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Abstract

Generating functions, which are widely used

in combinatorics and probability theory, en-

code function values into the coefficients of a

polynomial. In this paper, we explore their

use as a tractable probabilistic model, and pro-

pose probabilistic generating circuits (PGCs) for

their efficient representation. PGCs are strictly

more expressive efficient than many existing

tractable probabilistic models, including deter-

minantal point processes (DPPs), probabilistic

circuits (PCs) such as sum-product networks, and

tractable graphical models. We contend that PGCs

are not just a theoretical framework that unifies

vastly different existing models, but also show

great potential in modeling realistic data. We

exhibit a simple class of PGCs that are not triv-

ially subsumed by simple combinations of PCs

and DPPs, and obtain competitive performance

on a suite of density estimation benchmarks. We

also highlight PGCs’ connection to the theory of

strongly Rayleigh distributions.

1. Introduction

Probabilistic modeling is an important task in machine learn-

ing. Scaling up such models is a key challenge: probabilistic

inference quickly becomes intractable as the models become

large and sophisticated (Roth, 1996). Central to this effort is

the development of tractable probabilistic models (TPMs)

that guarantee tractable probabilistic inference in the size

of the model, yet can efficiently represent a wide range of

probability distributions. There has been a proliferation

of different classes of TPMs. Examples include bounded-

treewidth graphical models (Meila & Jordan, 2000), deter-

minantal point processes (Borodin & Rains, 2005; Kulesza

& Taskar, 2012), and various probabilistic circuits (Dar-
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wiche, 2009; Kisa et al., 2014; Vergari et al., 2020) such as

sum-product networks (Poon & Domingos, 2011).

Ideally, we want our probabilistic models to be as expressive

efficient (Martens & Medabalimi, 2014) as possible, mean-

ing that they can efficiently represent as many classes of

distributions as possible, and adapt to a wider spectrum of

realistic applications. Often, however, stronger expressive

power comes at the expense of tractability: fewer restric-

tions can make a model more expressive efficient, but it can

also make probabilistic inference intractable. We therefore

raise the following central research question of this paper:

Does there exist a class of tractable probabilistic models

that is strictly more expressive efficient than current TPMs?

All aforementioned models are usually seen as representing

probability mass functions: they take assignments to random

variables as input and output likelihoods. In contrast, espe-

cially in the field of probability theory, it is also common

to represent distributions as probability generating poly-

nomials (or generating polynomials for short). Generating

polynomials are a powerful mathematical tool, but they have

not yet found direct use as a probabilistic machine learning

representation that permits tractable probabilistic inference.

We make the key observation that the marginal probabili-

ties (including likelihoods) for a probability distribution can

be computed by evaluating its generating polynomial in a

particular way. Based on this observation, we propose prob-

abilistic generating circuits (PGCs), a class of probabilistic

models that represent probability generating polynomials

compactly as directed acyclic graphs. PGCs provide a partly

positive answer to our research question: they are the first

known class of TPMs that are strictly more expressive ef-

ficient than decomposable probabilistic circuits (PCs), in

particular, sum-product networks, and determinantal point

processes (DPPs) while supporting tractable marginal infer-

ence.

Section 2 formally defines PGCs and establishes their

tractability by presenting an efficient algorithm for com-

puting marginals. Section 3 demonstrates the expressive

power of PGCs by showing that they subsume PCs and

DPPs while remaining strictly more expressive efficient.

Section 4 shows that there are PGCs that cannot be repre-

sented by PCs with DPPs as leaves. Section 5 evaluates

PGCs on standard density estimation benchmarks: even the
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X1 X2 X3 Prβ
0 0 0 0.02
0 0 1 0.08
0 1 0 0.12
0 1 1 0.48
1 0 0 0.02
1 0 1 0.08
1 1 0 0.04
1 1 1 0.16

(a) Table (b) Probabilistic generating circuit (c) Probabilistic mass circuit

L
β =

X1 X2 X3
[ ]

1 2 0 X1

2 6 0 X2

0 0 4 X3

K
β =

X1 X2 X3
[ ]

0.3 0.2 0 X1

0.2 0.8 0 X2

0 0 0.8 X3

(d) Kernel Lβ and marginal
kernel Kβ for a DPP

Figure 1. Four different representations for the same probability distribution Prβ .

simplest PGCs outperform other TPM learners on half of

the datasets. Then, Section 6 highlights PGCs’ connection

to strongly Rayleigh distributions. Section 7 summarizes

the paper and motivates future research directions.

2. Probabilistic Generating Circuits

In this section we establish probabilistic generating circuits

(PGCs) as a class of tractable probabilistic models. We

first introduce generating polynomials as a representation

for probability distributions and propose PGCs for their

compact representations. Then, we show that marginal

probabilities for a PGC can be computed efficiently.

2.1. Probability Generating Polynomials

It is a common technique in combinatorics to encode se-

quences as generating polynomials. In particular, prob-

ability distributions over binary random variables can be

represented by probability generating polynomials.

