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Abstract

Extremophytes have evolved genetic adaptations for tolerance to abiotic stresses characteristic of their
extreme environments. Comparative molecular analyses of Arabidopsis thaliana with its halophytic
extremophyte relatives have revealed that the halophytes exist in a pre-adapted, stress-ready state. We
generated a reference transcriptome of the heat-tolerant A. thaliana desert relative, Anastatica
hierochuntica (True Rose of Jericho) and used two approaches to identify adaptations that could
facilitate an extremophyte lifestyle: (i) We identified common positively selected extremophyte genes
that target stomatal opening, nutrient acquisition, and UV-B induced DNA repair. In 4. hierochuntica,
we identified genes consistent with a photoperiod-insensitive, early-flowering phenotype that could
maximize fitness in the desert environment; (i) Using RNA-seq analysis, we demonstrate that A.
thaliana and A. hierochuntica transcriptomes exhibit similar transcriptional adjustment in response to
heat, and that the A. hierochuntica transcriptome does not exist in a heat stress-ready state, unlike its
halophytic relatives. Furthermore, the A. hierochuntica global transcriptome as well as orthologs
belonging to specific functional groups, display a lower basal expression but higher heat-induced
expression than in A. thaliana. We suggest that the increased reactiveness of the A. hierochuntica

transcriptome in response to heat stress is related to specific conditions native to a desert environment.
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Introduction

Plant species inhabiting extreme environments - so-called extremophytes - are able to thrive in
some of the most inhospitable environments on Earth that are characterized by severe abiotic stresses.
These stresses include drought and temperature extremes in deserts, intense cold in the Antarctic, and
habitats both on land and in the sea that are typified by acute salinity (John and Spangenberg, 2005;
Amtmann, 2009; Dassanayake et al., 2010; Oh et al., 2012; Lawson et al., 2014; Farrant et al., 2015;
Kazachkova et al., 2018; Oscar et al., 2018). Understanding how extremophytes adapt to their stressful
environments could aid in identifying targets for molecular breeding efforts to improve crop stress
tolerance, as well as facilitate the development of extremophyte-based agriculture (Bressan et al., 2013;
Shabala, 2013; Cheeseman et al., 2015; Ventura et al., 2015).

To gain insight into genetic adaptations that facilitate an extremophyte lifestyle, comparative
physiological and molecular analyses of stress-sensitive Arabidopsis thaliana and its extremophyte
relatives have proven to be a powerful approach (Kraemer, 2010; Koenig and Weigel, 2015;
Kazachkova et al., 2018). Indeed, these extremophyte relatives are becoming premier models for
understanding plant adaptation to extreme environments with the development of a number of genetic
resources including chromosome-level genome assemblies, natural accession collections,

transformation protocols, and web resources (http://extremeplants.org/) (Zhu et al., 2015; Kazachkova

et al,, 2018; Wang et al., 2019). For example, the halophyte models Eutrema salsugineum and
Schrenkiella parvula, have revealed that differences between salt-sensitive and salt-tolerant relatives
are associated with altered regulation of basic physiological and molecular processes including: (i)
global pre-adaptation to stress, which is manifest as reduced adjustment of the transcriptome, proteome,
and metabolome in response to a stress challenge compared to 4. thaliana, and constitutively high or
low expressed genes in the halophytes that are induced or repressed, respectively, in stress-sensitive
plants. In other words, these halophytes appear to exist in a stress-ready state even under stress-neutral
conditions (Taji et al., 2004; Kant et al., 2006; Kant et al., 2008a; Lugan et al., 2010; Pang et al., 2010;
Kazachkova et al., 2013; Oh et al., 2014; Wang et al., 2021); (i1) E. salsugineum is able to maintain
energy supply under saline conditions via alternative pathways acting as sinks for excess electrons and
via protection of chloroplasts by a highly active ROS-scavenging system (Stepien and Johnson, 2009;
Wiciarz et al., 2015; Pilarska et al., 2016); (iii) at the genome level, structural changes have led to the
selective expansion (e.g. tandem duplication) of genes with subfuctionalization and/or
neofuctionalization leading to changes in expression and/or function (Sun et al., 2010; Dassanayake et

al., 2011a; Dassnayake et al., 2011b; Ali et al., 2012; Oh et al., 2014; Ali et al., 2016; Ali et al., 2018;
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Kazachkova et al., 2018). Many of the genes with copy number variation possess functions that could
be important for stress tolerance. In addition, the model halophyte genomes retain a substantial
proportion of taxonomically restricted genes with unknown functions that could denote unique stress
tolerance determinants (Dassanayake et al., 2011a; Wu et al., 2012; Yang et al., 2013; Oh et al., 2019).

Extremophyte species are tolerant to the multiple abiotic stresses that are characteristic of their
native environments. Yet, an extremophyte Brassicaceae model that represents desert species has not
hitherto been developed. Such a model could leverage the functional genomics knowledge that exists
for A. thaliana thereby facilitating comparative analyses to understand plant adaptations to the extreme
desert environment. We have therefore been studying the A. thaliana relative, Anastatica
hierochuntica, also known as the ‘True Rose of Jericho’, a Saharo-Arabian desert species (Fig. 1A)
which also occupies the uppermost, driest zones of wadies or runnels of the Israeli Negev desert
(Friedman and Stein, 1980; Friedman et al., 1981; Fig. 1B). This arid region has temperatures varying
between -3.6 and 46 °C, an annual rainfall between 25 and 200 mm, and soil nitrate levels ranging from
0.4 to 4 mM (Gutterman, 2002; Ward, 2009; Eshel et al., 2017). We have demonstrated that A.
hierochuntica is highly tolerant to heat, low soil nitrogen and oxidative stresses, and moderately
tolerant to salt stress (Eshel et al., 2017). We further showed that in response to salt stress, A.
hierochuntica shares common salt tolerance mechanisms with its halophytic relatives including tight
control of salt uptake into shoots, and resilient photochemistry (Eppel et al., 2014; Eshel et al., 2017).
Furthermore, metabolic profiling indicates constitutive upregulation under control and saline conditions
of metabolites that have a role in scavenging of reactive oxygen species. These data suggest that A.
hierochuntica might also exist in a stress-ready state similar to its halophytic relatives.

In the current study, we furthered our molecular investigations by de novo sequencing and
assembly of an A. hierochuntica reference transcriptome. We then used coding sequences of A.
hierochuntica and other available Brassicaceae to identify positively selected genes that may contribute
to adaptation to extreme conditions in general, and desert conditions, in particular. We also tested our
hypothesis that 4. hierochuntica exists in a stress-ready state by comparing the response of the A.

thaliana and A. hierochuntica transcriptomes to heat stress.

Results

De novo assembly and annotation of the Anastatica hierochuntica reference transcriptome
To generate a high-quality 4. hierochuntica reference transcriptome that maximizes coverage of

genes contained in the genome, we sequenced and assembled transcripts using RNA pooled from
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multiple plant organs (root, shoot, flower, seeds), at different developmental stages (early seedling
stage, and mature plants before and after flower initiation), and under control, heat, drought and salinity
stress conditions (Supplemental Fig. S1; Supplemental Methods). We identified 30,670 putative protein
coding genes out of the high-confidence 36,871 assembled transcripts (Fig. 1C; Supplemental
Methods), and the distribution of transcript lengths was similar to that of A. thaliana cDNA length
distribution (Fig. 1C). We assessed the completeness of the reference transcriptome based on the
expected presence of core genes in land plants as identified by the BUSCO database (Simao et al.,
2015) and by mapping sequenced reads back to the assembled reference. We detected 93.6% BUSCOs
(Fig. 1D), comparable to de novo assembled transcriptomes from other Brassicaceae (Lopez et al.,
2017) and obtained 88% mapped reads. These data indicated that we have generated a high-quality
reference transcriptome appropriate for our downstream analyses.

