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Abstract

We introduce and study the model of list
learning with attribute noise. Learning with
attribute noise was introduced by Shack-
elford and Volper (COLT, 1988) as a variant
of PAC learning, in which the algorithm has
access to noisy examples and uncorrupted la-
bels, and the goal is to recover an accurate
hypothesis. Sloan (COLT, 1988) and Gold-
man and Sloan (Algorithmica, 1995) discov-
ered information-theoretic limits to learning
in this model, which have impeded further
progress. In this article we extend the model
to that of list learning, drawing inspiration
from the list-decoding model in coding the-
ory, and its recent variant studied in the con-
text of learning. On the positive side, we
show that sparse conjunctions can be effi-
ciently list learned under some assumptions
on the underlying ground-truth distribution.
On the negative side, our results show that
even in the list-learning model, efficient learn-
ing of parities and majorities is not possible,
regardless of the representation used.

1 INTRODUCTION

We study the attribute-noise PAC learning model, in-
troduced by Shackelford and Volper (1988), in which
learning must be achieved despite the presence of er-
rors that corrupt the attributes of the data (instead of
the labels of the data that are more commonly used in
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the learning with error setting). The inherent difficulty
in learning with attribute-noise has been formalized by
Sloan (1988) and Goldman and Sloan (1995) by show-
ing information-theoretic barriers: in the presence of
attribute-noise, regardless of how much data is used,
it is impossible to identify which representations are
accurate. Historically, similar issues of identifiability
were bypassed in coding theory by relaxing the no-
tion of a solution to that of list decoding (Elias, 1957;
Wozencraft, 1958); more recently, a similar notion of
list-learning has been proposed to provide solutions in
other learning settings where a correct solution simply
cannot be identified from the given data (Balcan et al.,
2008; Charikar et al., 2017; Diakonikolas et al., 2018;
Karmalkar et al., 2019; Raghavendra and Yau, 2020).
We further discuss this previous work in Section 2.2.
Here we ask when and to what extent it is possible
to overcome the non-identifiability barrier posed by
attribute-noise by relaxing the solution to outputting
a list of representations of Boolean functions.

In the attribute-noise model, the task is to learn a
labeling function given labeled examples, where the
examples may have corrupted entries. More formally,
the algorithm has access to pairs (&, ¢(z)), where x =
(x1,22,...,2,) € X is drawn independently from an
unknown underlying distribution D over X, ¢ € C is
an unknown labeling function from a concept class C
over domain X, and 7 is obtained from x by applying a
noise vector p = (p1, p2, .- ., pn) from a noise distribu-
tion that affects the coordinates (a.k.a. attributes) of
x. The goal is to output, with probability at least 1—4,
a hypothesis ¢’ that is (1 — €)-accurate with respect to
¢ over D, namely Pryeple(z) = ()] > 1 — e. Hence,
while in the standard PAC-learning model of Valiant
(1984) the algorithm has access to & = = (namely,
actual examples from the input distribution), in the
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attribute-noise version, the algorithm only has access
to a noisy version of z, making the task of learning the
labeling function significantly more difficult.

The attribute-noise model captures a setting in which
one seeks an accurate model of dependencies in the
“ground truth” process captured by D and c, in spite
of errors in the recording of the data. For example, this
formulation is appropriate for the task of formulating
models in data-driven science; a small list of candi-
date functions in such a setting then corresponds to
a list of possible hypotheses for further investigation.
It stands in contrast to the (much easier) label noise
model, which captures the task of making accurate
predictions from the observed data while the observed
data is generated from an unknown concept which may
not match c. Indeed, if one is only interested in fore-
casting or building a device that works directly with
the noisy data & produced by given real-world sensors,
such a setting may be captured by a suitable label-
noise model. We stress that since accuracy in the
attribute-noise model is assessed with respect to D,
which is never observed directly, the attribute-noise
model is not captured by the label noise model, and
is indeed much more challenging than the label noise
model. We also note that the attribute-noise model
can capture the classical group testing problem, see
Section 2.1.

