i/2C

(w?>�i � Q̂i)
2 +W (W +H)| {z }

:=Q

p

M. (34)

which implies
X

i2[M]

(w>

i
�i � Q̂i)

2
�

X

i2[M]

(w?>�i � Q̂i)
2 (35)

X

i2C

h
(w?>�†

i
� Q̂†

i
)2 � (w?>�i � Q̂i)

2
i
�

X

i2C

h
(w>

i
�†

i
� Q̂†

i
)2 � (w>

i
�i � Q̂i)

2
i
+Q
p

M. (36)

We now want to show by induction that w>

i
� 2 [0, H] for any i and �. w0 = 0 which satisfies w>

0 � 2 [0, H]. Now, assume
that w>

i
� 2 [0, H], we want to show w>

i+1� 2 [0, H]. In a tabular MDP, � is an one-hot vector, and thus for � 6= �i,
w>

i+1� = w>

i
� 2 [0, H]. If � = �i, then

w>

i+1� =
⇣
wi � ⌘i(w

>

i
�i � Q̂i)�i

⌘>
�i (1� ⌘i)w

>

i
�i + ⌘Q̂i 2 [0, H] (37)

because both wi>�i (by induction hypothesis) and Q̂i (by assumption on bounded attack) are in [0, H]. Therefore, we have
shown that w>

i
� 2 [0, H] for any i and �. Then, (36) implies that

X

i2[M]

(w>

i
�i � Q̂i)

2

X

i2[M]

(w?>�i � Q̂i)
2 + 2H2"(t)M +Q

p

M. (38)

Denote random variable zi = (✓i · xi � yi)2 � (✓? · xi � yi)2. Denote Ei as the expectation taken over the randomness at
step i conditioned on all history t = 1 to i� 1. Note that for Ei[zi], we have:

Ei

⇥
(✓i · x� y)2 � (✓? · x� y)2

⇤
(39)

= Ei

⇥
(✓i · x� E[y|x])2

⇤
(40)

� Ei

⇥
2(✓i · x� E[y|x])(E[y|x]� y)� (✓? · x� E[y|x])2 + 2(✓? · x� E[y|x])(E[y|x]� y))

⇤
(41)

= Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤
, (42)

where we use E[E[y|x]� y] = 0. Also for |zi|, we can show that for |zi| we have:

|zi| = |(✓i · xi � ✓? · xi)(✓i · xi + ✓? · xi � 2yi)| W (2W + 2H) = 2W (W +H). (43)

Note that zi forms a Martingale difference sequence. Using Azuma-Hoeffding’s inequality, we have that with probability at
least 1� �:

�����

MX

i=1

zi �
MX

i=1

Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤
����� 2W (W +H)

p
ln(1/�)M, (44)

which implies that:

MX

i=1

Ei

⇥
(✓i · x� E[y|x])2 � (✓? · x� E[y|x])2

⇤

MX

i=1

zi + 2W (W +H)
p
ln(1/�)M (45)

 2W (W +H)
p
ln(1/�)M + 2H2M"(t) +Q

p

M. (46)

Apply Jensen’s inequality on the LHS of the above inequality, we have that:

E
⇣
✓̂ · x� E[y|x]

⌘2
 E (✓? · x� E[y|x])2 + 2H2"(t) + (Q+ 2W (W +H))

r
ln(1/�)

M
. (47)

Robust Policy Gradient against Strong Data Corruption

D. A modified analysis for SEVER
In this section, we will derive an expected error bound for SEVER (Diakonikolas et al., 2019) when applied to a linear
regression problem. The high level idea is to use the results of (Diakonikolas et al., 2020) to show the existence of a stable
set and change the probabilistic argument in (Diakonikolas et al., 2019) to an expectation argument. We note that the original
result in (Diakonikolas et al., 2019) works only with probability 9/10, and there is no direct way of translating it into either
a high-probability argument or an expectation argument.

In the following, we consider a robust linear regression problem. We observe pairs (Xi, Yi) 2 Rd
⇥ R for i 2 [n], where

Xi’s are drawn i.i.d. from a distribution Dx and Yi = w⇤>Xi + ei for some unknown w⇤
2 Rd. ei’s are i.i.d, noise from

some distribution De|x. Note that here ei and Xi may not be independent. We let Dxy be the joint distribution of (X,Y).
Let fi(w) = (Yi �w>Xi)2. Given a multiset of observations {(Xi, Yi)}ni=1, our goal is to minimize the objective function

f̄(w) = E(X,Y)⇠Dxy
[(Y � w>X)2] (48)

on a convex feasible set H. Let r := maxw2H kwk be the `2-radius of H. In the following, we use k · k to denote the
spectral norm of a matrix and the 2-norm of a vector. We use Cov to denote the covariance matrix of a random vector:
Cov[X] = E

⇥
(X � EX)(X � EX)>

⇤
. When S is a set, we use ES and CovS to denote the expectation and covariance

over the empirical distribution on S. We allow for an "-fraction of the observations to be arbitrary outliers. The "-corruption
model is defined in more detail in the Appendix A of (Diakonikolas et al., 2019).

Due to our application, we make assumptions on the linear regression model that is slight different from Assumption E.1
in (Diakonikolas et al., 2019):
Assumption D.1. Given the model for linear regression described above, assume the following conditions for De|x and
Dx:

• E [e|X] = 0;

• E
⇥
e2
��X
⇤
 ⇠;

• EX⇠Dx [XX>] � s2I for some s > 0;

• There is a constant C > 0, such that for all unit vectors v, EX⇠Dx [hv,Xi
4] Cs4.