We annotated the reference transcriptome using sequence similarity to protein databases
including NCBI, InterPro, and KEGG databases (Supplemental Table S1). This resulted in an
annotation based on a previously known sequences for 96% of our assembled transcripts (Supplemental

Methods)

Positively selected genes in extremophyte Brassicaceae

As an initial approach to identifying adaptations to an extremophyte lifestyle, in general, and to
desert conditions, in particular, we pinpointed positively selected genes that might be indicative of
adaptive evolution of stress tolerance. We first used phylogenomics to infer evolutionary relationships
between 16 Brassicaceae species including 4. hierochuntica and representing all major lineages in this
family (Supplemental Table S2). Tarenaya hassleriana (Cleomaceae) was used as an outgroup. This
led to a selection of 13,806 ortholog groups found in 17 taxa. The generated phylogenomic tree
partitioned the species in concordance with their previously assigned lineages (I, II, and III), where
Aethionema arabicum is considered to belong to a basal clade within the Brassicaceae (Fig. 2A;
Franzke et al., 2011; Kiefer et al., 2014). A. hierochuntica (Anastaticeae) was assigned to LIIL. It is
important to note that A. hierochuntica is the single representative species used for LIII due to this
lineage being sparsely represented in publicly available genomic databases compared to transcriptomes
available for LI and LII. LIII sequences are mostly limited to plastid genomic data created for
systematics studies. Thus, to the best of our knowledge our study provides the first substantial genetic
resource that enables exploration into adaptive traits that have evolved in a representative Lineage I1I

species.
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The tree contains five extremophyte species considered to be naturally tolerant to various
abiotic stresses (Fig 2A, red asterisks): the halophytes Eutrema salsugineum and Schrenkiella parvula
(tolerant to high salinity and multiple other stresses; Kazachkova et al., 2018), Thlaspi arvense
(freezing-tolerant; Sharma et al., 2007; Zhou et al., 2007), A. hierochuntica (heat-, salt-, low N-tolerant;
Eshel et al., 2017) and Arabidopsis halleri (heavy metal hyperaccumulator, semi-alpine conditions;
Hanikenne et al., 2008; Honjo and Kudoh, 2019). Therefore, to identify genes under common positive
selective pressure in the extremophytes, we used the branch-site model (Yang, 1997; Yang, 2007) to
test the external branches (foreground) of the five extremophyte species against all the other branches
(background). We then repeated this procedure to test for positively selected genes in three specific
extremophytes - the well-studied halophyte models, E. salsugineum and S. parvula, and A
hierochuntica - by labelling each species’ external branch as the foreground. Overall, we identified
194, 120, 131 and 99 genes with a positive selection signal in the “all extremophyte species”, A.
hierochuntica, E. salsugineum, and S. parvula runs, respectively (Supplemental Tables S3-S6). We also
tested A. thaliana, as an abiotic stress-sensitive control, and identified 112 positively selected genes
(Supplemental Table S7).

We next examined whether any common genes are under positive selection in the
extremophytes or between the extremophytes and stress-sensitive A. thaliana. While we could not
detect a clear convergence in the use of same positively selected orthologs in the extremophytes (Fig.
2B), the functional attributes shared by those positively selected orthologs in each extremophyte
exhibited convergence (Fig. 2C; Supplemental Fig. S2; Supplemental Tables S8 to S12). Notably,
orthologs associated with the GO-term “response to stress” [GO:0006950] were highly enriched in the
extremophytes suggesting major selective pressure for stress tolerance imposed on the plants by their
extreme environments.

Inspection of the positively selected genes from the “all extremeophyte species” run, supported
association of these genes with adaptations to harsh environments. For instance, 4AKS2, MYB52,
WRKY75, ASF1B and PHRI/UVR?2 that have known functions in ABA responses, phosphate starvation,
heat stress, and UV-B radiation stress (Table 1 and refs. therein), were among the positively selected
group of genes in the extremophytes. Interestingly, bZIPI (salt/drought tolerance, and nitrogen
signaling) and APX6 (ROS-scavenging) showed signatures of positive selection unique to A.
hierochuntica (Table 1). These genes are particularly noteworthy because A. hierochuntica is highly
tolerant to low N and oxidative stresses, and moderately tolerant to salt stress (Eshel et al., 2017).

Positively selected genes unique to S. parvula included CAX11/CCX5 and RAB28 that are involved in
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high-affinity K" uptake and Na" transport, and lithium toxicity, respectively (Table 1; Borrell et al.,
2002; Zhang et al., 2011). The pinpointing of these two genes added validity to our positive selection
analysis because the native soils of S. parvula contain levels of Li" and K that are highly toxic to most
plants (Helvaci et al., 2004; Ozfidan-Konakci et al., 2016), and this species displays extreme tolerance
to both Li" and K toxicity (Oh et al., 2014). In contrast to the extremophyte species, positively selected
genes in A. thaliana were related to biotic stress responses (Table 1).

We further examined whether any of the “all extremophyte species” or A. hierochuntica-
specific genes were differentially regulated between A. thaliana and A. hierochuntica exposed to heat
stress (see below for RNA-seq details). Figure 3A shows that AKS2, bZIPI and PHRI/UVRI
expression displayed clear and significantly higher transcript levels in 4. hierochuntica compared to A.
thaliana whereas the expression of APX6 exhibited lower transcript levels in 4. hierochuntica.

Exclusively in A. hierochuntica, we identified, CYP71, FASI, FBH2, SBII/LCMTI, and VIPS
that are involved in photoperiodic flowering, regulation of meristems, and control of morphology
including shoot branching (Table 1). Furthermore, two of these 4. hierochuntica genes exhibited
differential regulation compared to 4. thaliana in response to heat stress (Fig. 3B). AhFASI expression
was highly upregulated by heat stress while AtFASI expression was downregulated. AhSBI1/LCMTI
expression was unaffected by heat stress but transcript levels were lower than AtSBI1/LCMTI over all
time points whereas AtSBI/LCMTI expression was highly upregulated by heat. Considering that A.
hierochuntica ontogeny is very different from A4. thaliana, E. salsugineum and S. parvula — it exhibits a
multi-branched sympodial shoot structure supporting multiple axillary inflorescences that flower
independent of day length (Fig 3C; Gutterman, 1998; Eshel et al., 2017) - positive selection of these

genes could indicate an important adaptation to the desert environment.

Comparative global analysis of the 4. thaliana and A. hierochuntica heat response transcriptomes

Our previous work demonstrated that certain stress-associated metabolites are constitutively
maintained at high levels in A. hierochuntica even under stress-neutral control conditions (Eshel et al.,
2017). Therefore, we hypothesized that the A. hierochuntica transcriptome will show similar traits of
constitutive expression at stress-ready levels in response to heat stress. Thus, as a second approach to
identify extremophyte adaptations to a desert lifestyle, we performed a comparative analysis of the A.
thaliana and A. hierochuntica transcriptome response to heat stress in young plants at similar
developmental stages before anthesis. To simulate a realistic scenario, temperature data near A.

hierochuntica populations during their growing season were obtained from the Israecl Meteorological
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Service and used as a guide for heat treatments (Supplemental Fig. S3). Thus, plants were exposed to
either control (23 °C) or three consecutive daily heat waves covering the early heat response and
acquired heat tolerance phases (Lindquist, 1986; Hong and Vierling, 2000), with day/night
temperatures of 40 °C/25 °C followed by 2 d recovery at 23 °C (Fig. 4A). Plants were well-watered
throughout the entire experiment to avoid any dehydration effects that could arise due to the heat
treatment.