All previous work studies concept classes over Boolean
attributes z; € {0,1} for all ¢ € [n], and Boolean
labeling functions ¢ : {0,1}™ — {0,1}. Specifically,
Shackelford and Volper (1988) show that under wuni-
form random attribute-noise, where the noise flips each
coordinate independently with probability p € [0, 1],
it is possible to learn k-DNF expressions and conjunc-
tions efficiently, if the noise rate p is known to the
algorithm. However, the knowledge of p is not neces-
sary for efficient learning, as proved by Goldman and
Sloan (1995). They further consider product random
attribute-noise on conjunctions, where coordinates are
affected independently by noise of possibly different
rates p;, and prove that if these rates are unknown, and
if p; > 2¢ in each coordinate, then it is information-
theoretically impossible to recover any (1 —e€)-accurate
hypothesis. Hence, regardless of the running time of
the algorithm, and the number of samples received, the
algorithm is unable to output a good answer. On the
other hand, if the noise rates are known, Decatur and
Gennaro (1995) provide efficient algorithms for PAC-
learning conjunctions and k-DNF formulas. More re-
cently, Bshouty et al. (2003) studied the problem of
learning in which noise distributions are unconstrained
or unknown, but the examples are drawn from the uni-
form distribution.

We emphasize that the attribute-noise model is not

captured by noisy-PAC. Indeed, the celebrated results
of Angluin and Laird (1987) show that learning in the
noisy PAC model is information theoretically possible
for any noise rate p < 1/2, and in fact k-CNF and
k-DNF's can be learned efficiently in this high-noise
regime. Again, this is in contrast with the attribute-
noise setting where identifiability is not possible for un-
known noise rate p > 2¢ per coordinate (Goldman and
Sloan, 1995). One can also view attribute-noise as an
intermediate between noisy PAC and malicious noise,
where the latter model assumes that 1 — p fraction of
the output is correct, and the remaining p fraction may
be completely irrelevant. Kearns and Li (1993) show
that under this model in order to identify an e-accurate
hypothesis one must have p < ¢/(1 + €).

Motivated by its applications in certain real-world ma-
chine learning scenarios, as well as its apparent dif-
ficulty, we revisit the learning with attribute-noise
model and study it under product random attribute-
noise, in which the noise rates are not known. We over-
come the information-theoretic impossibility result of
Sloan (1988); Goldman and Sloan (1995) by allowing
the algorithm output a small list of labeling functions
that contains one which is accurate. Thus, even if it
is impossible to identify a single accurate function, we
can hope to produce a small list of candidate hypothe-
ses that contains an accurate one. Indeed, the proof
of Sloan (1988); Goldman and Sloan (1995) follows
from an explicit construction of two pairs (D1, c1,R1)
and (Dq, co, Ra) of distributions, distinct dictators as
labeling functions, and product noise distributions, re-
spectively. The two pairs of tuples lead to exactly the
same observed distribution over the n+ 1 bits received
(Z,c(x)), when v > 2¢, where v is an upper bound on
the noise amount per attribute. In the list-learning
model the algorithm is allowed to output both solu-
tions. In fact, as in PAC learning, any (1 — €)-accurate
hypothesis with respect to the input distribution D;
is a valid solution to the learning problem, hence it is
enough to outputs a small net of hypotheses that cov-
ers all the valid inputs, in the sense that for any valid
input that could have resulted in the observed distri-
bution, the list contains a hypothesis that is (1 — €)-
accurate with respect to that input. Our results pro-
vide some sufficient conditions under which efficient
list learning is still possible despite the previous barri-
ers. We also show strong lower bounds for most natu-
ral classes of Boolean functions.

1.1 The Model: List Learning with Attribute
Noise

We denote an instance of the attribute-noise learning
problem by a tuple (D, ¢, R), where D is the unknown
distribution from which the algorithm receives noisy
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samples, ¢ is the labeling function, and R is the noise
distribution. We will denote by D the observed dis-
tribution of (Z,c(x)), where & = x + p, x < D and
p < R. We will often abuse notation and denote the
marginal distribution on Z by D as well.

For an observed distribution D, a net H (specifically,
an e-net) is a set of hypotheses such that for any tu-
ple (D, ¢, R) that could have resulted in the observed
distribution D, there exists at least one h € H that is
a (1 — e)-accurate solution with respect to ¢ and D.

Inspired by the list-decoding model in coding theory,
we seek answers to the following general questions:

1. (Combinatorial): Does there exist a small net H
for the attribute-noise learning problem with ob-
served distribution D?