Definition 1. Let Pr(·) be a probability distribution over

binary random variables X1, X2, . . . , Xn, then the proba-

bility generating polynomial (or generating polynomial for

short) for the distribution is defined as

g(z1, . . . , zn) =
∑

S⊆{1,...,n}

αSz
S (1)

where αS = Pr({Xi = 1}i∈S , {Xi = 0}i/∈S) and zS =
∏

i∈S zi.

As an illustrating example, we consider the probability dis-

tribution Prβ specified as a table in Figure 1a. By definition,

the generating polynomial for distribution Prβ is given by

gβ = 0.16z1z2z3 + 0.04z1z2 + 0.08z1z3 + 0.02z1

+ 0.48z2z3 + 0.12z2 + 0.08z3 + 0.02.
(2)

We see from Equation 2 that the generating polynomial for

a distribution simply “enumerates” all possible variable as-

signments term-by-term, and the coefficient of each term

corresponds to the probability of an assignment. The prob-

ability for the assignment X1 = 0, X2 = 1, X3 = 1, for

example, is 0.48, which corresponds to the coefficient of the

term z2z3. That is, given an assignment, we can evaluate

its probability by directly reading off the coefficient for the

corresponding term. We can also evaluate marginal proba-

bilities by summing over the coefficients for a set of terms.

For example, the marginal probability Pr(X2 = 0, X3 = 0)
is given by Pr(X1 = 0, X2 = 0, X3 = 0) + Pr(X1 =
1, X2 = 0, X3 = 0), which corresponds to the sum of the

constant term and the coefficient for the term z1.

2.2. Compactly Representing Generating Polynomials

Equation 2 also illustrates that the size of a term-by-term rep-

resentation for a generating polynomial is exponential in the

number of variables. As the number of variables increases,

it quickly becomes impractical to compute probabilities by

extracting coefficients from these polynomials. Hence, to

turn generating polynomials into tractable models, we need

a data structure to represent them more efficiently. We thus

introduce a new class of probabilistic circuits called prob-

abilistic generating circuits to represent generating poly-

nomials compactly as directed acyclic graphs (DAGs). We

first present the formal definition for PGCs.

Definition 2. A probabilistic generating circuit (PGC) is a

directed acyclic graph consisting of three types of nodes:

1. Sum nodes
⊕

with weighted edges to children;

2. Product nodes
⊗

with unweighted edges to children;

3. Leaf nodes, which are zi or constants.

A PGC has one node of out-degree 0 (edges are directed

from children to parents), and we refer to it as the root of

the PGC. The size of a PGC is the number of edges in it.

Each node in a PGC represents a polynomial, (i) each leaf in

a PGC represents the polynomial zi or a constant, (ii) each

sum node represents the weighted sum over the polynomials

represented by its children, and (iii) each product node
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represents the unweighted product over the polynomials

represented by its children. The polynomial represented by

a PGC is the polynomial represented by its root.

We have now fully specified the syntax of PGCs, but a PGC

with valid syntax does not necessarily have valid semantics.

Because of the presence of negative parameters, it is not

guaranteed that the polynomial represented by a PGC is a

probability generating polynomial: it might contain terms

that are not multiaffine or have negative coefficients (e.g.

−1.2z1z
3
2). In practice, however, we show in Section 4

that, by certain compositional operations, we can construct

PGCs that are guaranteed to have valid semantics for any

parameterization.

Continuing our example, we observe that the generating

polynomial gβ in Equation 2 can be re-written as:

(0.1(z1 + 1)(6z2 + 1)− 0.4z1z2)(0.8z3 + 0.2) (3)

Based on Equation 3, we can immediately construct a PGC

that compactly represents gβ , as shown in Figure 1b. In this

way, generating polynomials for high-dimensional distribu-

tions may become feasible to represent by PGCs.

2.3. Tractable Inference with PGCs

We now show that the computation of marginals is tractable

for PGCs. As briefly mentioned in Section 2.1, we can

compute probabilities by extracting the coefficients of gen-

erating polynomials, which is much trickier when they are

represented as deeply-nested DAGs; as shown in Figure 1b,

it is impossible to directly read off any coefficient. We cir-

cumvent this problem by making the key observation that

we can “zero-out” the terms we don’t want from generating

polynomials by evaluating them in a certain way. For exam-

ple, when evaluating a marginal probability with X1 set to

0, we zero-out all terms that contain z1 by setting z1 to 0.

We generalize this idea as follows.

Lemma 1. Let g(z1, . . . , zn) be a probability generating

polynomial for Pr(·), then for A,B ⊆ {1, . . . , n} with

A ∩B = ∅, the marginal probability can be computed by:

Pr({Xi = 1}i∈A, {Xi = 0}i∈B)

= coef|A| (g({zi = t}i∈A, {zi = 0}i∈B , {zi = 1}i/∈A∪B)) ,

where t is an indeterminate for polynomials, and

coefk(g(t)) denotes the coefficient for the term tk in g(t).