In (Diakonikolas et al., 2019), the noise term e and X are independent. We weaken the assumption on e and bound its first
and second moments conditional on X .

D.1. Stability with subgaussian rate

We first note that the gradient of fi, rfi(w) has bounded covariance matrix. We will show this by following the proof of
Lemma E.3 in (Diakonikolas et al., 2019), but make minor changes as we do not assume e and X are independent:
Lemma D.1 (A variant of Lemma E.3 in (Diakonikolas et al., 2019)). Suppose Dxy satisfies the conditions of Assumption D.1.
Then for all unit vectors v 2 Rd, we have

v> Cov(Xi,Yi)⇠Dxy
[rfi(w)]v 4s2⇠ + 4Cs4kw⇤

� wk2. (49)

Proof of Lemma D.1. We first note that fi(w) = (Yi � w>Xi)2 and rfi(w) = �2((w⇤
� w)>Xi + ei)Xi. By the

property of conditional expectation, for any function g(·), h(·), we have E [g(X)h(e)] = EX

⇥
Eh(e)|X [g(X)h(e)|X]

⇤
=

EX

⇥
g(X)Eh(e)|X [h(e)|X]

⇤
. Then

E
⇥
rfi(w)rfi(w)

>
⇤
= 4E

⇥
((w⇤

� w)>Xi + ei)
2XiX

>

i

⇤
(50)

= 4E
⇥
((w⇤

� w)>Xi)
2XiX

>

i

⇤
+ 4E

⇥
e2
i
XiX

>

i

⇤
+ 4E

⇥
2(w⇤

� w)>XieiXiX
>

i

⇤
(51)

= 4E
⇥
((w⇤

� w)>Xi)
2XiX

>

i

⇤
+ 4E

⇥
XiX

>

i
E
⇥
e2
i

��Xi

⇤⇤
(52)

By Assumption D.1, for all unit vectors v 2 Rd, we have

v>E
⇥
((w⇤

� w)>Xi)
2XiX

>

i

⇤
v = E

⇥
((w⇤

� w)>Xi)
2(v>Xi)

2
⇤

(53)

Robust Policy Gradient against Strong Data Corruption

q
E [((w⇤ � w)>Xi)4]E [(v>Xi)4] (54)

 Cs4kw⇤
� wk2 (55)

and
v>E

⇥
XiX

>

i
E
⇥
e2
i

��Xi

⇤⇤
v ⇠v>E

⇥
XiX

>

i

⇤
v s2⇠ (56)

Thus for all unit vectors v 2 Rd, we have

v> Cov(Xi,Yi)⇠Dxy
[rfi(w)]v v>E

⇥
rfi(w)rfi(w)

>
⇤
v 4s2⇠ + 4Cs4kw⇤

� wk2. (57)

We then use the following Theorem D.1 to show that the observations f1, . . . , fn satisfies the Assumption D.2 with high
probability:
Theorem D.1 (Theorem 1.4 in (Diakonikolas et al., 2020)). Fix any 0 < ⌧ < 1. Let S be a multiset of n i.i.d. samples
from a distribution on Rd with mean µ and covariance ⌃. Let "0 = C̃ (log(1/⌧)/n+ ") = O(1), for some constant C̃ > 0.
Then, with probability at least 1� ⌧ , there exists a subset S0

✓ S such that |S0
| � (1� "0)n and for every S00

✓ S0 with
|S00

| � (1 � 2"0)|S0
|, the following conditions hold: (i) kµS00 � µk

p
k⌃k�, and (ii) k⌃S00 � k⌃kIk k⌃k�2/(2"0),

for � = O
⇣p

(d log d)/n+
p
"+

p
log(1/⌧)/n

⌘
.

where µS00 = 1
|S00|

P
x2S00 x and ⌃S00 = 1

|S00|

P
x2S00(x� µ)(x� µ)>.

We use a notion of stability similar to that in (Diakonikolas et al., 2019) but allow the parameter to depend on the confidence
level and sample size:
Assumption D.2 (A variant of Assumption B.1 in (Diakonikolas et al., 2019)). Fix 0 < " < 1/2. With probability at least
1� ⌧ , there exists an unknown set Igood ✓ [n] with |Igood| � (1� ")n of “good” functions {fi}i2Igood and parameters �,
↵(", n, ⌧),�(", n, ⌧) 2 R+ such that for all w 2 H:

������
1

|Igood|

X

i2Igood

rfi(w)�rf̄(w)

������
 �↵(", n, ⌧) (58)

and ����
1

|Igood|
(rfi(w)�rf̄(w))(rfi(w)�rf̄(w))

>

���� �2�(", n, ⌧) (59)

We can then equivalently write Theorem D.1 as the following Proposition:
Proposition D.1. Given a linear regression model fi(w) = (Yi � w>Xi)2 satisfying Assumption D.1, Xi ⇠ Dx,
De ⇠ De, with probability at least 1 � ⌧ , {fi}i2[n] satisfies Assumption D.2 with � = 2s

p
⇠ + 2

p
Cs2kw⇤

� wk,

↵(", n, ⌧) = O
⇣p

(d log d)/n+
p
"+

p
log(1/⌧)/n

⌘
and �(", n, ⌧) =

⇣
d log d

log(1/⌧)+n"
+ 1
⌘

.

Proof of Proposition D.1. By Theorem D.1 and Lemma D.1, with probability at least 1� ⌧ , there exist an unknown set
Igood ✓ [n] with |Igood| � (1� "0)n, s.t.