Heat stress had no significant effect on A. hierochuntica leaf area in contrast to A. thaliana
where growth in leaf area was significantly retarded by heat stress although it had almost recovered to
control levels 2 d after the end of the heat treatment (Fig. 4B). 4. thaliana shoot fresh weight was also
significantly reduced by heat stress but did not recuperate after 2 d recovery under control conditions
while A. hierochuntica fresh weight was not affected by heat stress (Fig. 4C). These results illustrate
that A. hierochuntica is highly tolerant to heat stress and confirm our previous in vitro experiments
(Eshel et al., 2017).

A PCA analysis based on genome-wide transcript levels showed that the transcriptomes of both
species under elevated temperature were clearly distinct from those in control conditions (Fig. 4D). The
control and heat-stressed samples harvested in the morning were positioned separately from the
samples harvested in the afternoon, which could be due to differences in early vs. late heat-mediated
gene expression or/and diurnal changes in gene expression (Kant et al., 2008b; Li et al. 2019; Mody et
al., 2020). Transcriptomes of plants recovering from heat stress clustered near control samples
suggesting that the overall transcriptomes return to pre-stress conditions. Because these results indicate
that both species undergo conditional transcriptional adjustment in response to heat stress, we
examined the median expression level across the whole transcriptome for each condition. Figure 4E
shows that the heat treatments conferred a similar effect upon transcript abundance between the two
species. Compared to their respective controls, the median transcript abundance (and total abundance
as depicted by the distribution) decreased under heat stress in the morning samples, increased in
response to heat treatments in the noon samples, and decreased during recovery. Furthermore, the
percentage of differentially expressed genes (out of the total number of protein-coding genes) was
similar for both species under all heat conditions (Fig. 4F; Supplemental Table S19). Thus, these data
support the proposition that the 4. thaliana and A. hierochuntica global transcriptomes adjust to heat
stress with a similar magnitude and trend.

The similar heat-mediated transcriptome adjustment exhibited by both species suggests that the

A. hierochuntica transcriptome is not globally pre-adapted to stress - i.e. it does not exist in a stress-
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ready state. To further test this hypothesis, we used Weighted Gene Co-expression Network Analysis
(WGCNA; Langfelder and Horvath, 2008) to identify five types of transcriptional response mode
among the expression patterns of 17,962 orthologous pairs for each species (Wang et al., 2021;
Supplemental Fig. S5; Supplemental Table S13): (a) “Stress-ready” where transcript level under
control conditions in one species is equal to the ortholog transcript level under heat in the other species;
(b) “Shared response” where expression of both orthologs exhibit a similar response to heat; (c)
“Unique response” where expression of an ortholog exhibits a heat response specifically in one species
but not in the other; (d) “Opposite response” where expression of the ortholog in one species shows the
opposite response in the other species; () “No response” where the expression of both orthologs does
not respond to heat. Analysis of the total number of orthologs that could be categorized within the five
response modes revealed that only 4.4% of the orthologs belonged to the “No response” mode (Fig.
5A). The vast majority (82%) of orthologs displayed a shared response mode while about 5% exhibited
a unique response and 2.1% showed an opposite response. Importantly, while 535 genes did exhibit a
stress-ready mode in 4. hierochuntica, we also detected 221 A. thaliana genes displaying a stress-ready
mode. Similar results were obtained when we examined only orthologs associated with GO terms for
abiotic stress responses (Fig. 5SA; Supplementary Methods). Overall, our data show that: (i) 4. thaliana
and A. hierochuntica exhibit similar transcriptional adjustment; (ii) a large majority of orthologs
display a shared response mode unlike the extremophyte S. parvula response to boron toxicity where
almost no genes showed a shared response (Wang et al., 2020); (iii) only a few hundred orthologs in
both species show a stress-ready mode of expression. These findings suggest that A. hierochuntica does
not display the classic features of a stress-ready transcriptome (Kazachkova et al., 2018; Wang et al.,
2021).

We next searched for other characteristics that differentiate the response of the A. thaliana and
A. hierochuntica transcriptomes to heat stress. By examining global transcript abundance under control
conditions, we observed that the median basal expression level of the A. hierochuntica transcriptome
was significantly lower than in A. thaliana (Fig. 5B). Additionally, extremophyte differentially
expressed genes (DEGs) displayed a greater heat-mediated fold-change expression than A. thaliana
DEGs (Figs. 5C and 5D). To support these findings, we increased the resolution of our analysis by
comparing the basal and fold-change expression of specific functional groups of 4. thaliana and A.
hierochuntica orthologs that exhibited either a shared or unique response mode to heat stress
(Supplemental Table S19). Orthologs associated with GO-terms for abiotic stress whose expression

displayed shared upregulation by heat exhibited an average lower basal expression in A. hierochuntica
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compared to A. thaliana and no significant difference in average % change in expression (Fig. 6A).
Abiotic stress-associated orthologs showing shared heat-mediated downregulated expression displayed
both a lower basal and higher % change in expression in A. hierochuntica compared to 4. thaliana (Fig.
6B). Similarly, both heat-mediated upregulated and downregulated abiotic stress-associated, unique-
expressed orthologs showed lower basal and higher % change in expression in the extremophyte (Figs.
6A and 6B).

Plants actively and early on reduce their growth in response to stress independent of
photosynthesis, and in A. thaliana and E. salsugineum leaves this is apparent in a reduction in both cell
size and cell elongation (Aguirrezabal et al., 2006; Skirycz et al., 2010; Kazachkova et al., 2013).
Stress-mediated reduction in cell division can be linked to downregulation of cell cycle-associated
genes and arrest of the cell cycle (Skirycz et al., 2011). Subsequently, expression of genes involved in
photosynthesis is downregulated under stress (Rizhsky et al., 2002; Zhang et al., 2018a; Huang et al.,
2019). We observed that the majority of shared- and unique-expressed orthologs associated with
photosynthesis or the cell cycle were downregulated by heat stress in both species. However, for both
shared- and unique-expressed photosynthesis orthologs, A. hierochuntica exhibited a similar basal, and
higher % change in expression than A. thaliana (Fig. 6C). Cell cycle orthologs with shared heat-
meditated downregulated expression showed a lower basal and higher % change in expression in the
extremophyte while unique-expressed cell-cycle orthologs exhibited lower basal expression in A.
hierochuntica (Fig. 6D).

To ensure that the lower basal expression of genes in A. hierochuntica was not due to an overall
lower metabolic rate in the extremophyte compared to 4. thaliana, we examined the basal expression
of 15 orthologous housekeeping genes from both species. We found that the average ratio of basal
expression of A. thaliana to A. hierochuntica housekeeping genes was 1.0 + 0.34 (Supplemental Fig.
S4), supporting the contention that the average lower basal gene expression observed in A.

hierochuntica compared to A. thaliana is not due to lower metabolic activity in the extremophyte.

Comparative analysis of the A. thaliana and A. hierochuntica early heat response-specific
transcriptomes

Our findings suggest that although the A. hierochuntica transcriptome does not exist in a stress-
ready state, it is more reactive to imposition of stressful conditions than that of A. thaliana. To
strengthen this assertion, we used WGCNA to cluster genes from all conditions into modules with

similar expression profiles and detected 22 A. thaliana and 21 A. hierochuntica co-expression modules
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(Supplemental Fig. S5). In both species, two modules were observed that clearly covered early heat-
induced genes (1.5 h [morning] and 7 h [afternoon] after onset of heat stress (Fig. 7A; Supplemental
Tables S14-S18). The morning heat response modules of both species were enriched in GO biological
terms such as “response to heat”, “response to high light intensity” and “response to reactive oxygen
species”, (Fig. 7B; Supplemental Methods) while the 4. thaliana and A. hierochuntica afternoon heat
response modules were not enriched in any GO-terms. Importantly, both shared and unique expressed
A. hierochuntica genes associated with GO terms for abiotic stress exhibited the same or lower basal
expression, and greater heat-mediated % change in expression than their A. thaliana orthologs (Fig.

7C). Thus, the early heat response module analysis provides further support for the notion that the A.

hierochuntica transcriptome is more reactive to a heat stress challenge than A. thaliana.