2. (Algorithmic): Can a net for the attribute-noise
learning problem with observed distribution D be
computed efficiently?

We formalize these notions below, in the attribute-
noise PAC-learning model, with product random noise.

Definition 1.1. (List learning with random product
attribute-noise) Let C be a concept class containing
Boolean functions ¢ : {0,1}" — {0,1}, D a distribu-
tion over {0,1}", let v,e € (0,1), and 0 < p1,...,pp <
v. Let R be noise distribution defined as the product of
n independent Bernoulli distribution with parameters

Di, © € [n].

1. (Combinatorial) C is said to be list-learnable with
list size £ = L(v,€) if there exists a net H for the
solutions of the attribute-noise learning problem
with input distribution D, such that |H| < L.

2. (Algorithmic) C is said to be algorithmically list
learnable if there exists a randomized algorithm
outputting all h € H with probability 1 —§ in time
proportional to L.

1.2 Our Results

First, we show that the classes of parities and majori-
ties are not amenable to efficient list learning, as every
net for them has exponential size, regardless of the
representation used for the net. More generally, we
obtain our lower bound for any symmetric family of
functions with sufficiently high noise sensitivity. (Re-
call that the noise sensitivity under p noise, NS,(f), is
the probability the value of f changes when its inputs
are corrupted by product noise of rate p.)

Theorem 1.2. (Theorem 3.3, informal) Let [ be a
symmetric function f : {0,1}*/? — {0,1}. Let Fy

be the family of functions on n bits containing all
functions fg obtained by instantiating f on the set
S C [n] with |S| = n/2. Let p > 0. Suppose
€ < (2 —0(1))NS,/15(f). Then if for every fs € Fy
and distribution D on x there is an h € H satisfying
Prop[fs(x) # h(x)] <€, then |H| > 29,

Two immediate corollaries follow:

Corollary  1.3. Taking f(x1,%2,...,2n/2) =
E?:/? x;, namely f = PARITY, ;, in Theorem 1.2,
the lower bound holds for any p > 0 and € < i —o(1).

Corollary 1.4. Taking f(x1,22,...,%n2) =
MAJORITY (z1, %2, ..., Tpn/2), namely f =
MAJORITY,, /2, in Theorem 1.2, the lower bound
holds for any p > 0 and € < Q(/p).

We stress that since these lower bounds hold re-
gardless of the representation used in the list, they
give lower bounds for richer function classes that
contain parities or majorities (respectively) as spe-
cial cases, such as general linear threshold func-
tions and so on. Of course, such a distinction
between “proper” (representation-specific) and “im-
proper” (representation-independent) solutions does
not arise in coding theory, but is a common feature in
learning theory. Improper learning is the main subject
of interest in learning theory, but lower bounds against
improper learning algorithms are usually much more
challenging. The same holds here: it is generally much
easier to argue that an exponential lower bound holds
if the function is forced to be a parity function or a
conjunction (see below), for example.

Our main results focus on conjunctions, for which we
give a general lower bound, and an upper bound for a
specific restriction on the input distribution on exam-
ples.

Theorem 1.5. (Theorem A.2, informal) Let k > 0
be an integer, € > 0, and let Cy be the set of all con-
Junctions over k bits out of n bits f : {0,1}™ — {0,1}.
If the attribute-noise is p = % > 8¢, then there is an
input distribution D such that list learning Cy, under D
with accuracy € would require a list of size |H| > 22,

Again, since this theorem is representation-
independent, we obtain the same lower bound
for any family of functions that can express the
conjunctions on k out of m bits. Thus, even with
k = Q(n), we obtain lower bounds for decision trees,
DNFs, s-CNFs, and so on. (By standard reductions,
i.e., swapping 0 and 1, one can also obtain the same
lower bound for s-DNFs.) Between Theorem 1.2
and the above, we have lower bounds for essentially
all of the natural families of functions studied in
learning theory, provided that the function depends
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on w(logn) coordinates. (When k = O(logn), the
problems are all open, see Section 4.)

Our main result is a sufficient assumption on the in-
put distribution on examples that allows efficient list
learning of sparse conjunctions under arbitrary prob-
abilities of flipping individual attributes.