����
1

|Igood|
(rfi(w)�rf̄(w))(rfi(w)�rf̄(w))

>

���� (60)

����
1

|Igood|
(rfi(w)�rf̄(w))(rfi(w)�rf̄(w))

>
� kCovf2p⇤ [rf]k I

����+ kCovf2p⇤ [rf]k (61)

�
4s2⇠ + 4Cs4kw⇤

� wk2
�
O

✓
d log d

log(1/⌧) + n"
+ 1

◆
(62)

⇣
2s
p
⇠ + 2

p

Cs2kw⇤
� wk

⌘2
O

✓
d log d

log(1/⌧) + n"
+ 1

◆
=: �2�(", n, ⌧). (63)

krf̂(w)�rf̄(w)k �O
⇣p

(d log d)/n+
p
"+

p
log(1/⌧)/n

⌘
=: �↵(", n, ⌧). (64)

Robust Policy Gradient against Strong Data Corruption

D.2. The expected optimality gap

In order to prove the expected optimality gap, we first state a slightly modified version of the main theorem in (Diakonikolas
et al., 2019) by specifying the probability of success;
Theorem D.2 (Theorem B.2 in (Diakonikolas et al., 2019)). Let the corruption level " 2 [0, c], for some small
enough c > 0. Suppose that the functions f1, . . . , fn, f̄ : H ! R are bounded below, and that Assump-
tion D.2 is satisfied. Then SEVER applied to f1, . . . , fn returns a point w 2 H that, fix p �

p
", with prob-

ability at least 1 � p, is a O
⇣
�
⇣
↵(", n, ⌧) +

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘⌘

-approximate critical point of f̄ ,
i.e. for all unit vectors v where w + �v 2 H for arbitrarily small positive �, we have that v · rf(w) �

�O
⇣
�
⇣
↵(", n, ⌧) +

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘⌘

.

if f̄ is convex, we have the following optimality gap. Recall r is the radius of the convex set H where w⇤ belongs.
Corollary D.1 (Corollary B.3 in (Diakonikolas et al., 2019)). Let the corruption level " 2 [0, c], for some small enough
c > 0. For functions f1, . . . , fn : H! R, suppose that Assumption D.2 holds and that H is convex. Then, fix p �

p
", with

probability at least 1� p, the output of SEVER satisfies the following: if f̄ is convex, the algorithm finds a w 2 H such that
f̄(w)� f̄(w⇤) = O

⇣
r�
⇣
↵(", n, ⌧) +

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘⌘

Given Theorem D.1, we can prove the following expected optimality gap:
Theorem D.3 (expected optimality gap). Let the corruption level " 2 [0, c], for some small enough c > 0. Let H be a
convex set. Given n samples from a linear regression model f(w) = (Y � w>X)2 satisfying Assumption D.1, where
X ⇠ Dx, e ⇠ De, Y = w⇤>X + e for some unknown w⇤

2 H, SEVER will find a w 2 H, such that

E
⇥
f̄(w)� f̄(w⇤)

⇤
= O

⇣⇣
sr
p
⇠ + s2r2

⌘⇣
⌧ +

p
(d log d)/n+

p
"+

p
log(1/⌧)/n

⌘⌘
. (65)

where the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

Proof of Theorem D.3. In the following, we use ↵ and � as shorthands of ↵(", n, ⌧) and �(", n, ⌧). We first show that
f̄(w)� f̄(w⇤) is upper bounded:

f̄(w)� f̄(w⇤) = EX,Y

⇥
(Y � w>X)2 � (Y � w⇤>X)2

⇤
(66)

= EX,e

⇥
(w⇤
� w)>X + e)2 � e2

⇤
(67)

= (w⇤
� w)>EX [XX>](w⇤

� w) s2(w � w⇤)2 4s2r2. (68)

For some constant M > 0, define x1 := Mr�
⇣
↵/
p
"+

p
↵2 + �

⌘
p
". Let A1 be the event of

{Assumption D.2 holds}. Let A2 be the event of {SEVER removes less than (1 + 1/
p
")"n points}. Let A3(p) be the

event of
n
f̄(w)� f̄(w⇤) > Mr�

⇣
↵+

p
↵2 + �

p
"/p
⌘o

. Then, 80 p <
p
"

P (A2, A3(p) | A1) = 0. (69)

By Corollary D.1, 8
p
" p 1

P (A2, A3(p) | A1) p. (70)

By Proposition D.1,
P (A1) � 1� ⌧. (71)

By Lemma D.3,
P (A2 | A1) � 1�

p
", (72)

and thus
1� P (A1, A2) = 1� P (A2 | A1)P (A1) ⌧ +

p
". (73)

Then, we have:

P
�
f̄(w)� f̄(w⇤) > x1/

p
p | A1, A2

�
(74)

Robust Policy Gradient against Strong Data Corruption

Algorithm 5 SEVER(f1:n,L,�)

1: Input: Sample functions f1, . . . , fn : H! R, bounded below on a closed domain H, �-approximate learner L, and
parameter � 2 R+.

2: Initialize S {1, . . . , n}.
3: repeat
4: w L({fi}i2S). . Run approximate learner on points in S.
5: Let br = 1

|S|

P
i2S
rfi(w).

6: Let G = [rfi(w)� br]i2S be the |S|⇥ d matrix of centered gradients.
7: Let v be the top right singular vector of G.

8: Compute the vector ⌧ of outlier scores defined via ⌧i =
⇣
(rfi(w)� br) · v

⌘2
.

9: S0
 S

10: S FILTER(S0, ⌧,�) . Remove some i’s with the largest scores ⌧i from S; see Algorithm 6.
11: until S = S0.
12: Return w.