Lemma 1 basically says that for a generating polynomial,

its marginals can be computed by evaluating the generating

polynomial in the polynomial ring R[t]. With a bottom-up

pass, this result naturally extends to generating polynomials

represented as PGCs: we first evaluate the leaf nodes to t, 1
or 0 based on the assignment; then, for the sum nodes, we

compute the weighted sum over the polynomials that their

children evaluate to; for the product nodes, we compute the

product over the polynomials that their children evaluate

to. Note that, as we are taking sums and products over

univariate polynomials of degree n, the time complexities

for the naive algorithms are O(n) and O(n2), respectively.

In light of this, it is not hard to see that computing marginal

probabilities is polynomial-time with respect to the size of

the PGCs.

Theorem 1. For PGCs of size m representing distri-

butions on n binary random variables, marginal prob-

abilities (including likelihoods) are computable in time

O(mn log n log log n).

The O(mn log n log log n) complexity in the theorem con-

sists of two parts: the O(m) part is the time complex-

ity of a bottom-up pass for a PGC of size m and the

O(n log n log log n) part is contributed by the time com-

plexity of computing the product of two degree-n polyno-

mials with fast Fourier transform (Schönhage & Strassen,

1971; Cantor & Kaltofen, 1991).

3. PGCs Subsume Other Probabilistic Models

To this point, we have introduced PGCs as a probabilis-

tic model and shown that they support tractable marginals.

Next, we show that PGCs are strictly more expressive ef-

ficient than other TPMs by showing that PGCs tractably

subsume decomposable probabilistic circuits and determi-

nantal point processes.

3.1. PGCs Subsume Other Probabilistic Circuits

We start by introducing the basics of probabilistic cir-

cuits (Vergari et al., 2020; Choi et al., 2020). Just like PGCs,

each PC also represents a polynomial with respect to vari-

ables Xi and Xi. The syntax of probabilistic circuits (PCs)

is basically the same as PGCs except for the following:

1. the variables in PCs are Xis and Xis rather than zis;

they are inherently different in the sense that Xis and

Xis are the random variables themselves, while zis are

symbolic formal objects;

2. the edge weights of PCs must be non-negative;

3. unlike PGCs, which represent probability generating

polynomials, all of the existing PCs represent probabil-

ity mass functions (as polynomials), so we sometimes

refer to them as probabilistic mass circuits.

Figure 1c shows an example PC that represents the distri-

bution Prβ . For a given assignment X = x, the PC A

evaluates to a number A (x), which is obtained by (i) re-

placing Xi variable leaves by xi, (ii) replacing Xi variable

leaves by 1−xi, (iii) evaluating product nodes as taking the
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product over their children, and (iv) evaluating sum nodes

as taking a weighted sum over their children. Finally, a PC

A with variable leaves X = (X1, . . . , Xn) represents the

probability distribution Pr(X=x) ∝ A (x).

For an arbitrary PC, most probabilistic inference tasks, in-

cluding marginals and MAP inference, are computationally

hard in the circuit size. In order to guarantee the efficient

evaluation of queries it is therefore necessary to impose fur-

ther constraints on the structure of the circuit. In this paper

we consider two well-known structural properties of prob-

abilistic circuits (Darwiche & Marquis, 2002; Choi et al.,

2020):

Definition 3. For a PC, we denote the input variables that a

node depends on as its scope; then,

1. A
⊗

node is decomposable if the scopes of its children

are disjoint.

2. A
⊕

node is smooth if the scopes of its children are

the same.

A PC is decomposable if all of its
⊗

nodes are decompos-

able; a PC is smooth if all of its
⊕

nodes are smooth.

Let A be a PC over X1, . . . , Xn. If A is decomposable

and smooth, then we can efficiently compute its marginals:

for disjoint A,B ⊆ {1, . . . , n} the marginal probability

Pr({Xi = 1}i∈A, {Xi = 0}i∈B) is given by the evaluation

of A with the following inputs.











Xi = 1, Xi = 0 if i ∈ A

Xi = 0, Xi = 1 if i ∈ B

Xi = 1, Xi = 1 otherwise.

Many TPMs are certain forms of decomposable PCs. Ex-

amples include sum-product networks (SPNs) (Poon &

Domingos, 2011; Peharz et al., 2019), And-Or graphs (Ma-

teescu et al., 2008), probabilistic sentential decision dia-

grams (PSDDs) (Kisa et al., 2014), arithmetic circuits (Dar-

wiche, 2009), cutset networks (Rahman & Gogate, 2016)

and bounded-treewidth graphical models (Meila & Jordan,

2000) such as Chow-Liu trees (Chow & Liu, 1968) and

hidden Markov models (Rabiner & Juang, 1986).

A decomposable PC can always be “smoothed” (i.e. trans-

formed into a smooth and decomposable PC) in polynomial

time with respect to its size (Darwiche, 2001; Shih et al.,

2019). Hence, when we are trying to show that decom-

posable PCs can be transformed into equivalent PGCs in

polynomial time, we can always assume without loss of

generality that decomposable PCs are also smooth. Our

first observation is that the probability mass functions repre-

sented by smooth and decomposable PCs are very similar

to the corresponding generating polynomials:

Proposition 1. Let A be a smooth and decomposable PC

that represents the probability distribution Pr over random

variables X1, . . . , Xn. Then A represents a probability

mass polynomial of the form:

m(z1, . . . , zn) =
∑

S⊆{1,...,n}

αS

∏

i∈S

Xi

∏

i/∈S

Xi (4)

where αS = Pr({Xi = 1}i∈S , {Xi = 0}i/∈S).