Theorem 1.6. (Theorem B.1, informal) For any pos-
itive integer k, k', and any real number 0 < €,§ <
1, 0 < v < 1/2, there exists a randomized al-
gorithm which, with probability at least 1 — §, list
learns k-conjunctions with accuracy 1 — €, with sam-
ple complezity poly(k, X %,log %) and time complezity

3 e
poly(n, ¢,log 5, 2, (£

with bit noise rate 0 < v; < % — for every 1 <i <n,
under the assumption that the ground-truth distribu-
tion is k'-wise independent.

)¥) in the attribute-noise model

We note that the trivial PAC learning algorithm that
tries all monotone conjunctions of size at most k and
outputs the best candidate works only for noise rate
v < 5%; we include a proof for completeness in the
Appendix! C.

Theorem 1.6 shows that, even under high noise rates,
list learning conjunctions with attribute noise is fized-
parameter tractable; meaning that the algorithm runs
in polynomial time in n (with a universal constant ex-
ponent) for any fixed value of the parameter k. The
result only requires a mild restriction of pairwise in-
dependence on the ground-truth distribution. This
a much milder assumption than being a product dis-
tribution (in turn, much milder than being uniform)
which is commonplace in computational learning the-
ory.

2 FURTHER RELATED WORK

We will briefly discuss the history and context of the
models we use in this work, as well as a further appli-
cation to the group testing problem.

2.1 Connection with Group Testing

As a further motivation for the study of conjunctions
(or, equivalently, disjunctions) as a concept class, here
we briefly discuss an application for the classical com-
binatorial group testing problem; cf. Du and Hwang
(2000).

In combinatorial group testing, there is a population
of n specimens among which up to k are defective, and
the goal is to learn the subset S of the defectives via as
few disjunctive tests as possible. Each disjunctive test

!The appendices are available as supplementary mate-
rial.

picks a group of the items and returns positive if and
only if there is a defective among the picked group.
Define the Boolean function f(z1,...,%,) := Vicsxs,
so the goal is now reduced to properly learning the
disjunction f.

When a subset T' C [n] of the specimens are randomly
pooled and the pooled sample is tested, the test result
is positive if and only if at least one specimen in 7T is
defective. Observe that in terms of f, the test outcome
is f(t1,...,tn) where t; = 1 iff i € T'. Thus, effectively,
learning disjunctions captures group testing (the dis-
tribution of attributes corresponds to the pooling de-
sign, for which it is known that product distributions
lead to an essentially optimal number of tests (Du and
Hwang, 2000, Chapter 4)).

Now, attribute noise captures the realistic considera-
tion that each sample participating in each pool may
register incorrectly with some probability due to such
effects as dilution (it is worth noting that our algo-
rithm in Theorem 1.6 actually outputs a unique su-
perset of S of size not much larger than k).

As another related example, suppose a small group of
people (call them agents) have interacted in a social
gathering with a population of size n, among which &
have a contagious disease. The agents are later tested
for the infection, and from the results it is desired to
identify the k infected individuals using contact trac-
ing data. This problem has been considered by Cher-
aghchi et al. (2011). Again, we have a group testing
instance, where each agent defines a pool of the indi-
viduals, with whom they have interacted in the event.
One can assume that each agent has interacted with a
random i.i.d. set of individuals (product distribution),
and in each interaction the infection (if present) will
be caught by the agent with some fixed but unknown
probability (attributed noise). Again, the problem re-
duces to learning disjunctions with attribute noise.