P (A3(p) | A1, A2) = P (A2, A3(p) | A1)/P (A2 | A1) (75)

(
0 0 p <

p
"

p

1�
p
"

p
" p 1

. (76)

Let x = x1/
p
p, we have:

P
�
f̄(w)� f̄(w⇤) > x

��A1, A2

�

8
><

>:

0 x � x1"�1/4

1
1�

p
"

x
2
1

x2 x1 x < x1"�1/4

1 0 x < x1

. (77)

By Proposition D.1 and law of total expectation, we can bound the expected optimality gap by:

E
⇥
f̄(w)� f̄(w⇤)

⇤
 E

⇥
f̄(w)� f̄(w⇤)

��A1, A2

⇤
P (A1, A2) + 4s2r2(1� P (A1, A2)) (78)

Z
1

0
P
�
f̄(w)� f̄(w⇤) > x

��A1, A2

�
dx+ 4s2r2(⌧ +

p
") (79)

=

Z
x1

0
1dx+

1

1�
p
"

Z
x1"

�1/4

x1

x2
1

x2
dx+ 4s2r2(⌧ +

p
") (80)

 2x1 + 4s2r2(⌧ +
p
") (81)

= 2Mr�
⇣
↵/
p
"+

p
↵2 + �

⌘p
"+ 4s2r2(⌧ +

p
") (82)

= O
⇣⇣

sr
p
⇠ + s2r2

⌘⇣
⌧ +

p
(d log d)/n+

p
"+

p
log(1/⌧)/n

⌘⌘
(83)

Note that the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

D.3. Proof of Theorem D.2

In this proof, we mainly follow the steps in (Diakonikolas et al., 2019) but use our notion of stability in Assumption D.2. We
also allow the success probability to vary, so that we can give an expected error bound later on.

We first restate the SEVER algorithm in Algorithm 5 and Algorithm 6. Throughout this proof we let Igood be as in
Assumption D.2. We require the following three lemmas. Roughly speaking, the first states that with high probability, we
will not remove too many points throughtout the process, the second states that on average, we remove more corrupted
points than uncorrupted points, and the third states that at termination, and if we have not removed too many points, then we
have reached a point at which the empirical gradient is close to the true gradient. Formally:

Robust Policy Gradient against Strong Data Corruption

Algorithm 6 FILTER(S, ⌧,�)

1: Input: Set S ✓ [n], vector ⌧ of outlier scores, and parameter � 2 R+.
2: If 1

|S|

P
i2S

⌧i c0 · �2, for some constant c0 > 1, return S . We only filter out points if the variance is larger than an
appropriately chosen threshold.

3: Draw T from the uniform distribution on [0,maxi ⌧i].
4: Return {i 2 S : ⌧i < T}.

Lemma D.2. If the samples satisfy Assumption D.2, |S| � c1n, and the filtering threshold is at least

2(1� ")�2

c1 � 2"

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
(84)

then if S0 is the output of FILTER(S, ⌧,�), we have that

E[|Igood \ (S\S0)|] E[|([n]\Igood) \ (S\S0)|]. (85)

Lemma D.3 (Revised version of Lemma 6 in (Diakonikolas et al., 2019)). Assume filtering threshold is 4(↵(", n, ⌧)2 +
�(", n, ⌧))�2, " 1/16, then we have that for any given p �

p
", with probability at least 1� p, n� |S| (1 + 1/p)"n

when the filtering algorithm terminates.

Lemma D.4. If the samples satisfy Assumption D.2, FILTER(S, ⌧,�) = S, and n� |S| (1 + 1/p)"n, for p �
p
", then

�����rf̄(w)�
1

|Igood|

X

i2S

rfi(w)

�����
2

 O
⇣
�
⇣
↵(", n, ⌧) +

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘⌘

(86)

Before we prove these lemmata, we show how together they imply Theorem D.2.

Proof of Theorem D.2 assuming Lemma D.3 and Lemma D.4. First, we note that the algorithm must terminate in at
most n iterations. This is easy to see as each iteration of the main loop except for the last must decrease the size of S by at
least 1.

It thus suffices to prove correctness. Note that Lemma D.3 says that with probability at least 1� p, SEVER will not remove
too many points, this will allow us to apply Lemma D.4 to complete the proof, using the fact that w is a critical point of

1
|Igood|

P
i2S
rfi(w).

Thus it suffices to prove these three lemmata.

Proof of Lemma D.2. Let Sgood = S \ Igood and Sbad = S\Igood. We wish to show that the expected number of
elements thrown out of Sbad is at least the expected number thrown out of Sgood. We note that our result holds trivially if
FILTER(S, ⌧,�) = S. Thus, we can assume that Ei2S [⌧i] �

2(1�")�2

c1�2"

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
.

It is easy to see that the expected number of elements thrown out of Sbad is proportional to
P

i2Sbad
⌧i, while the number

removed from Sgood is proportional to
P

i2Sgood
⌧i (with the same proportionality). Hence, it suffices to show thatP

i2Sbad
⌧i �

P
i2Sgood

⌧i.

We first note that since Covi2Igood [rfi(w)] � �2I , we have that

Covi2Sgood [v ·rfi(w)]
1� "

c1 � "
Covi2Igood [v ·rfi(w)] (since |Sgood| �

c1�"

1�"
|Igood|) (87)

=
1� "

c1 � "

0

@ 1

|Igood|

X

i2Igood

(v · (rfi(w)� f̄(w)))2 � (f̄(w)� Ei2Igood [v ·rfi(w)])
2

1

A (88)

(1� ")�2

c1 � "

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
(By Assumption D.2), (89)

Robust Policy Gradient against Strong Data Corruption

Let µgood = Ei2Sgood [v ·rfi(w)] and µ = Ei2S [v ·rfi(w)]. Note that

Ei2Sgood [⌧i] = Covi2Sgood [v ·rfi(w)] + (µ� µgood)
2

(1� ")�2

c1 � "

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
+ (µ� µgood)

2 . (90)

We now split into two cases.