Validation of “between species” RNA-seq analyses

The above comparisons of gene expression between the two species utilized DeSeq2 (Love et
al., 2014) as a normalized measure of gene expression and to identify differentially expressed genes.
DeSeq2 normalizes read counts for different sequencing depths between samples. However, when
dealing with two different species, several other factors can affect direct comparison of expression
levels between orthologs including whether a few highly expressed genes constitute a large proportion
of the sequenced transcripts, as well as differences in gene numbers and orthologous transcript length
(Zhou et al., 2019; Zhao et al., 2020). Therefore, we performed a number of further analyses to validate
our results. Figure 8A shows that there was no significant difference between the species in the
proportion of the top 10 most highly expressed genes out of the total transcripts sequenced across all
treatments (4. thaliana, ~7% to 12%, and A. hierochuntica, ~10% to 15% of the total sequenced
transcripts). We further re-normalized our raw read count data (normalized for transcript length) using
a new between-species method that applies Scale-Based Normalization (SCBN) to the most conserved
orthologs, thereby obtaining a scaling factor that minimizes the false discovery rate of differentially
expressed genes (Zhou et al., 2019). Applying SCBN to the 109 most conserved orthologs between 4.
thaliana and A. hierochuntica (Supplemental Table S20) and using the scaling factor to correct
normalized gene counts, we obtained similar comparative basal expression results as observed with
DeSeq2 (Fig. 8B). Finally, QPCR analysis confirmed the RNA-seq fold-change gene expression
patterns of four selected A. thaliana and A. hierochuntica genes (Fig. 8C). These genes included 4KS2,
a gene found to be positively selected in the “all extremophyte species” run (Table 1), two genes

involved in abiotic stress responses (ELIPI and HSP17.61I; Sun et al., 2001; Rizza et al., 2011), and an
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A. thaliana-specific and an 4. hierochuntica-specific Taxonomically Restricted Gene (4. hierochuntica
ID: TRINITY DN7044 c0 g2 il; AGIL: At2g07719; Supplemental Methods). Additionally, we
selected an ethylene signaling gene CPR5 (Wang et al., 2017) that exhibited lower basal expression in
A. hierochuntica than in A. thaliana in the RNA-seq analysis and confirmed this result via absolute

QPCR (Fig. 8D).

Discussion
Positively selected A. hierochuntica genes suggest adaptive evolution for an opportunistic desert
lifestyle

In this study, we sequenced and assembled a high-quality reference transcriptome of the
Brassica lineage 111 desert plant 4. hierochuntica and then constructed a phylogenomic tree from 16
Brassicaceae. Using this phylogeny, we pinpointed a number of positively selected genes specifically
in A. hierochuntica indicating adaptation to the desert environment (Table 1; Fig. 3B). Intriguingly,
these genes function in A. thaliana in the transition from vegetative to reproductive growth and
meristem development: (i) VERNALIZATION INDEPENDENCE VIP5 encodes a protein that is part of
the RNA polymerase Il-associated factor 1 (PAFlc) complex, which is involved in enhancing
transcription of the floral repressor FLOWERING LOCUS C (FLC) gene and other MADS
AFFECTING FLOWERING (MAF) gene family members, via histone modifications (Oh et al., 2004;
Yu and Michaels, 2010; Crevillen and Dean, 2011; Lu et al., 2017). A. thaliana vip5 mutants exhibit
early flowering and floral abnormalities such as incomplete sepal closure of the developing flower bud,
and diminished petal development; (ii)) FLOWERING BHLH 2 (FBH?2) is a transcriptional activator of
the CONSTANS gene, a central regulator of photoperiodic flowering that is essential for proper
measurement of day-length. Overexpression of FBH?2 causes early flowering regardless of photoperiod
(Ito et al., 2012); (ii1) FASCIATAI (FASI) encodes a subunit of the CHROMATIN ASSEMBLY
FACTOR-1 (CAF-1) that functions as a histone chaperone to deposit histones H3/H4 onto DNA at the
replication fork and appears to function in the organization of shoot and root apical meristems, and in
cellular differentiation (Kaya et al., 2001; Exner et al., 2006). Mutations in fas/ cause stem fasciation,
abnormal leaf and flower morphology, and defects in the organization of apical meristems (Leyser and
Furner, 1992; Kaya et al., 2001). Interestingly, the Cafl complex interacts with ASF1 in humans,
Drosophila and yeast, and they have overlapping functions in A. thaliana (Sharp et al., 2001; Tyler et
al., 2001; Mello et al., 2002; Zhu et al., 2011). ASF1b was identified as a gene undergoing positive
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selection in the extremophytes and both ASF1b and FASI also function in DNA repair (Hisanaga et al.,
2013; Lario et al., 2013); (iv) CYP71 encodes a cyclophilin, that plays a critical role in epigenetic
silencing of homeotic genes that regulate meristem development, including the floral meristem (Li et
al., 2007). Furthermore, CYP71 physically interacts with FAS1 and is required for targeting FAS1 to
the KNATI locus (Li and Luan, 2011). KNAT1 is a KNOX family homeodomain protein that is
essential for maintenance of apical meristems (Hake et al., 2004), and FASI is probably involved in
silencing the KNATI gene. In addition, CYP71 interacts with LIKE HETEROCHROMATIN
PROTEIN 1 (LHP1), which is associated with repressive H3K27 methylation deposited by Polycomb
repressor complex, PRC2 (Li and Luan, 2011; Feng and Lu, 2017). Mutations in the LHP1 gene cause
strong early flowering and LHP1 is involved in repressing expression of flowering time and floral
identity genes (Gaudin et al., 2001; Kotake et al., 2003); (v) SUPPRESSOR OF BRII (SB11)/LEUCINE
CARBOXYLMETHYLTRANSFERASE (LCMTI) encodes a protein that methylates protein phosphatase
A (PP2A), which then dephosphorylates components of the brassinosteroid signaling pathway (Di
Rubbo et al., 2011; Wu et al., 2011). The sbil/lcmt mutant is early flowering in both long and short
days and exhibits downregulation of FLC expression. Furthermore, genes that are significantly
differentially regulated between WT and the shil/lcmt mutant are enriched in stress response genes
(Creighton et al., 2017), consistent with the role of brassinosteroids in flowering and stress responses
(Li and He, 2010; Nolan et al., 2020).

The finding that genes involved in regulating flowering and meristem development were only
under positive selection in A. hierochuntica is consistent with the very different developmental
program in the desert relative compared to many other Brassicaceae including the additional four
extremophyte plants included in our analysis. A. hierochuntica does not display the distinctive
transition from the vegetative rosette leaf stage to the reproductive bolting stage, which is accelerated
in long-day conditions (Pouteau and Albertini, 2009; Song et al., 2013). Instead, regardless of
photoperiod, the shoot repeatedly bifurcates from the four true-leaf stage onwards, developing an
axillary inflorescence at each branch point thereby leading to a multi-branched shoot morphology (Fig.
1B, panel (1); Eshel et al., 2017). Most interestingly, mutation in the 4. thaliana FASI gene (whose 4.
hierochuntica ortholog is under positive selection) can induce stem bifurcation and enlargement
(Leyser and Furner, 1992). The shoot bifurcation, multi-branch, photoperiod-insensitive, early
flowering traits could maximize fitness in the unpredictable desert environment where plants need to
ensure development of seeds but might not survive until a critical day length induces flowering. This

idea is supported by our observations of 4. hierochuntica populations in the Dead Sea valley of Israel,
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where tiny dead plants that have still managed to produce a few seeds can be seen alongside much

larger plants presumably from a year with higher rainfall (Fig. 1B).