2.2 Further Discussion of Related Work

The information theoretic lower bounds of Sloan
(1988); Goldman and Sloan (1995) are analogous to
the classical scenario in coding theory, in which, upon
receiving a word corrupted by a high amount of noise,
decoding becomes ambiguous. (We remark briefly
that several authors, including Rubin (1976), Schuur-
mans and Greiner (1994), and Michael (2010) further-
more have introduced models of learning from data
with omitted attributes, which is analogous to decod-
ing from erasures, and is much easier.) As a result,
Elias (1957) and Wozencraft (1958) extended the clas-
sical notion of unique decoding to that of list-decoding,
where the algorithm is required to output a list of all
possible messages that could have resulted in the re-
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ceived one. A similar motivation prompted Balcan
et al. (2008) to introduce the notion of list-decodable
learning in the context of clustering, where their algo-
rithm is required to output a small list that includes
a “good” clustering, with high probability. Follow-up
results by Charikar et al. (2017) use this framework
in the context of learning from untrusted data when
there is a minority fraction of “inliers” and so identi-
fiability cannot hold. In the same vein, Diakonikolas
et al. (2018) obtain algorithms for robust mean esti-
mation, and learning mixtures of Gaussians. More re-
cently, Karmalkar et al. (2019) and Raghavendra and
Yau (2020) independently gave list-decodable linear re-
gression algorithms for this minority-inlier setting. In
all of these works, the difference is that there is guar-
anteed to be a fixed fraction of uncorrupted examples
(whereas the corruption of the remaining examples is
arbitrary). By contrast, in the attribute-noise model
we study, with high probability every example has a
non-negligible fraction of corrupted attributes, though
conversely, the corruptions are stochastic and indepen-
dent. Nevertheless, in spite of ours being a stochastic-
noise model, we will see that the lack of clean examples
still poses serious challenges, even for a list learner.

3 LOWER BOUNDS AND A
CONSTRUCTIVE ALGORITHM

We now give a technical overview of our results.

3.1 The Lower Bounds, Theorems 1.2 and 1.5

The high-level idea of the lower-bound proofs is to ex-
plicitly construct a large set of labeling functions ¢ € C
and initial input and noise distributions such that any
function in the net can only be (1 — €)-accurate for a
small number of possible initial solutions (D, ¢, R), re-
gardless of the representations used for the functions
in the net. Hence, to cover an exponential number of
such potential solutions a net has to have large size.
The construction of the initial distributions exploits
the idea that bits (xg;,22,11) that are p-correlated
(meaning that x9; 41 takes the same value as za; w.p.
1 — p, and takes the flipped value with probability p)
appear identical to an observer when adding Bernoulli
random noise p to one copy and no noise to the other

copy.

For the proof, define the noise operator at p on
S, denoted by Ng ,(x), to be a random string such
that Ng,(z); is a uniform random bit p-correlated
with «; if ¢ € S, and Ng ,(z); = x; with probabil-
ity 1 for ¢ ¢ S. We further define the noise sensi-
tivity at p on S to be NSg ,(f) = Pry~u, ,[f(y) #
f(Ns,(y))]. These are related to the standard noise
sensitivity constructions via N,(x) = Ny, ,(z), and

NS, (f) = Pryu, . [f(y) # F(No(y))):

Claim 3.1. Let S C [n] be a set such that |S| =
n/14. For every symmetric Boolean function f on
n/2 wvariables such that NSg ,(f) = 27°M" for all S,

NSs,,(f) = (1 —o(1))NS,/15(f)-

We defer the proof of Claim 3.1 to Appendix A.

Before defining the functions in F for Theorem 1.2, we
will make some notational conventions. For the sake
of presentation we assume n is even.

For a string € {0,1}", we may view it as the concate-
nation of pairs (9,41, 2i42), for i =0,1,....,n/2 — 1,
and define two strings z°, 2! € {0,1}"/2, by select-
ing the odd, respectively the even, indices of these
pairs in order, namely z° = z1,23,...,2,_1 and
ol = x9,14,...,2,. For x € {0,1}" and a string z €
{0,1}7/2 we define the hybrid string 2* € {0,1}"/2
to be the string that for each 0 < i < mn/2 — 1 selects
either xo;41 if 2; = 0, or w949 if 2; = 1, denoted by
¥ = (zih, 232, ... 79527/22)7 where 7' = x9;11 if 2; =0,
and sz, = T2i+2 if Z; = 1.

We now define the set of functions F. For a sym-
metric function f : {0,1}"*/2 — {0,1}, such as par-
ity or magjority, and a string z € {0,1}"/2, let f* :
{0,1}" — {0,1} be the function f*(z) = f(a*) =
flai,z22, ... ,xj;;g). Let F = F(f) = {f*}.cqo.1yn/2-

Further, for z € {0,1}"/2 let D* be the distribution?
on {0, 1}" defined by the following probability experi-
ment:

e The coordinates in x* are drawn independently
and uniformly at random. That is, ©* ~ U, s,
where U, /5 represents the uniform distribution on
{0,1}n/2.

e The coordinates in x* are p-noisy copies of x*—
each bit xz?’ is a p-noisy copy of z".