Firstly, if

(µ� µgood)
2
�

"

c1 � 2"

(1� ")�2

c1 � "

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
, (91)

we let µbad = Ei2Sbad [v ·rfi(w)], and note that |µ� µbad||Sbad| = |µ� µgood||Sgood|. We then have that

Ei2Sbad [⌧i] = Covi2Sbad [v ·rfi(w)] + (µ� µbad)
2
� (µ� µbad)

2 (92)

= (µ� µgood)
2

✓
|Sgood|

|Sbad|

◆2

(93)

�
|Sgood|

|Sbad|

c1 � "

"
(µ� µgood)

2 (because |Sgood| � (c1 � ")n and |Sbad| "n) (94)

=
|Sgood|

|Sbad|

✓
c1 � 2"

"
(µ� µgood)

2 + (µ� µgood)
2

◆
(95)

�
|Sgood|

|Sbad|

✓
(1� ")�2

c1 � "

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
+ (µ� µgood)

2

◆
(by (91)) (96)

�
|Sgood|

|Sbad|
Ei2Sgood [⌧i] (by (90)). (97)

Hence,
P

i2Sbad
⌧i �

P
i2Sgood

⌧i.

On the other hand, if (µ � µgood)2
"

c1�2"
(1�")�2

c1�"

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
, then Ei2Sgood [⌧i] ⇣

1 + "

c�2"

⌘
(1�")�2

c1�"

�
↵(", n, ⌧)2 + �(", n, ⌧)

�
 Ei2S [⌧i]/2. Therefore

P
i2Sbad

⌧i �
P

i2Sgood
⌧i once again. This

completes our proof.

Proof of Lemma D.3. Define the event

A = {n� |S| (1 + 1/p)"n}, (98)

and we want to lower-bound P (A). Given that " 1/16, the threshold is 4(↵(", n, ⌧)2 + �(", n, ⌧))�2 and p �
p
",

and conditioned on the event A, it can be verified that the asusumption of Lemma D.2 is satisfied. In particular, simple
calculation shows that given c1 = 1� (1 + 1/p)", " 1/16, p �

p
", we have

4�2
�

2(1� ")�2

c1 � 2"
(99)

And Lemma D.2 implies that |([n]\Igood) \ S| + |Igood\S| is a supermartingale. Since its initial size is at most "n,
with probability at least 1 � p, it never exceeds "n/p, and therefore at the end of the algorithm, we must have that
n� |S| "n+ |Igood\S| (1 + 1/p)"n.

We now prove Lemma D.4.

Proof of Lemma D.4. We note that
�����
X

i2S

(rfi(w)�rf̄(w))

�����
2

(100)

Robust Policy Gradient against Strong Data Corruption

������

X

i2Igood

(rfi(w)�rf̄(w))

������
2

+

������

X

i2(Igood\S)

(rfi(w)�rf̄(w))

������
2

+

������

X

i2(S\Igood)

(rfi(w)�rf̄(w))

������
2

(101)

������

X

i2(Igood\S)

(rfi(w)�rf̄(w))

������
2

+

������

X

i2(S\Igood)

(rfi(w)�rf̄(w))

������
2

+ n�↵(", n, ⌧). (102)

First we analyze ������

X

i2(Igood\S)

(rfi(w)�rf̄(w))

������
2

. (103)

This is the supremum over unit vectors v of
X

i2(Igood\S)

v · (rfi(w)�rf̄(w)). (104)

However, we note that X

i2Igood

(v · (rfi(w)�rf̄(w)))
2
 n�2�(", n, ⌧). (105)

Since |Igood\S| (1 + 1/p)"n, we have by Cauchy-Schwarz that
X

i2(Igood\S)

v · (rfi(w)�rf̄(w)) =
p
(n�2�(", n, ⌧))((1 + 1/p)"n) = n�

p
�(", n, ⌧)(1 + 1/p)", (106)

as desired.

Let

� :=

�����
X

i2S

(rfi(w)�rf̄(w))

�����
2

. (107)

Because our Filter algorithm terminates with n�|S| (1+1/p)"n, and the stopping condition is set as k 1
|S|

P
i2S

(rfi(w)�

rf̂(w))(rfi(w)�rf̂(w))>k 4(↵(", n, ⌧)2 + �(", n, ⌧))�2, we note that since for any such v that

X

i2S

(v · (rfi(w)�rf̄(w)))
2 =

X

i2S

(v · (rfi(w)�rf̂(w)))
2 + |S|(v · (rf̂(w)�rf̄(w)))2 (108)

X

i2S

(v · (rfi(w)�rf̂(w)))
2 +�2/|S| n4(↵(", n, ⌧)2 + �(", n, ⌧))�2 +�2/((1� (1 + 1/p)")n) (109)

and since |S\Igood| (1 + 1/p)"n, and so we have similarly that
������

X

i2(S\Igood)

rfi(w)�rf̄(w)

������
2

 2n�
p
↵(", n, ⌧)2 + �(", n, ⌧)

p
(1 + 1/p)"+�

s
(1 + 1/p)"

1� (1 + 1/p)"
. (110)

Combining with the above we have that

�

n
 �↵(", n, ⌧)+�

p
�(", n, ⌧)(1 + 1/p)"+2�

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
(1 + 1/p)"+

�

n

s
(1 + 1/p)"

1� (1 + 1/p)"
, (111)

Thus
�

n

1

1�
q

(1+1/p)"
1�(1+1/p)"

⇣
�↵(", n, ⌧) + 6�

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘

(112)

and therefore, �
n
= O

⇣
�
⇣
↵(", n, ⌧) +

p
↵(", n, ⌧)2 + �(", n, ⌧)

p
"/p
⌘⌘

as desired.