Brassicaceae extremophytes possess common positively selected genes that are indicative of
adaptation to harsh environments

Extremophytes are present in all three Brassicaceae lineages (Fig. 2A; Franzke et al., 2011)
illustrating that adaptation to stressful habitats has occurred independently, multiple times within the
Brassicaceae and, in agreement with previous reports, is indicative of convergent evolution
(Kazachkova et al.,, 2018; Birkeland et al., 2020). Using the external branches of the five
extremophytes in our phylogeny as the foreground, we identified common positively selected genes
that could contribute to plant adaptation to extreme environments. Other studies have detected
signatures of positive selection in genes that function in stress tolerance (Xia et al., 2010; Fischer et al,
2011; Mboup et al., 2012; Vigeland et al., 2013; Yang et al., 2014; Bondel et al., 2018; Birkeland et al.,
2020; Liu et al., 2020), and with respect to Brassicaceae extremophytes, three reports are noteworthy.
Birkeland et al. (2020) found evidence for positive selection of stress-associated genes in three Arctic
species. Most interestingly, they discovered little overlap of positively selected genes between the
extremophytes but considerable overlap in functional pathways, similar to our findings with the
extremophyte plants in the current study (Figs. 2B and 2C; Supplemental Fig. S2). They suggested that
these data do not support adaptive molecular convergence but rather indicate evolution of similar
adaptations via distinct evolutionary pathways. In the second report, positive selection was detected in
the tandem duplicates of the COR15 gene in species of the highly freezing-tolerant alpine/arctic Draba
genus (Azocar et al., 1988; Koch and Al-Shehbaz, 2002) suggesting neo-functionalization (Zhou et al.,
2009). CORI5 genes function in freezing tolerance by stabilizing cell membranes (Thalhammer and
Hincha, 2014). In the third study, the gene encoding the E. salsugineum Na'/H" antiporter gene, SALT
OVERLY SENSITIVE 1 (SOSI), was found to have evolved under positive selection (Jarvis et al.,
2014). EsSOSI1 is an essential component of E. salsugineum halophytism (Oh et al., 2007; Oh et al.,
2009), and confers greater tolerance to a salt-sensitive yeast strain than its orthologs from 4. thaliana or
S. parvula partly due to a single amino acid change in the putative autoinhibitory domain. This finding
coupled with differential regulation of the AtSOSI and EsSOSI genes (Taji et al., 2004; Kant et al.,
2006; Oh et al., 2010; Taji et al., 2010; Dassanayake et al., 2011b) suggests that EsSOS/ has undergone
positive selection to enhance its ancestral functional role in Na' exclusion thereby facilitating

adaptation of the extremophyte to saline habitats.
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In our current study, we identified a set of 194 genes under positive selection across the five
extremophyte species. Among these genes, we identified two genes encoding ABA-responsive
transcription factors (TFs), AKS2 and MYB52 (Table 1), which, along with other studies showing
positive selection in ABA biosynthesis and signaling genes in wild tomato populations from dry
environments, illustrates the importance of the ABA response networks in adaptive evolution of stress
tolerance (Xia et al., 2010; Fischer et al, 2011; Bondel et al., 2018). Of particular interest was the gene
encoding the bHLH TF, ABA-RESPONSIVE KINASE SUBSTRATE (AKS) 2. This gene is a member
of a family of three TFs in A. thaliana that activate transcription of K* channels in stomata guard cells
thereby enhancing stomatal opening (Takahashi et al., 2013). ABA-dependent phosphorylation of
AKS?2 represses its activity contributing to stomata closure (Takahashi et al., 2013; Bu et al., 2016). It
is intriguing that a regulator of stomatal aperture has undergone positive selection in A. hierochuntica
because alterations in stomatal aperture is a crucial early response to multiple abiotic stresses, although
specific stresses lead to distinct stomatal responses. For instance, in most plant species including 4.
thaliana, drought and salt stresses cause stomatal closure in order to prevent water loss albeit at the
expense of CO; availability for carbon fixation (Brugnoli and Lauteri, 1991; Lawlor, 1995; Chaves et
al., 2009; Stepien and Johnson, 2009). On the other hand, heat shock can cause stomatal opening
presumably for evaporative cooling while prolonged, non-lethal warming causes stomatal closure to
prevent water loss (Devireddy et al., 2020; Wang et al., 2020a). A. thaliana and E. salsugineum exhibit
differential regulation of stomatal aperture whereby salt stress causes stomatal closure and inhibition of
net CO; assimilation in the glycophyte but only marginal reduction in stomatal aperture and net CO,
assimilation in the halophyte, even under extreme salt concentrations (Stepien and Johnson, 2009).
Thus, positive selection of non-synonymous amino acid changes in the coding region of AKS2, plus
differences in heat-mediated regulation of 4. thaliana and A. hierochuntica AKS?2 expression (Fig. 3A)
suggest that this gene may have been naturally selected for survival in extreme environments.

We also identified the WRKY75 as a positively selected gene in the extremophytes (Table 1). In
A. thaliana, the WRKY75 TF is involved in the response to inorganic phosphate (P1) starvation by
regulating the expression of several key phosphate starvation-induced genes (Devaiah et al., 2007).
Extremophytes often exist on soils with low Pi availability due to patchy distribution, low soil
concentrations or high alkalinity, which reduces phosphorus solubility (Thompson et al., 2006;
Holzapfel, 2008; Guevara et al., 2012). For instance, the E. salsugineum Yukon ecotype grows in the
semi-arid, sub-arctic, saline and highly alkaline soils of the Yukon region in Canada (Guevara et al.,

2012). Plants of this ecotype are highly tolerant to Pi deficiency compared to A. thaliana, and this
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tolerance is associated with higher basal expression of several genes involved in the response to Pi
starvation including WRKY75 (Velasco et al., 2016). We previously showed (Eshel et al., 2017), that
both E. salsugineum and A. hierochuntica exhibit significantly higher basal levels of Pi than A4. thaliana
consistent with several reports on E. salsugineum Shandong and Yukon ecotypes (Gong et al., 2005;
Kazachkova et al., 2013; Velasco et al., 2016). The higher Pi accumulation in these extremophytes,
positive selection across the five extremophyte plants, and differential expression of A. thaliana and E.
salsugineum WRKY75 suggests that selection for more efficient extraction of soil Pi is a common
feature of evolution of stress tolerance particularly in extreme environments.

In addition to low soil nutrients, plants can be exposed to other abiotic stresses including
temperature extremes and UV-B radiation that cause damage to DNA, proteins and lipids both directly,
and via ROS production. UV-B exposure causes direct DNA damage by inducing the formation of
cyclobutane pyrimidine dimers (CPDs) (Kimura and Sakaguchi, 2006). If CPDs accumulate they can
block processes such as transcription and replication, and can eventually cause cell death.
PHOTOLYASE1/UV-RESISTANCE2 (PHRI/UVR2) specifically repairs UV-B-induced CPDs in a
process known as photoreactivation (Ahmad et al., 1997; Landry et al., 1997; Jiang et al., 1997).
Furthermore, CPD repair by PHRI/UVR2 is the major mechanism maintaining transgenerational
genome stability in 4. thaliana exposed to continuous UV-B (Willing et al., 2016). We found that
PHRI1/UVR2 has undergone positive selection in the extremophyte plants, as has ANTI-SILENCING
FUNCTION 1b (ASF1B), an ASF1 histone H3/H4 chaperone that is also important for the repair of
UV-B-induced DNA damage, and functions in the transcription of genes involved in basal and acquired
thermotolerance (Table 1; Lario et al., 2013; Nie et al., 2014; Weng et al., 2014). PHRI/UVR?2 also
displays higher basal expression in A. hierochuntica compared to A. thaliana, and while heat leads to
downregulation of the gene in both species, expression is reduced to a lesser extent in the
extremophyte. (Fig. 3A). ASFIB, on the other hand exhibits similar expression in both species.