We will show that if z is unknown, and we see labeled
examples according to f* under D?* with p-bounded
attribute-noise, then list-learning to small accuracy
requires an exponential size list. That is, for every
set of functions H (our proposed net), the quantity
Max, ¢ (g,1}n/2 Minpey Prap=[f*(z) # h(z)] is “large”
if |#H| is sub-exponential.

For f* with respect to D?, given z, the attribute-noise
N7 (z) is as follows: we apply p-noise to each x}", and
no noise to x? It follows that for every D?, the re-
sulting distribution over the labeled examples is the
same. We define D to be distribution® on {0, 1}" such
that, for each i, ¥ and x} are p-correlated uniformly

2 Actually, D is the same distribution no matter what
z is.
3 Actually, this is the same as D~.
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random bits, and the n/2 pairs (z,z}) are chosen in-

dependently.

We now exploit the fact that totally symmetric func-
tions with high “noise sensitivity” are often far apart.

Lemma 3.2. Let 2,2’ € {0,1}"/2 be strings such that
|z — 2| > n/14. Then Prgyp:[f*(x) # f* (x)] >
(1— 0(1))NSp/15(f)'

Proof. Define S to be the set of strings where z and 2’
differ.

Pr [f*(z) # % (z)] =

x~D*>

Pr [f(z*) # f(=*)]

x~D=

Pr [f(x*) # f(Ns,(x?))]

x~D*

Pr [f(y) # f(Ns,p(y))]

y~Up /2
= NSS,p(f)
2 (1= 0(1))NS,/15(f),

where the last inequality follows by Claim 3.1. O

Thus, any single member of the net can only be ac-
curate for at most one of these far pairs, and so we
must have a large net. We thus obtain a more specific
version of Theorem 1.2.

Theorem 3.3. Let f: {0,1}"/2 — {0,1} be a sym-
metric function, and p > 0. Ife < (3 —0(1))NS,/15(f)
then, for family F = {f*}.c(o,13n/> of Boolean func-
tions on n bits where the oracle produces examples with
attribute-noise rate p, we have that any net H satis-
fying max, ¢ g 1yn/2 Minpey Pro~p-[f*(z) # h(z)] <€
must have |H| > 2%,

Proof. By the triangle inequality, no function in the
net can approximate both f* and fz/ for two strings
z, 2" where |z — 2’| > n/14 (with respect to D = D* =
D) to within (3 — 0(1))NS,/15(f)). Thus, any func-
tion in the net can cover at most (n71 4)
tions f* with respect to D*. It follows that any net
requires 2"/2/(n714) > 27/14 functions (here we used

that (}) < (ne/k)¥, with k = n/14). O

such func-

The proof of Theorem 1.5 uses similar ideas, and ap-
pears in Appendix A.2. In this case we use distribu-
tions D? over {0, 1}2* such that

e The coordinates in x* are drawn independently
at random with bias 1/k. That is, * ~ p 1/k,
where p,, , denotes the p-biased distribution over
{0,1}™.

e The coordinates in x* are p-noisy copies of x*—
each bit :BZ’7 is a p-noisy copy of x;".

For f* with respect to D?, given x, the attribute-noise
N7 (z) is as follows: we apply p-noise to each z7*, and

no noise to m? It follows again that for every D?, the
resulting distribution over the labeled examples is the
same.

We show a function in the net covers the most con-
junctions by taking f to be 1 on 199%/100 of these
strings and 0 on the other k/100 since for every con-
junction, a false 0 is roughly & times as costly as a false
1: To make the error less than (1 — 1/k)*=1(1/k)(1 —
p)¥~1p - (99k/100), there must be a function in the
net that has no false 0’s and at most 99k/100 false
1’s on these strings. (A function is covered if its bits
correspond to those with ones.) There are 299%/100
conjunctions covered, but 2* conjunctions in total, so
any net must have 25/190 functions in it to achieve er-
ror below (1 — 1/k)*=1(1/k)(1 — p)k=1p - (99k/100).
Taking p = 1/k, the error is at least p/8, so we need
p < 8¢ for a sub-exponential net.