Robust Policy Gradient against Strong Data Corruption

E. Proofs for Section 5
Lemma E.1 (Lemma 5.1). Suppose the adversarial rewards are unbounded, and in a particular iteration t, the adversarial
contaminate "(t) fraction of the episodes, then given M episodes, it is guaranteed that if "(t) c, for some absolute constant
c, and any constant ⌧ 2 [0, 1], we have

E

Es,a⇠d(t)

⇣
Q⇡

(t)

(s, a)� �(s, a)>w(t)
⌘2��

(113)

 O

✓✓
W 2 +

�W

1� �

◆⇣p
"(t) + f(d, ⌧)M�

1
2 + ⌧

⌘◆
.

where f(d, ⌧) =
p
d log d+

p
log(1/⌧).

Proof of Lemma E.1. The proof of Lemma 5.1 follows by instantiating Theorem D.3 to our specific linear regression
problem instance. To specify the constants in Theorem D.3, we make the following observations

1. By Lemma B.1, we have that ⇠ = 1
(1��)2 + �

2

1��
.

2. Since kXk 1, EX⇠Dx

⇥
XX>

⇤
 I , and thus s = 1.

3. maxkvk=1 E
⇥
(v>X)4

⇤
 E

⇥
kvk4kXk4

⇤
 1, thus C = 1.

Plugging in the above instantiation to Theorem D.3 concludes the proof.

Theorem E.1 (Theorem 5.1). Under assumptions 3.1 and 3.2, given a desired optimality gap ↵, there exists a set of
hyperparameters agnostic to the contamination level ", such that Algorithm 2, using Algorithm 3 as the linear regression
solver, guarantees with a poly(1/↵, 1/(1� �), |A|,W,�,) sample complexity that under "-contamination, we have

E
⇥
V ⇤(µ0)� V ⇡̂(µ0)

⇤
(114)

 Õ

max

"
↵,

s
|A| (W 2 + �W)

(1� �)4
"1/4

#!
.

where ⇡̂ is the uniform mixture of ⇡(1) through ⇡(T).

Proof of Theorem E.1. Denote z := 2W and again "stat (2W)2 = z2. Denote
⇣
W 2 + �W

1��

⌘
= b. Notice that Lemma

5.1 only holds when "(t) c for some absolute constant c, and there are at most "T/c iterations in which "(t) > c, which
incurs at most "stat z2 error. Given this observation we can now plugging Lemma 5.1 into Lemma 4.1, and we get

E
"
1

T

TX

t=1

{V ⇤(µ0)� V (t)(µ0)}

#
(115)

W

1� �

r
2 log |A|

T
+

1

T

TX

t=1

s
4|A|"(t)

stat

(1� �)3
(116)

W

1� �

r
2 log |A|

T
+

z2

c
"+

1

T

TX

t=1

vuut4|A|b
⇣p

"(t) +
p

(d log d)/M +
p
log(1/⌧)/M + ⌧

⌘

(1� �)3
(117)

W

1� �

r
2 log |A|

T
+

z2

c
"+

vuut4|A|b
⇣p

(d log d)/M +
p

log(1/⌧)/M + ⌧
⌘

(1� �)3
+

1

T

TX

t=1

s
4|A|b

p

"(t)

(1� �)3
(118)

W

1� �

r
2 log |A|

T
+

z2

c
"+

vuut4|A|b
⇣p

(d log d)/M +
p

log(1/⌧)/M + ⌧
⌘

(1� �)3
+

s
4|A|b

(1� �)3
"1/4 (119)

Robust Policy Gradient against Strong Data Corruption

Algorithm 7 Robust NPG Update
1: Input ⇢ncov, bn, learning rate ⌘, sample size M for critic fitting, iterations T
2: Define K

n = {s : 8a 2 A, bn(s, a) = 0}
3: Initialize policy ⇡0 : S ! �(A), such that

⇡0(·|s) =

(
Uniform(A) s 2 K

n

Uniform({a 2 A : bn(s, a) > 0}) s 62 K
n.

4: for t = 0! T � 1 do
5: Draw M i.i.d samples

n
si, ai, bQ⇡

t

(si, ai; r + bn)
oM

i=1
with si, ai ⇠ ⇢ncov (see Alg 1)

6: Critic fit: Call Algorithm 3 to solve for the robust linear regression problem

✓t = argmin
k✓kW

MX

i=1

⇣
✓ · �(si, ai)�

⇣
bQ⇡

t

(si, ai; r + bn)� bn(si, ai)
⌘⌘2

7: Actor update
⇡t+1(·|s) / ⇡t(·|s) exp

�
⌘
�
bn(s, ·) + ✓t · �(s, ·)

�
1{s 2 K

n
}
�

(125)

8: return ⇡n := Uniform{⇡0, ...,⇡T�1
}.

where the last two steps are by Cauchy Schwarz and the fact that the attacker only has " budget to distribute, which implies
that

P
T

t=1 "
(t) = T". Setting

T =
2W 2 log |A|

↵2(1� �)2
(120)