Taken together, our positive selection analysis suggests common selective pressures in
extremophyte plants that target key components in stomatal opening, in nutrient acquisition, and in
UV-B induced DNA repair. On the other hand, we found that A. thaliana positively selected genes
were principally involved in defense against pathogens (Table 1). This finding is consistent with the
discovery that A. thaliana orthologs exhibiting higher basal expression compared to S. parvula are
enriched in pathogen-defense genes whereas S. parvula orthologs displaying higher basal expression
are enriched in genes involved in ion transport (Oh et al., 2014). Thus, our positive selection analysis

coupled with the findings of Oh et al (2014) support the hypothesis that because A. thaliana evolved in

16


https://doi.org/10.1101/2021.05.23.445339
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.23.445339; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

temperate regions where pathogen density is relatively high compared to extremophyte habitats such as

salt flats or deserts, it encountered greater evolutionary pressures for adaptation to biotic stresses.

The A. hierochuntica transcriptome does not exist in a heat stress-ready state and is more
reactive to heat stress than A. thaliana

The distinction between A. hierochuntica and the other extremophyte relatives was further
illustrated by our finding that the 4. hierochuntica transcriptome behaves very differently in response
to stress. The extent of transcriptomic, proteomic and metabolic adjustment of the halophytes E.
salsugineum and S. parvula in response to ionic stress is much lower than that of A. thaliana (Taji et
al., 2004; Gong et al., 2005; Lugan et al., 2010; Pang et al., 2010; Oh et al., 2014; Vera-Estrella et al.,
2014; Kazachkova et al., 2018; Wang et al., 2021). In contrast, A. thaliana and A. hierochuntica exhibit
similar transcriptome adjustment in response to heat stress and during recovery (Figs. 4E and 4F). The
lower transcriptomic and metabolic adjustment of the halophytic relatives is reflected in their stress-
ready state in stress-neutral conditions whereby transcript and metabolite accumulation that is induced
or repressed in A. thaliana in response to ionic stress, exhibits constitutively high or low accumulation,
respectively, in the halophytes (Gong et al., 2005; Lugan et al., 2010; Kazachkova et al., 2013; Oh et
al., 2014; Kazachkova et al., 2018; Wang et al., 2021). For instance, S. parvula possesses a pre-boron
stress-adapted genome with over 1,000 stress-ready orthologs whose basal expression levels match the
post-stress expression levels observed in A. thaliana (Wang et al., 2021). No boron stress-ready A.
thaliana orthologs were detected and there were almost no orthologs showing a shared response to
excess boron.

In contrast to the halophytic relatives, the great majority of A. hierochuntica genes exhibited a
shared response mode with their A. thaliana orthologs (Fig 5SA). Moreover, while we could detect some
heat stress-ready 4. hierochuntica genes, we also observed stress-ready A. thaliana genes. On the other
hand, we discerned almost universal lower basal and higher fold-change gene expression in A.
hierochuntica compared to 4. thaliana. This was observed whether we compared global transcriptomes
(Figs. 5B to 5D), shared/unique-expressed specific functional categories of orthologs (Fig. 6) or early
heat response module-specific genes (Fig. 7).

Taking all our results together, the similar transcriptome adjustment to heat stress and recovery
between heat stress-sensitive 4. thaliana and the heat-tolerant extremophyte, as well as the analyses of
transcriptome expression modes, support our contention that the 4. hierochuntica transcriptome does

not exist in a heat stress-ready state in contrast to its halophytic relatives. However, the A.

17


https://doi.org/10.1101/2021.05.23.445339
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.23.445339; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

hierochuntica transcriptome is more reactive (shows greater fold-change in expression) to heat stress
than A4. thaliana. One possible reason for this difference in the transcriptome responses of A.
hierochuntica vs. its halophytic relatives may be the native environment of each species. A.
hierochuntica survives and thrives in an environment with seasonal temperatures that range from -3.6
to 46.8 °C (Eshel et al, 2017), with diurnal maximum variations exceeding 18 °C (Israeli
Meteorological Services). On the other hand, E. salsugineum can be found in locations such as China’s
Shandong peninsula where temperatures range from -5 °C in the winter to 32 °C in the summer and
with diurnal temperature differences rarely exceeding 10 °C (Guedes et al., 2015). Furthermore, diurnal
temperature differences in the cold spring growing period of E. salsugineum are likely to be much more
moderate than those experienced by A. hierochuntica during the warm Negev desert spring. Under such
potentially extreme diurnal temperature variations, 4. hierochuntica may possess a lower basal gene
expression to allow for a greater relative transcriptome response during diurnal temperature shifts.
Moreover, lower basal expression levels would require less energy to be expended in the low nutrient
desert environment. Another possible difference between 4. hierochuntica and its halophytic relatives
relates to the type of stress challenge each species faces. E. salsugineum and S. parvula habitats possess
levels of ions such as Na" and B*" that are toxic to the majority of plant species and the two halophytes
are constantly exposed to ionic stress throughout their life cycle. This situation might have led to the
evolution of a stress-associated transcriptome that is continuously “switched-on”. Conversely, 4.
hierochuntica is generally exposed to heat stress later in its life cycle and on a diurnal basis (unless
there is a hamsin). Thus, evolution of a flexible, energy-conserving transcriptome that confers the
ability to quickly react to the extreme daytime heat could be advantageous for adaptation to a desert

environment.

Materials and methods
Plant material and growth conditions

F4 generation A. hierochuntica seeds descended from a single seed from plants originally
collected in the Negev Desert (Nahal Hayun, 30.191424N and 35.009926E), Israel, were used in this
study.

Seeds for plants used to extract RNA for sequencing of the de novo reference transcriptome
were germinated and grown on nutrient agar plates for 5 d in the growth room (16 h light (150 pmol
photons m™ s7')/8 h dark; 22 °C), as described in Eshel et al. (2017). Plant material was prepared for

sequencing on two platforms: (i) For Illumina sequencing, plate-grown seedlings were harvested and
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snap-frozen in liquid nitrogen; (ii) For Roche 454 sequencing, plate-grown 5 day-old seedlings were
transferred to pots containing autoclaved A. thaliana soil growth medium (Weizmann Institute of
Science), irrigated to field capacity with 1 g I 20-20-20 NPK + micronutrients solution (Haifa
Chemicals), and kept in the growth room until plants developed four true fully-expanded leaves. These
plants were then treated with the following conditions: (a) Control (field-capacity, 22 °C); (b) Drought
stress (25% field capacity for 1 week); (c) Salt shock (200 mM NacCl in the fertilizer solution),
harvested after 1, 3 and 6 h; (d) Heat shock (45 °C), harvested after 0.5, 1, and 2 h. Roots, shoots and
flowers (where available) from these soil-grown plants, were harvested separately and snap-frozen in
liquid nitrogen. In addition to these soil-grown samples, mature seeds, from the same F, generation
seed stock, were imbibed in H,O for 8.5 h, and then snap-frozen in liquid nitrogen.