Note that Equation 4 is closely related to the network poly-

nomials (Darwiche, 2003) defined for Bayesian Networks.

By comparing Equation 4 to Equation 1 in the definition

of generating circuits, we find that they look very similar,

except for the absence of the negative random variables Xi

in Equation 1, which gives us the following corollary:

Corollary 1. Let A be a smooth and decomposable PC. By

replacing all Xi in A by 1 and Xi by zi, we obtain a PGC

that represents the same distribution.

Corollary 1 establishes that PGCs subsume decomposable

PCs and in turn, the TPMs subsumed by decomposable PCs.

This raises the question of whether PGCs are strictly more

expressive efficient and we give a positive answer:

Theorem 2. PGCs are strictly more expressive efficient than

decomposable PCs; that is, there exists a class of probability

distributions that can be represented by polynomial-size

PGCs but the sizes of any decomposable PCs that represent

the distributions are at least exponential in the number of

random variables.

We take determinantal point processes (DPPs) as this sepa-

rating class of distributions and prove Theorem 2 by show-

ing the following two results: (1) DPPs, in general, cannot

be represented by polynomial-size decomposable PCs, and

(2) DPPs are tractably subsumed by PGCs. The first result

has already been proved in previous works:

Theorem 3 (Zhang et al. (2020); Martens & Medabalimi

(2014)). There exists a class of DPPs such that the the size

of any decomposable PCs that represent them is exponential

in the number of random variables.

In the next section, we complete this proof by showing that

any DPP can be represented by a PGC of polynomial size

in the number of random variables.

3.2. PGCs subsume Determinantal Point Processes

In this section, we focus on showing that determinantal point

processes (DPPs) can be tractably represented by PGCs. We

start by introducing the basics for DPPs.

At a high level, a unique property of DPPs is that they are

tractable representations of probability distributions that

express global negative dependence, which makes them

very useful in many applications (Mariet & Sra, 2016), such

as document and video summarization (Chao et al., 2015;



Probabilistic Generating Circuits

Lin & Bilmes, 2012), recommender systems (Zhou et al.,

2010), and object retrieval (Affandi et al., 2014).

In machine learning, DPPs are most often represented by

means of an L-ensemble (Borodin & Rains, 2005):1

Definition 4. A probability distribution Pr over n binary

random variables X = (X1, . . . , Xn) is an L-ensemble

if there exists a (symmetric) positive semidefinite matrix

L ∈ R
n×n such that for all x = (x1, . . . , xn) ∈ {0, 1}n,

Pr(X = x) ∝ det(Lx), (5)

where Lx = [Lij ]xi=1,xj=1 denotes the submatrix of L

indexed by those i, j where xi = 1 and xj = 1. The matrix

L is called the kernel for the L-ensemble. To ensure that the

distribution is properly normalized, it is necessary to divide

Equation 5 by det(L + I), where I is the n × n identity

matrix (Kulesza & Taskar, 2012).

Consider again the example distribution Prβ . It is actually

a DPP whose kernel is given by the matrix Lβ in Figure 1d.

The probability of the assignment X = (1, 0, 1), for exam-

ple, is given by

Pr(X = (1, 0, 1)) =
det(Lβ

{1,3})

det(Lβ + I)
=

1

50

∣

∣

∣

∣

1 0
0 4

∣

∣

∣

∣

= 0.08.

To compute marginal probabilities for L-ensembles, we also

need marginal kernels, which characterize DPPs in general,

as an alternative to L-ensemble kernels.

Definition 5. A probability distribution Pr is a DPP over

n binary random variables X1, . . . , Xn if there exists a

positive semdidefinite matrix K ∈ R
n×n such that for all

A ⊆ {1, . . . , n}

Pr({Xi = 1}i∈A) = det(KA), (6)

where KA = [Kij ]i∈A,j∈A denotes the submatrix of K

indexed by elements in A.

The marginal kernel Kβ for the L-ensemble that represents

the distribution Prβ is shown in Figure 1d, along with its ker-

nel Lβ . One can use a generalized version of Equation 6 to

compute the marginal probabilities Pr((Xi=1)i∈A, (Xj=
0)j∈B) efficiently, where A,B ⊆ {1, . . . , n}. We refer to

Kulesza & Taskar (2012) for further details.

PCs and DPPs support tractable marginals in strikingly dif-

ferent ways, and we wonder whether these two tractable

languages can be captured by a unified framework. As

mentioned in Section 3.1, it has already been proved that

PCs cannot tractably represent DPPs in general. We now

show that PGCs also tractably subsume DPPs, providing a

positive answer to this open problem.

1Although not every DPP is an L-ensemble, Kulesza & Taskar
(2012) show that DPPs that assign non-zero probability to the
empty set (the all-false assignment) are L-ensembles.

The key to constructing a PGC representation for DPPs is

that their generating polynomials can be written as determi-

nants over polynomial rings.