⌧ =
↵2(1� �)3

4|A|b
(121)

M =
16|A|

2b22

↵4(1� �)6
max [d log d, log(1/⌧)] (122)

we get

E
"
1

T

TX

t=1

{V ⇤(µ0)� V (t)(µ0)}

#
 O

↵+

s
|A|b

(1� �)3
"1/4

!
. (123)

with sample complexity

TM =
32W 2

|A|
2 log |A|b22

↵6(1� �)8
max [d log d, log(1/⌧)] . (124)

F. Proof of Theorem 6.1
In PC-PG, aside from the robust linear regression step in Algorithm 7, in step 4 of Algorithm 4, we also needs to robustly
estimate the covariance matrix under "-contamination. Luckily, by assumption, �(s, a) is bounded, and thus the current
empirical mean estimation is already robust to adversarial contamination:
Lemma F.1 (Robust variant of Lemma G.3 in (Agarwal et al., 2020a)). Given ⌫ 2 �(S⇥A) and K "-contaminated samples
from ⌫. Denote ⌃ = E(s,a)⇠⌫

⇥
�(s, a)�(s, a)>

⇤
. Then, with probability at least 1� �, we have that under "-corruption

max
kxk1

�����x
>

KX

i=1

�(si, ai)�(si, ai)
>/K � ⌃

!
x

�����
r

8 log(8d/�)

K
+ 2". (126)

Robust Policy Gradient against Strong Data Corruption

Proof. Without contamination, Lemma G.3 in (Agarwal et al., 2020a) shows that

max
kxk1

�����x
>

KX

i=1

�(si, ai)�(si, ai)
>/K � ⌃

!
x

�����
2 log(8d/�)

3K
+

r
2 log(8d/�)

K
. (127)

Since both x and �(s, a) has norm bounded by 1, the " fraction of contaminated samples can only bias the estimate by at
most 2", i.e. with "-contamination

max
kxk1

�����x
>

KX

i=1

�(si, ai)�(si, ai)
>/K � ⌃

!
x

�����
r

8 log(8d/�)

K
+ 2". (128)

Lemma F.2 (Lemma G.4 in (Agarwal et al., 2020a)). Denote ⌘(K) =
q

8 log(8d/�)
K

+ 2". Then, under "-contamination,
�(s, a)>(⌃n

cov
)�1�(s, a) � is guaranteed with probability 1� �, if N⌘(K) �/2.

Lemma F.3 (variant of Lemma C.2 in (Agarwal et al., 2020a)). Assuming that for all iterations n but m of them, we have
�(s, a)>(⌃n

cov
)�1�(s, a) � for (s, a) 2 K

n, then

V ⇤
� V ⇡̂

1

1� �

2W

r
logA

T
+ 2
p
��W 2 +

1

NT

N�1X

n=0

T�1X

t=0

2

q
�N"(n,t)

stat
+

2IN (�)

�N
+ 2Hm

!
(129)

Proof. The proof follows exactly the proof of Lemma C.2 in (Agarwal et al., 2020a), except that we note that for iterations
in which the assumption is not satisfied, the worst-case loss is bounded:

1

T

T�1X

t=0

⇣
E(s,a)⇠d̃Mn

⇣
At

bn
(s, a)� Ât

bn
(s, a)

⌘
1{s 2 K

n
}

⌘
 2H (130)

Proof of Theorem 6.1. First of all, we need to upper-bound m. The condition in Lemma F.2 is satisfied as long as
2"(n) �

4N and K � 128N2 log(8d̃/�)
�2 . Also note that

P
N�1
n=0 "(n) N", and thus m is at most 8N2

"

�
.

Also, by Lemma C.1,

"(n,t)
stat
 4

�
W 2 +WH

�

"(n,t) +

r
8

M
log

4d

�

!
. (131)

Plugging both into Lemma F.3, we get

V ⇤
� V ⇡̂

1

1� �

0

@2W

r
logA

T
+ 2
p
��W 2 + 2

vuut4 (W 2 +WH)�N

"+

r
8

M
log

4d

�

!
+

2IN (�)

�N
+

16HN2"

�

1

A(132)

Let

T =
4W 2 logA

(1� �)2↵2
, � = 1, � =

↵2(1� �)2

4W 2
, N =

4W 2d log(N + 1)

↵3(1� �)3
(133)

M =
2d2 log2(N + 1)(W 2 +WH)2 log(4d

�
)

↵6(1� �)6
, K = 128N2 log(8d̃/�) (134)

Then, (132) gives

V ⇤
� V ⇡̂

 4↵+

s
16(W 2WH)d log(N + 1)

↵(1� �)3
"+

256HW 4d2 log2(N + 1)

↵6(1� �)6
" (135)

Robust Policy Gradient against Strong Data Corruption

Algorithm 8 FPG-TRPO
1: Input: initial policy parameter ✓0; initial value function parameter �0.
2: Hyperparameters: KL-divergence limit �; backtracking coefficient ↵; maximum number of backtracking steps K;

upper-bound of corruption level "; episode length H; batch size M .
3: for k = 0, 1, . . . do
4: Collect set of M trajectories Dk = {⌧i}1:M by running policy ⇡k = ⇡(✓k) in the environment.
5: Compute rewards-to-go R̂t,i =

P
H

h=t
�h�trh,i.