3.2 The Conjunction Algorithm,
Theorem 1.6

The essential difficulty in learning conjunctions under
the attribute-noise model is that on the one hand, con-
junctions are in general very sensitive to the attributes
that appear in them; missing even one significant at-
tribute incurs a large error. But, on the other hand, as
illustrated in the lower bound, it is in general impossi-
ble to distinguish bits of the conjunction corrupted by
noise in our examples from bits that would thus incur
a serious error if they were included in the conjunction.
Thus, we seek to find a small set of candidate coordi-
nates and output all small subsets of these. Both the
size of the set of candidates and the size of the con-
junctions must be small to obtain a polynomial-size
list. Proving that the algorithm does output a net for
the solution space is the most difficult part of our ar-
guments, the difficulty emerging from the fact that the
accuracy of the solution is measured against the orig-
inal unknown distribution rather than the observed
distribution itself. The algorithm can only perform
tests and optimize quantities using the corrupted ex-
amples, and we must then bound the distances from
the unknown distribution.

We use the following notation: D: the observed dis-
tribution; D: the original distribution before applying
the attribute-noise; ¢ = Ajecli: a conjunction? of size
at most k, where ¢ C [n], |c| < k and ¥; is either z; or
1—a;; Dy (vesp. Dy): the original (resp. observed) dis-
tribution conditioned on label ¢ being b, for b € {0, 1};
v;: the attribute-noise rate of bit 7.

“We abuse notation here to let ¢ denote both the con-
junction and the set of variables in the conjunction. Fur-
thermore, the conjunction over the empty set is understood
to be 1.
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Algorithm 1: Learning-Conjunction (EX, k, €, §)

: Noisy example oracle EX(c, D), integer
k, error parameter €, and confidence
parameter &

output: A list of conjunctions

m = 32k%/(e5~?)

M := O(k*lognlog(1/8)/(€°v%))

input

3 M < M random labeled examples drawn from

the noisy example oracle EX(¢, D)

4 S + Pairwise-Independence-Test (M, ¢, d)
5 for i < 1 ton do

10

11
12

Use M to estimate label sensitivity at the 7*"
bit LS,

if LS; < ey/k then
L remove i from S

if |S| <m then
Output the list of conjunctions
0U{Niee@itue(5)

else
L Output 0

We call a bit i € [n] a conjunction bit if i € ¢ and non-
conjunction bit otherwise. Note that without loss of
generality, we may assume that every candidate con-
junction bit in S is biased towards 1, i.e. Epfx;] > 1/2
for every i € S, as otherwise we simply replace x; with
1 — x; in our arguments.

The algorithm for list learning conjunctions under ran-
dom product attribute-noise operates under the as-
sumption that the attributes in the initial distribution
on examples are pairwise independent.

Definition 3.4 (Non-uniform k-wise independence).
Let P: {0,1}" — R2° be a distribution and k be a pos-
itive integer. P is said to be (non-uniform) k-wise in-
dependent if for any subset of k indices {iq,... i} C
[n] and for any z; ...z, € {0,1}F,

IZI’DI[Xi1 =z X -+ X f}’jr[Xik = zx].

Claim 3.5. For any positive integer k and any dis-
tribution D : {0,1}" — R=2°, D is k-wise indepen-
dent if and only D is k-wise independent. In other
words, attribute-noise does not change the k-wise in-
dependence of the underlying distribution.

We defer the proof of this claim to Appendix D.

We first observe that since the bits of the actual con-
junction must all take value 1 on label 1, and the noise
is a product distribution, the bits of the actual con-

PSR B

10

11

12

13

Algorithm 2: Pairwise-Independence-Test (M, €, §)

input : M random labeled examples M, error
parameter ¢, and confidence parameter §

output: A subset S C [n] of nearly pairwise
independent bits under Dy

S« [n]

for i + 1 ton do

Use positive examples in M to empirically
estimate Ep []

fori+ 1ton—1do

for j < i+ 1tondo

ifi¢ S orjé¢sS then

L continue

o —

if Ep [r;] <1/(8em) or

EEE] < 1/(8em) then

L continue
Use sampled examples to empirically
estimate Ep [z; - 2]
if ’Eﬁl [z:] - Ep, [2;] = Ep, [xi - 2] >
1/(8em) then

L Remove both ¢ and j from S

Output S

junction in the noisy examples are fully independent
when conditioned on label 1.