Lemma 2 (Borcea et al. (2009)). The generating polyno-

mial for an L-ensemble with kernel L is given by

gL =
1

det(L+ I)
det(LZ + I). (7)

With Z = diag(z1, . . . , zn), the generating polynomial for

a DPP with marginal kernel K is given by

gK = det(I −K +KZ). (8)

Note that the generating polynomials presented in Lemma 2

are just mathematical objects; to use them as tractable mod-

els, we need to represent them in the framework of PGCs.

So let us examine Equations (7) and (8) in detail. The entries

in the matrices LZ + I and I −K +KZ are degree-one

univariate polynomials, which can be easily represented as

PGCs. Thus, to compactly represent DPPs’ generating poly-

nomials as PGCs, we only need to compactly represent the

determinant function as a PGC.

There are a variety of polynomial-time division-free algo-

rithms for computing determinants over rings (Bird, 2011;

Samuelson, 1942; Berkowitz, 1984; Mahajan & Vinay,

1997) and we take Bird’s algorithm (Bird, 2011) as an exam-

ple. Bird’s algorithm is simply an iteration of certain matrix

multiplications and requires O(nM(n)) additions and mul-

tiplications, where M(n) is the number of basic operations

needed for a matrix multiplication. We conservatively as-

sume that M(n) is upper-bounded by n3. Thus when we

encode Bird’s algorithm as a PGC, the PGC contains at most

O(n4) sum and product nodes, each with a constant number

of edges. Together with Lemma 2, it follows that DPPs are

tractably subsumed by PGCs.

Theorem 4. Any DPP over n binary random variables can

be represented by a PGC of size O(n4).

We conclude this section with the following remarks:

1. DPPs cannot represent any positive dependence; for

example, Pr(Xi = 1, Xj = 1) > Pr(Xi = 1)Pr(Xj = 1)
can never happen for a DPP. On the other hand, since PGCs

are fully general, they are strictly more expressive than

DPPs.

2. In practice, when representing DPPs in the language of

PGCs, we do not need to explicitly construct the sum nodes

and product nodes to form the circuit structures. Recall

from Lemma 1 that marginals are tractable as long as we

can efficiently evaluate the PGCs over polynomial rings.

Thus we can simply apply Bird’s algorithm, for example, to

compute the determinants from Lemma 2.
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3. Since nonsymmetric DPPs (Gartrell et al., 2019) are

defined in the same way as standard DPPs, except for their

kernels L need not be symmetric, they are also tractably

subsumed by PGCs.

4. Beyond PCs and DPPs

In the previous section we have demonstrated the expres-

sive power of PGCs by showing that they are strictly more

expressive efficient than decomposable PCs and DPPs. It is

well-known, however, that PCs can use arbitrary families

of tractable distributions at their leaves, including DPPs. In

this section, we construct a simple class of PGCs that are

more interesting than PCs with DPP leaves.

4.1. Basic Compositional Operations for PGCs

We start by defining the sum, product and hierarchical com-

position operations for PGCs.

Proposition 2. Let A,B ⊂ N
+; denote {zi}i∈A by zA and

{Xi}i∈A by XA. Let f(zA) and g(zB) be the generating

polynomials for distributions Prf (XA) and Prg(XB), then,

Sum: let α ∈ [0, 1], then αf + (1− α)g is the generating

polynomial for the probability distribution Prsum where

Prsum(XA = a,XB = b)

= αPrf (XA = a) + (1− α)Prg(XB = b).

Product: if A and B are disjoint (i.e. f and g depend

on disjoint sets of variables), then fg is the generating

polynomial for the probability distribution Prprod where

Prprod(XA = a,XB = b) = Prf (XA = a)Prg(XB = b).

The sum and product operations described above are basi-

cally the same as those for PCs: the sum distribution Prsum

is just a mixture over two distributions Prf and Prg, and

the product distribution Prprod is the point-wise product of

Prf and Prg. The hierarchical composition is much more

interesting.

Proposition 3 (hierarchical composition). Let Prg be

a probability distribution with generating polynomial

g(z1, . . . , zn). Let A1, . . . , An be disjoint subsets of N+

and f1(zA1
), . . . , fn(zAn

) be generating polynomials for

Pri. We define the hierarchical composition of g and fis by

gcomp = g
∣

∣

zi=fi
,

which is the generating polynomial obtained by substitut-

ing zi in g by fis. In particular, gcomp is a well-defined

generating polynomial that represents a valid probability

distribution.

Unlike the sum and product operations, the hierarchical com-

position operation for PGCs does not have an immediate

!! !" … !#

!!"…!!#

Pr" Pr$ Pr!

!$"…!$#!""…!"#

!! = det(' + ) diag - " , - # , … , - $ )%" %$ %!

Figure 2. An example of the hierarchical composition for PGCs.

We partition n binary random variables into m parts, each with

k variables. Then, variables from part i are modeled by the

PGC Pri with generating polynomial fi. Let gL = det(I +
Ldiag(z1, . . . , zn)) be the generating polynomial for a DPP with

kernel L. Then gδ is the hierarchical composition of gL and fis.