6: Using GAE to compute advantage estimate Ât,i based on the current value function V�k .
7: Compute and save ĝt,i = r✓ log ⇡✓(at,i, st,i)|✓k for all t = 1 : H and i = 1 : M .
8: Call the filtered conjugate gradient algorithm in Alg. 9 to get Sk ⇢ [M]⇥ [H], x̂k = FCG(ĝt,i, Ât,i).
9: Compute policy gradient estimate ĝk = 1

|Sk|

P
(t,i)2Sk

ĝt,iÂt,i.
10: Update the policy by backtracking line search with

✓k+1 = ✓k + ↵j

s
2�

x̂kĝk
x̂k (138)

where j 2 {0, 1, 2, ...,K} is the smallest value which improves the sample loss and satisfies the sample KL-divergence
constraint.

11: Fit the value function by regression on mean-squared error on the filtered trajectories Sk:

�k+1 = argmin
�

1

|Sk|

X

(t,i)2Sk

⇣
V�(st,i)� R̂t,i

⌘2
(139)

In practice, one often only take a few gradient steps in each iteration k, instead of optimizing to convergence.

Algorithm 9 Filtered Conjugate Gradient (FCG)

1: Input: ĝt,i, Ât,i

2: Hyperparameters: Number of iterations r (default r = 4), fraction of data filtered in each iteration p (default p = "/2,
i.e. filter out 2" data in total).

3: Initialize S = {1, 2, . . . ,M}.
4: for k = 1, . . . , r do
5: Call standard CG to solve for x̂ = F̂�1ĝ, where F̂ = 1

S

P
(t,i)2S

ĝt,iĝ>t,i and ĝ = 1
S

P
(t,i)2S

ĝt,iÂt,i.
6: Compute the residues rt,i = ĝt,iĝ>t,ix̂� ĝt,iÂt,i for (t, i) 2 S and save in a matrix G of size d⇥ |S|.
7: Let v be the top right singular vector of G.
8: Compute the vector ⌧ of outlier scores defined via ⌧t,i =

�
r>
t,i
v
�2.

9: Remove (HMp) number of (t, i) pair with the largest outlier scores from S.
10: Call standard CG one more time and return (S, x̂).

Let ↵ = "1/7, then

V ⇤
� V ⇡̂

 4"1/7 +

s
16(W 2WH)d log(N + 1)

(1� �)3
"3/7 +

256HW 4d2 log2(N + 1)

(1� �)6
"1/7 (136)

 Õ(d2"1/7) (137)

This concludes the proof.

G. Implementation Details of FPG-TRPO
In the experiment, we use a TRPO variant of FPG implementation, which differs from Alg. 2 in several ways:

Robust Policy Gradient against Strong Data Corruption

Parameters Values Description

� 0.995 discounting factor.
� 0.97 GAE parameter (Schulman et al., 2015b).
l2-reg 0.001 L2 regularization weight in value loss.
� 0.01 KL constraint in TRPO.
damping 0.1 damping factor in conjugate gradient.
batch-size 25000 number of time steps per policy gradient iteration.
↵ 0.5 backtracking coefficient.
K 10 maximum number of backtracking steps.

Table 1. Hyperparameters for FPG-TRPO.

1. Most existing TRPO implementation uses the conjugate gradient (CG) method instead of linear regression to solve for
the matrix inverse vector product problem. We follow this convention and design FPG-TRPO to use a filtered conjugate
gradient (FCG) subroutine to replace the standard CG produce. The FPG procedure is detailed in Alg. 9. At a high level
FCG performs a filtering algorithm (a.k.a. outlier removal) on the residues of CG with respect to each data point.

2. Again following existing TRPO implementations, FPG-TRPO builds another network to estimate the value function
for the purpose of variance reduction, effectively resulting in an actor-critic algorithm. Instead of performing robust
learning procedure on both policy and value function learning, we perform the main filtering algorithm on the policy
learning procedure (the CG step discussed above), which also returns a filtered subset of data as a by-product. We then
use this filtered subset of data to perform the rest of the learning procedure, including value function update and the
sample loss estimation in backtracking line search. This allows us to perform the robust learning procedure only once per
PG iteration.

3. FPG-TRPO uses a deterministic variant of the filtering algorithm suggested in (Diakonikolas et al., 2019), which
empirically performs better and is simpler to implement than the stochastic variant used for theoretical analysis.
Specifically, the filtering algorithm will simply remove a fixed fraction of points with the largest deviation along the top
singular value direction (step 9 of Alg. 9).

The pseudo-code of FPG-TRPO can be found in Alg. 8. Similar to the NPG variant of FPG, the only difference between
Alg. 8 and a standard TRPO implementation is the replacement of the CG subroutine with the FCG subroutine. This modular
implementation allows one to easily replace Alg. 9 with any state-of-the-art robust CG procedure in the future. Table 1 lists
all the hyper-parameters we used in our experiments, which are taken from open-source implementations of TRPO tuned for
the MuJoCo environments. Our code to reproduce the experiment result is included in the supplementary material and will
be open-sourced. Finally, Figure 4 presents the detailed results on all experiments, completing the partial results shown in
Figure 3.

Robust Policy Gradient against Strong Data Corruption

(a) TRPO on Swimmer (b) FPG on Swimmer (c) Detection Ratio on Swimmer

(d) TRPO on Hopper (e) FPG on Hopper (f) Detection Ratio on Hopper

(g) TRPO on Walker2d (h) FPG on Walker2d (i) Detection Ratio on Walker2d

(j) TRPO on HalfCheetah (k) FPG on HalfCheetah (l) Detection Ratio on HalfCheetah

(m) TRPO on Ant (n) FPG on Ant (o) Detection Ratio on Ant

(p) TRPO on Humanoid (q) FPG on Humanoid (r) Detection Ratio on Humanoid

Figure 4. Detailed Results on the MuJoCo benchmarks.