Learning conjunctions is easy when there is no
attribute-noise because, if z; is in the conjunction,
then conditioned on label being 1, Pr[X; = 1] =1
and this probability should be lower without the con-
ditioning — unless variable x; is almost surely being 1
under the distribution D. In other words, the expecta-
tion of a (relevant) conjunction bit should be sensitive
to label change. This is also true under attribute-noise,
although with lower sensitivity in general.

Definition 3.6. The (observed) label sensitivity at bit
i is defined by LS; = Ep [X;] — Ep [Xi]; that is, LS;
is the difference between expectation of x; conditioned
on label being 1 and the expectation of x; conditioned
on label being 0.

The algorithm thus first identifies the subset of vari-
ables that are (at least) pairwise independent on label
1, and then eliminates from this surviving set the vari-
ables that are not too sensitive to the label. These
eliminated variables could not have been significant
bits of the conjunction: if there is no attribute-noise,
the variables in the conjunction would be very sensi-
tive to the label, since they would always take value 1
on label 1, and they would take value 0 on label 0 sig-
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nificantly often. Indeed, we note the following simple
fact: since attribute-noise does not change the labels
of examples, the total mass of positive or negative ex-
amples are the same for D and D.

Fact 3.7. For any underlying distribution D of
the example oracle and any attribute-noise vector v,
Prple(z) = 1] = Prple(z) = 1] and Prplc(z) = 0] =
Pryle(z) = 0].

Now, either the function is nearly constant and so a
constant function predicts the label sufficiently well,
or else there is a bounded statistical distance between
the distribution conditioned on label 1 and the original
distribution, which is a mixture of the label 1 and label
0 distributions. We show that when the function is far
from constant, there cannot be too many coordinates
surviving. Intuitively, otherwise, the weight would al-
low us to distinguish the label 1 distribution from the
original distribution beyond the statistical distance,
due to Chebyshev’s inequality: the total weight would
concentrate if there were many coordinates left. Thus
we can afford to enumerate all small subsets of the
surviving coordinates in this case.

In summary, our list-learning algorithm is described in
Algorithm 1, in which we call Pairwise-Independence-
Test (Algorithm 2, see Appendix B) as a subroutine
to select the pairwise independent variables under dis-
tribution D;. Essentially, for any pair of variables
that each take both values with probability at least
1/(8em), if the distance from independence is at least
1/(8em), we filter out both members of the pair. Our
analysis of Algorithm 1, sketched above, establishes
Theorem 1.6; see Appendix B for the full details.

4 OPEN PROBLEMS

In our work we seek to develop the natural, yet
difficult-to-analyze model of learning under attribute
noise. While we prove several impossibility results and
a sufficient condition for learning sparse conjunctions,
our work leaves open a plethora of intriguing possibil-
ities. We describe below a few important ones.

The first, most natural question is whether or not the
pairwise-independence assumption is really needed for
our algorithm:

Open Question 4.1. Is the set of sparse conjunctions
list-learnable under arbitrary product distributions of
the attribute-noise?

But, moreover, we note that our lower bounds do not
rule out the possibility of obtaining polynomial-size
lists for O(logn)-sparse functions in general. So it is
still open whether or not natural function families with
small numbers of relevant coordinates have efficient

list-learning algorithms, e.g.:

Open Question 4.2. s the set of sparse Boolean
threshold functions list-learnable under arbitrary prod-
uct distributions of the attribute-noise?

Thus, in contrast to the usual theory of supervised
learning, we do not have a characterization of which
families of functions are (information-theoretically)
learnable in terms of some parameter like the VC-
dimension or Rademacher complexity in the attribute-
noise list-learning setting:

Open Question 4.3. What are necessary and suffi-
cient conditions for families of Boolean functions to
be list-learnable under the product distribution of the
attribute-noise?

Or, more generally:

Open Question 4.4. What families of Boolean func-
tions are list-learnable under general (not-necessarily
independent product) noise distributions?

Of course, one can ask both computa-
tional/algorithmic ~ and  statistical/combinatorial
variants of these questions. But again, a central
difficulty here is that the usual statistical techniques
for estimating losses from data cannot be used directly
to estimate losses from our corrupted data. Thus it
seems that new tools may need to be developed to
address these questions.
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