We refer to this architecture for gδ as a determinantal PGC.

analogue for PCs. This operation is a simple yet power-

ful way to construct classes of PGCs; Figure 2 shows an

example, which we illustrate in detail in the next section.

4.2. A Separating Example

Now we construct a simple class of PGCs that are not triv-

ially subsumed by PCs with DPPs as leaves. Figure 2 gives

an outline of its structure. We construct a model of a prob-

ability distribution over n random variables X1, . . . , Xn.

For simplicity we assume n = mk and partition the vari-

ables into m parts, each with k variables. Changing nota-

tion, we write {X11, . . . , X1k}, . . . , {Xm1, . . . , Xmk}. For

1 ≤ i ≤ m, let Pri be a PGC over the random variables

Xi1, . . . , Xik with generating polynomial fi(zi1, . . . , zik).
Let PrL be a DPP with kernel L and generating polyno-

mial gL(z1, . . . , zm). Then, the generating polynomial

gδ = gL
∣

∣

zi=fi
, namely the hierarchical composition of

gL and fi, defines a PGC Prδ , which we refer to as a deter-

minantal PGC (DetPGC).

DPPs are great at modeling negative dependencies but can-

not represent positive dependencies between variables: for

the DPP PrL, PrL(Xi = 1, Xj = 1) > PrL(Xi =
1)PrL(Xj = 1) can never happen. Our construction of

DetPGCs aims to equip a DPP model to capture local pos-

itive dependencies. To understand how DetPGCs actually

behave, we compute the marginal probability Prδ(Xik =
1, Xjl = 1) by Lemma 1.

When Xik and Xjl belong to the same group (i.e. i = j):
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DPP Strudel EiNet MT SimplePGC

nltcs −9.23 −6.07 −6.02 −6.01 −6.05∗

msnbc −6.48 −6.04 −6.12 −6.07 −6.06†◦

kdd −2.45 −2.14 −2.18 −2.13 −2.14∗†

plants −31.20 −13.22 −13.68 −12.95 −13.52†

audio −49.31 −42.20 −39.88 −40.08 −40.21∗

jester −63.88 −54.24 −52.56 −53.08 −53.54∗

netflix −64.18 −57.93 −56.54 −56.74 −57.42∗

accidents −35.61 −29.05 −35.59 −29.63 −30.46†

retail −11.43 −10.83 −10.92 −10.83 −10.84†

pumsb −51.98 −24.39 −31.95 −23.71 −29.56†

dna −82.19 −87.15 −96.09 −85.14 −80.82∗†◦

kosarek −13.35 −10.70 −11.03 −10.62 −10.72†

msweb −11.31 −9.74 −10.03 −9.85 −9.98†

book −41.22 −34.49 −34.74 −34.63 −34.11∗†◦

movie −83.55 −53.72 −51.71 −54.60 −53.15∗◦

webkb −180.61 −154.83 −157.28 −156.86 −155.23†◦

reuters −107.44 −86.35 −87.37 −85.90 −87.65
20ng −174.43 −153.87 −153.94 −154.24 −154.03◦

bbc −278.15 −256.53 −248.33 −261.84 −254.81∗◦

ad −63.20 −16.52 −26.27 −16.02 −21.65†

(a) Results on the Twenty Datasets benchmark.

DPP Strudel EiNet MT SimplePGC

apparel −9.88 −9.51 −9.24 −9.31 −9.10∗†◦

bath −8.55 −8.38 −8.49 −8.53 −8.29∗†◦

bedding −8.65 −8.50 −8.55 −8.59 −8.41∗†◦

carseats −4.74 −4.79 −4.72 −4.76 −4.64∗†◦

diaper −10.61 −9.90 −9.86 −9.93 −9.72∗†◦

feeding −11.86 −11.42 −11.27 −11.30 −11.17∗†◦

furniture −4.38 −4.39 −4.38 −4.43 −4.34∗†◦

gear −9.14 −9.15 −9.18 −9.23 −9.04∗†◦

gifts −3.51 −3.39 −3.42 −3.48 −3.47◦

health −7.40 −7.37 −7.47 −7.49 −7.24∗†◦

media −8.36 −7.62 −7.82 −7.93 −7.69†◦

moms −3.55 −3.52 −3.48 −3.54 −3.53◦

safety −4.28 −4.43 −4.39 −4.36 −4.28∗†◦

strollers −5.30 −5.07 −5.07 −5.14 −5.00∗†◦

toys −8.05 −7.61 −7.84 −7.88 −7.62†◦

(b) Results on the Amazon Baby Registries benchmark.

Figure 3. Experiment results on the Twenty Datasets and the Amazon Baby Registries, comparing the performance of DPP, Strudel, EiNet,

MT and SimplePGC in terms of average log-likelihood. Bold numbers indicate the best log-likelihood. For SimplePGC, annotations ∗, †

and ◦ mean better log-likelihood compared to Strudel, EiNet and MT, respectively.

Prδ(Xik = 1, Xil = 1)

= PrL(Xi = 1)Pri(Xik = 1, Xil = 1);

that is, when two variables belong to the same group, the

dependencies between them are dominated by Pri, giving

space for positive dependencies.