For RNA-seq heat stress experiments, 4. thaliana and A. hierochuntica were germinated and
grown on nutrient agar plates according to Eshel et al. (2017). Seedlings were grown on plates until
cotyledons were fully expanded before transfer to 7 cm x 7 cm x 8 cm pots containing Arabidopsis
nitrogen-less soil (Weizmann Institute of Science; 70% fine peat [1-10mm], 30% perlite 4) irrigated to
field capacity with a custom-made fertilizer solution (5 mM KNOs;, 2 mM MgSOy4, 1 mM CaCl, x
2H,0, 10 mM KH,PO4 [pH 6.0, adjusted with KOH] plus MS micronutrients (Murashige and Skoog,
1962). Flats containing pots were placed in the growth room under the same conditions as for the plate
experiments. Flats were covered with plastic domes for 1 to 2 d, which were then gradually removed to
allow seedlings to harden. Each day, pots were shuffled so that all plants received equal illumination
and to remove shelf position effects. Plants were irrigated alternatively every 3 d with either fertilizer
solution or water in order to maintain constant nutrient concentrations. After 6 d in the growth room,
uniform plants were transferred to two growth chambers (KBWF 720, BINDER GmbH, Tuttlingen,
Germany) (16 h light/8 h dark; 23 °C; 60% relative humidity) for heat treatments. The light/dark
transitions at the beginning and end of the day comprised 0.5 h at 100 umol photons m™ s and 0.5 h at
150 pmol photons m™ s™' to mimic sunrise and sunset. Light intensity for the remaining 14 h was 250
umol m™ s'. Plants were allowed to acclimate for 4 d and were moved randomly every day between
the chambers, to avoid chamber effects. At day 10 after transfer to soil, (4. hierochuntica plants had
two true leaves and A. thaliana had six true leaves), heat treatment was initiated in one chamber,
keeping the other chamber as the control (23 °C). The heat treatment included 3 d at 40/25 °C,
day/night temperatures, followed by two days of recovery at control conditions (Fig. 4A). Similar to the
1 h light transition, the temperature was also gradually increased/decreased for 1 h, between the

light/dark states, to reach the appropriate temperatures. Plants from both chambers were harvested at
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eight time points (Fig. 4A), either in the morning (1.5 h after the onset of the light/heat period) or at
midday (7 h after the onset of the light/heat period). For each condition, three biological replicates

comprising 6 pooled plants per replicate (27 samples per species) were used for downstream analyses.

Phylogenomics and positive selection analysis

To identify positively selected genes, which are unique to A. hierochuntica or common to
extremophyte Brassicaceae species, we used coding sequences of the A. hierochuntica reference
transcriptome and 16 sequenced Brassicaceae species (Supplementary Table S2) into the automated
Agalma phylogenomics pipeline (Dunn et al., 2013).

The Agalma pipeline identified orthologous genes among these species by: (i) Identifying
homologous genes among all input sequences from all the species using an all-by-all TBLASTX search
followed by a Markov Clustering Algorithm (MCL) tool (Enright et al., 2002); (ii) For each homolog
group, a peptide multiple sequence alignment (MSA) is produced using MAFFT with the E-INS-i
algorithm (Katoh et al., 2005); (ii1)) The MSA is further used to build a maximum likelihood (ML)
phylogenetic tree with RAXML v8.2.3 (Stamatakis, 2014). (iv) The homolog group tree is further
pruned into maximally inclusive subtrees to define ortholog groups. MSAs of 13,806 ortholog groups
with a sequence representation in at least 4 taxa were concatenated into a supermatrix for ML species
tree search, using RAXML (with the PROTGAMMAWAG model of evolution, and 100 rapid bootstrap
searches) under the WAG rate matrix (Whelan and Goldman, 2001), with gamma-distributed among-
site rate variation.

To detect positive selection in the five extremophyte species, ortholog groups with sequence
representation in at least 2 extremophytes, were selected to ensure sufficient statistical power
(Anisimova et al.,, 2001). For each ortholog group, the peptide MSA was converted into the
corresponding codon alignment using the pal2nal.pl program (Suyama et al., 2006), and the ML species
tree was pruned using PHAST tree doctor (Hubisz et al., 2011), to keep only sequence-represented
taxa. Codon alignments together with pruned trees were further analyzed with the PAML v4.8,
CODEML program (Yang, 1997; Yang, 2007), using the Branch-Site model. To test for positive
selection, the tested branch(s) were labeled (foreground), and the log likelihood of two models (M1a
and M2a), were calculated for each ortholog group. The difference between the two models is that in
the M1a (null) model, the non-synonymous to synonymous rate ratio (dN/dS) is fixed to 1 (fix_omega
= 1 and omega = 1), indicative of neutral selection, while in the M2a (alternative) model, the initial

dN/dS ratio is set to 1, and is further estimated by the model (fix omega = 0 and omega = 1). A
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Likelihood Ratio Test was performed (with X* distribution), to identify genes with log likelihood
values significantly different between the two models, indicative of deviation from neutral selection.
Ortholog groups with portion of sites in the foreground branches, that had an estimated dN/dS ratio
greater than 1, were considered under positive selection. To account for multiplicity, a Benjamini—
Yekutieli false discovery rate (FDR) correction (Benjamini and Yekutieli, 2001) was applied using the
“qvalue” R package, with a g-value < 0.05 cutoff for a gene to be considered as positively selected.
Sites under positive selection were identified using the empirical Bayes approach with a posterior
probability p > 0.95.

The above procedure was repeated to identify positive selected genes in A. hierochuntica, and
in the other extremophyte species. For each analysis, different branches on the tree were tested (labeled
as foreground) compared with all other branches (background): (i) labeling the external branches of all
five extremophyte species as the foreground (4,723 ortholog groups); (ii) labeling the A. hierochuntica
external branch as the foreground (3,093 ortholog groups); (iii) labeling the E. salsugineum external
branch as the foreground (4,457 ortholog groups); (iv) labeling the S. parvula external branch as the
foreground (4,369 ortholog groups); and (v) labeling the A. thaliana external branch as the foreground
(5,513 ortholog groups). A. thaliana was considered as a control/comparator species sensitive to abiotic
stresses (Kazachkova et al., 2018). The Venn diagram comparing positive selected genes (Fig. 2B) was

generated using an online tool: http://bioinformatics.psb.ugent.be/webtools/Venn/).

To further assess the functionality of the positively selected genes, Gene Ontology (GO) terms
were assigned to each ortholog group based on 4. thaliana GO annotation. In cases where an ortholog
group did not contain an A. thaliana ortholog, the closest 4. thaliana homolog (best BLASTP hit) was
used. Significant positively selected genes were further tested for enriched GO terms (Fisher’s exact
test, with a g-value < 0.05 cutoff) using the online AgriGO tool (Du et al, 2010;

http://bioinfo.cau.edu.cn/agriGO/analysis.php), where the A. thaliana genome served as the

background. Enriched GO terms with more than 2,000 genes in the A. thaliana genome were excluded,
as these are broad and less informative terms. In addition, due to the hierarchical structure of the Gene
Ontology, enriched GO terms often tend to be highly redundant. Therefore, GO terms that share the
majority (>50%) of genes among them, were further clustered using the MCL algorithm (Wang et al.,
2020b), with an inflation value of 3, and the GO term with the lowest enrichment g-value per cluster

was chosen as a representative.

Reference transcriptome and RNA-seq
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For sequencing the A. hierochuntica reference transcriptome, total RNA was extracted from 100
mg of ground tissue using the RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA was further treated
with DNase I digestion. For RNA-seq, total RNA was extracted from 50 mg of ground tissue from A.
thaliana or A. hierochuntica plants using the Plant/Fungi Total RNA Purification Kit (Norgen Biotek
Corp. Ontario, Canada). RNA integrity, purity and concentrations were determined by NanoDrop
spectrophotometer (NanoDrop ND-1000) and by denaturing formaldehyde agarose gel electrophoresis.
Equal amounts of RNA from all samples designated for 454 sequencing of a normalized cDNA library
were pooled into one sample, and dried on GenTegra™ RNA transport tubes (Integen X, Pleasanton,
CA, USA). Samples for reference transcriptome Illumina sequencing were sent to the Glasgow
Polyomics Facility at the University of Glasgow, UK, while the 454 samples were sent to GenePool
genomics facility at the University of Edinburgh, UK. The reference transcriptome was assembled
using a hybrid assembly approach that utilized both Illumina and 454 reads, and was annotated based
on public databases (Supplemental Methods).