When Xik and Xjl belong to different groups (i.e. i 6= j):

Prδ(Xik = 1, Xjl = 1) ≤ Prδ(Xik = 1)Prδ(Xjl = 1);

that is, random variables from different groups are still

negatively dependent, just like variables in the DPP PrL.

We stress that we construct DetPGCs merely to illustrate

how the flexibility of PGCs permits us to develop TPMs that

capture structure that is beyond the reach of the standard

suite of TPMs, including PCs, DPPs, and standard combina-

tions thereof. We are not proposing DetPGCs as an “optimal”

PGC structure for probabilistic modeling. Nevertheless, as

we will see, even the simple DetPGC model may be a better

model than PCs or DPPs for some kinds of real-world data.

5. Experiments

This section evaluates PGCs’ ability to model real data on

density estimation benchmarks. We use a weighted sum over

DetPGCs as our model. This simple method achieves state-

of-the-art performance on half the benchmarks, illustrating

the potential of PGCs in real-world applications.

5.1. Datasets

We evaluate PGCs on two density estimation benchmarks:

1. Twenty Datasets (Van Haaren & Davis, 2012), which

contains 20 real-world datasets ranging from retail to bi-

ology. These datasets have been used to evaluate various

tractable probabilistic models (Liang et al., 2017; Dang

et al., 2020; Peharz et al., 2020).

2. Amazon Baby Registries, which contains 15 datasets,2

each representing a collection of registries or “baskets” of

baby products from a specific category such as “apparel”

and “bath”. We randomly split each dataset into train (70%),

valid (10%) and test (20%) sets. This benchmark has been

commonly used to evaluate DPP learners (Gillenwater et al.,

2014; Mariet & Sra, 2015; Gartrell et al., 2019).

5.2. Model Structure

The model we use in our experiments is a weighted sum over

DetPGCs, the example constructed in Section 4.2, which

we refer to as SimplePGCs. Recall from Figure 2 that a

DetPGC is the hierarchical composition of a DPP and some

“leaf” PGCs Pr1, . . . ,Prm. For SimplePGC, we make the

simplest choice by setting the Pris to be the fully general

PGCs. In addition, to partition the input variables into

2The original benchmark had 17 datasets. We omit the datasets
with fewer than 10 variables: decor and pottytrain.
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m groups as shown in Figure 2, we use a simple greedy

algorithm that aims at putting pairs of positively depen-

dent variables into the same groups. The structure of a

SimplePGC is also governed by two hyperparameters: the

number of DetPGCs in the weighted sum (denoted by C)

and the maximum number of variables (i.e. k in Figure 2)

allowed in each group (denoted by K). We tune C and K

by a grid search over the following ranges: K ∈ {1, 2, 5, 7}
and C ∈ {1, 4, 7, 10, 20}. Note that our model reduces to a

mixture over DPPs when K = 1.

We implement SimplePGC in PyTorch and learn the pa-

rameters by maximum likelihood estimation (MLE). In par-

ticular, we use Adam (Kingma & Ba, 2014) as the opti-

mizing algorithm to minimize the negative log likelihoods

given the training sets. Regularization is done by setting the

weight decay parameter in Adam. For further details regard-

ing the construction and implementation of SimplePGCs,

please see the Appendix.

5.3. Baselines

We compare SimplePGC against four baselines: DPPs,

Strudel, Einsum Networks and Mixture of Trees.

DPP: As mentioned, SimplePGC reduces to a mixture over

DPPs when the hyperparameter K = 1. DPPs are learned

via SGD. We expect PGCs to outperform DPPs on most

datasets and be at least as good on all datasets.

Strudel: Strudel (Dang et al., 2020) is an algorithm for

learning the circuit structure of structured-decomposable

PCs. We include them as one of the state-of-the-art tractable

density estimators.

Einsum Networks: Einsum Networks (Peharz et al., 2020)

(EiNets) are a deep-learning-style implementation design

for PCs. Compared to Strudel, EiNets are more related to

SimplePGC in the sense that they are both fixed-structure

models where only parameters are learned. The hyper-

parameters are chosen by a grid search as suggested by

Peharz et al. (2020).

Mixture of Trees The Mixture of Trees (Meila & Jordan,

2000) (MT) model is a mixture model over Chow-Liu

trees (Chow & Liu, 1968). MTs are included as a rep-

resentative of tractable graphical models with simple yet

expressive structures. For learning, we run the mtlearn

algorithm implemented in the Libra-tk library (Lowd &

Rooshenas, 2015); the number of components in MT is

chosen by a grid search from 2 to 30 with step size 2, as

suggested by Rooshenas & Lowd (2014).

5.4. Results and Analysis

Figure 3 shows the experiment results. We first compare

SimplePGC against DPPs. On both benchmarks, Sim-

plePGC performs significantly better than DPPs on almost

every dataset except for 4 datasets from the Amazon Baby

Registries benchmark, where SimplePGC performs at least

as well as DPPs.

Overall, SimplePGC achieves competitive performance

when compared against Strudel, EiNet and MT on both

benchmarks. On the Twenty Datasets benchmark, Sim-

plePGC obtains better average log-likelihood than at least

one of the baselines (Strudel, EiNet and MT) on 19 out

of the 20 datasets and, in particular, SimplePGC obtains

higher log-likelihood than all of them on 2 datasets. Such

results are remarkable, given the fact that SimplePGC is

just a simple hand-crafted PGC architecture with little fine-

tuning, while Strudel, EiNet and MT follow from a long line

of research aiming to perform well on exactly the Twenty

Datasets benchmark.

The performance of SimplePGC on the Amazon Baby Reg-

istries benchmark is even more impressive: SimplePGC

beats all of baselines on 11 out of 15 datasets and beats at

least one of them on all datasets. One possible reason that

SimplePGC performs much better than the other baselines

on this benchmark is because these datasets exhibit rela-

tively strong negative dependence and SimplePGCs’ DPP-

like structure allows them to capture negative dependence

well.

We also conducted one-sample t-test for the results; for

further details please refer to the Appendix.

6. PGCs and Strongly Rayleigh Distributions

At a high level, the study of PCs and graphical models

mainly focuses on constructing classes of models that guar-

antee tractable exact inference. A separate line of research

in probabilistic machine learning, however, aims at identify-

ing classes of distributions that support tractable sampling,

where generating polynomials play an essential role. For ex-

ample, a well-studied class of distributions are the strongly

Rayleigh (SR) distributions (Borcea et al., 2009; Li et al.,

2016), which were first defined in the field of probability

theory for studying negative dependence:

Definition 6. A polynomial f ∈ R[z1, . . . , zn] is real

stable if whenever the imaginary part Im(zi) > 0 for

1 ≤ i ≤ n, f(z1, . . . , zn) 6= 0. We say that a distribution

over X1, . . . , Xn is strongly Rayleigh (SR) if its generating

polynomial is real stable.

SR distributions contain many important subclasses such

as DPPs and the spanning tree/forest distributions, which

have various applications. From Section 3.2, we already

know that PGCs can compactly represent DPPs. We now

show that PGCs can represent spanning tree distributions in

polynomial-size.
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We first define the spanning tree distributions. Let G =
(V,E) be a connected graph with vertex set V = {1, . . . , n}
and edge set E. Associate to each edge e ∈ E a variable ze
and a weight we ∈ R≥0. If e = {i, j}, let Ae be the n× n

matrix where Aii = Ajj = 1, Aij = Aji = −1 and all

other entries equal to 0. Then the weighted Laplacian of G

is given by L(G) =
∑

e∈E wezeAe,

By the Principal Minors Matrix-Tree Theorem (Chaiken &

Kleitman, 1978),

fG = det(L(G)\{i}) =
∑

T a spanning tree of G

wedges(T )zedges(T )

is the (un-normalized) generating polynomial for the span-

ning tree distribution, and we denote it by PrG. Here

L(G)\{i} denotes the principal minor of L(G) by removing

its ith row and column.

As shown in the equation above, PrG is supported on the

spanning trees of G, and the probability of each spanning

tree is proportional to the product of its edge weights. PrG
is a strongly Rayleigh distribution (Borcea et al., 2009), and,

to the best of our knowledge, it is not a DPP unless the

edge weights are the same. By the same argument as in

Section 3.2, we claim that PrG can be tractably represented

by PGCs.

Thus, we see that there is another natural class of SR distribu-

tions – spanning tree distributions – that can be represented

by PGCs. More generally, generating polynomials play a

key role in the study of a number of other classes of distribu-

tions, including the Ising model (Jerrum & Sinclair, 1993),

exponentiated strongly Rayleigh (ESR) distributions (Ma-

riet et al., 2018) and strongly log-concave (SLC) distribu-

tions (Robinson et al., 2019). Specifically, most of these

distributions are naturally characterized by their generating

polynomials rather than probability mass functions. This

poses a major barrier to linking them to other probabilistic

models. Thus by showing that PGCs can tractably represent

certain subclasses of SR distributions, we present PGCs as

a prospective avenue for bridging this gap.

Although we conjecture that not all SR distributions can

be represented by polynomial-size PGCs, we believe that

the subclasses of the above distributions that have concise

parameterizations should be representable by PGCs. Estab-

lishing this for various families is a direction for future work.

7. Conclusion and Perspectives

We conclude by summarizing our contributions and high-

lighting future research directions. In this paper, we study

the use of probability generating polynomials as a data struc-

ture for representing probability distributions. We showed

that their representation as circuits are a TPM, and are

strictly more expressive efficient than existing families of

TPMs. Indeed, even a simple example family of distribu-

tions that can be represented by PGCs but not PCs or DPPs

obtains state-of-the-art performance as a probabilistic model

on some datasets.

To facilitate the general use of PGCs for probabilistic model-

ing, a facinating direction for future work is to build efficient

structure learning or ‘architecture search’ algorithms for

PGCs. Theoretically, the main mathematical advantage of

generating polynomials was the variety of properties they re-

veal about a distribution. This raises the question of whether

there are other kinds of useful queries we can support ef-

ficiently with PGCs, and where truly lies the boundary of

tractable probabilistic inference.
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