Samples for RNA-seq were delivered to the Roy J. Carver Biotechnology Center at the
University of Illinois, Urbana-Champaign, USA. Libraries were prepared with the Illumina TruSeq
Stranded mRNA Sample Prep Kit (Illumina) and 100 bp HiSeq2500 Illumina single-end reads were de
novo assembled using the Trinity assembler (v 2.1.1, Grabherr et al., 2011). DEGs were identified
using DESeq2 (Love et al.,, 2014). For full details of sequencing, read yields, quality control,
transcriptome assembly, annotation, normalized gene expression estimations, and differential
expression analysis, see Supplemental Methods. For raw read counts and DEGs identified in each
species and for various functional groups, see Supplemental Table S19. Reference transcriptome and
RNA-seq reads as well as the full assembled transcriptome are available via the NCBI SRA and TSA
databases under BioProject PRINA731383.

To assign ortholog pairs to the five idealized modes of expression in response to heat stress
(Fig. 5A), Weighted Gene Co-expression Network Analysis (WGCNA) was employed to cluster
normalized and quantified expression data into modules containing genes with similar expression
profiles (Supplemental Fig. S5; Supplemental Table S13). DESeq2 was then used to call statistically
significant DEGs. For direct comparison of absolute orthologous transcript levels, TPM values of
minimum or maximum expression were analyzed for statistically significant difference (p < 0.05) with

a Student #-test.

Validation of RNA-seq data
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Scale-based normalization (SCBN)

To validate the differential gene expression analysis performed with DeSeq2, we re-normalized
our RNA-seq read count data (normalized to transcript length) using the Scale-Based Normalization
(SCBN) method that aids in removing systematic variation between different species (Zhou et al.
2019), For the first step - pinpointing highly conserved genes - we utilized the 17,962 A. thaliana and
A. hierochuntica orthologous genes identified using the Agalma phylogenomics pipeline (see below
“Phylogenomics and positive selection analysis”). Applying BLASTn (ver, 2.10.1) software revealed
109 highly conserved orthologs with an E-value < le-'", query coverage of > 98%, and identical
matches of > 99%. The SCBN R package
(http://www.bioconductor.org/packages/devel/bioc/html/SCBN.html) was then used on the 109 highly

conserved genes to obtain a scaling factor of 0.9223461, which it then applied to the 17,962 orthologs
to call 12,808 common differentially expressed genes (p < le-"°) between the two species. To generate
an approximate corrected gene count, the scaling factor was applied to each individual gene and the

corrected average and median basal (control) expression is depicted in Fig. 9B.

Real-time QPCR analysis

Total RNA was extracted from whole shoots with TRIzol (38% Phenol (w/v), 0.8 M guanidine
thiocyanate, 0.4 M ammonium thiocyanate, 0.1 M sodium acetate pH 5, 5% glycerol (v/v)) according
to Rio et al. (2010). To remove residual genomic DNA, 7 pg of total RNA was treated with RNase-free
PerfeCta DNase I (Quanta Biosciences, Inc., Gaithersburg, MD, USA) according to the manufacturer’s
instructions, and cDNA was synthesized from 1 pg of total RNA using the qScript' ™ ¢cDNA Synthesis
Kit (Quanta Biosciences). For amplification of PCR products, primers were designed using the NCBI
Primer-BLAST tool (Ye et al., 2012), and analyzed for any secondary structure with the IDT
OligoAnalyzer™ Tool (Supplementary Table S21). QPCR was performed with the ABI PRISM 7500
Sequence Detection System (Applied Biosystems). Each reaction contained 5 pl Applied Biosystems™
Power SYBR® Green PCR Master Mix (Thermo Fisher Scientific Inc., Waltham, MA, USA), 40 ng
cDNA, and 300 nM of each gene-specific primer. The QPCR amplification protocol was: 95 °C for 60
s, 40 cycles of 95 °C for 5 s (denaturation) and 60 °C for 30 s (annealing/extension). Data were
analyzed using the SDS 2.3 software (Applied Biosystems). To check the specificity of annealing of
the primers, dissociation kinetics was performed at the end of each PCR run. All reactions were
performed in triplicates. Relative quantification of target genes was calculated using the 27241 method

(Livak and Schmittgen, 2001), using A. thaliana elF4A1 and the A. hierochuntica elF4A41 ortholog as

23


https://doi.org/10.1101/2021.05.23.445339
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.23.445339; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

internal references. To ensure the validity of the 2*“T method, standard curves of 2-fold serial
dilutions of cDNA were created and amplification of efficiencies of target and reference gene were
shown to be approximately equal. For absolute quantification of basal expression, QPCR products were
gel-purified (Gel/PCR DNA Fragments Extraction Kit [Geneaid Biotech Ltd, New Tapei City,
Taiwan]), and quantified with a Nanodrop spectrophotometer. Fivefold serial dilutions of each PCR
product were used to create a standard curve for determination of transcript copy number. As a loading
control, the absolute transcript copy number of e/F44Iwas also calculated and normalized to the
highest e/FF4A4 1level, which was assigned a value of 1. The target gene transcript copy number was then

adjusted for loading differences by dividing by the normalized elF441 level.

Supplemental Data

Supplemental Figure S1. Transcriptome sequencing and hybrid assembly workflow.

Supplemental Figure S2. GO term enrichment analysis of positively selected genes.

Supplemental Figure S3. An example of a three-day heat wave event in the Dead Sea valley during
April 2008.

Supplemental Figure S4. Basal (control) expression of 15 orthologous A. thaliana and A.
hierochuntica housekeeping genes.

Supplemental Figure SS. Clustering dendrogram of module eigenvalues for A. thaliana and A.
hierochuntica transcriptome profiles under and heat stress conditions.

Supplemental Table S1. 4. hierochuntica transcriptome functional annotation.

Supplemental Table S2. Species included in the custom Brassicaceae CDS database in the
Brassicaceae phylogenomic analysis.

Supplemental Table S3. CODEML positive selected genes (¢<0.05) in the all extremophyte species
run with the branch-site model.

Supplemental Table S4. CODEML positive selected genes (¢<0.05) in A. hierochuntica run with the
branch-site model.

Supplemental Table S5. CODEML positive selected genes (¢<0.05) in E. salsugineum run with the
branch-site model.

Supplemental Table S6. CODEML positive selected genes (¢<0.05) in S. parvula run with the branch-

site model.

24


https://doi.org/10.1101/2021.05.23.445339
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.23.445339; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplemental Table S7. CODEML positive selected genes (¢<0.05) in A. thaliana run with the
branch-site model.

Supplemental Table S8. GO terms over[Jrepresented in the all extremophyte species 194 positive
selected genes.

Supplemental Table S9. GO terms overl Irepresented in 4. hierochuntica 120 positive selected genes.
Supplemental Table S10. GO terms over' 'represented in E. salsugineum 131 positive selected genes.
Supplemental Table S11. GO terms over represented in S. parvula 99 positive selected genes.
Supplemental Table S12. GO terms over[represented in A. thaliana 112 positive selected genes.
Supplemental Table S13. Assignment of ortholog pairs modes of expression (log, fold-change data
and WGCNA modules).

Supplemental Table S14. Early heat response modules (rlog expression data).

Supplemental Table S15. A. thaliana early heat module (Thistlel) gene list.

Supplemental Table S16. A. thaliana late heat module (Ivory) gene list.

Supplemental Table S17. A. hierochuntica early heat module (Black) gene list.

Supplemental Table S18. A. hierochuntica early heat module (Floralwhite) gene list.

Supplemental Table S19. A. thaliana and A. hierochuntica raw read data plus GO-terms, and DEGs.
Supplemental Table S20. 109 most conserved orthologs (> 98% query coverage, > 99% nucleotide
identity, > BLAST value of e-100) between A. thaliana and A. hierochuntica.

Supplemental Table S21. PCR primers used in this study.

Supplemental Methods.
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Figure legends

Figure 1. Geographic distribution of A. hierochuntica and de-novo reference transcriptome. (A),
Geographic distribution data are based on Anastatica L. in the Global Biodiversity Information Facility
database (GBIF  Secretariat (2019). GBIF Backbone Taxonomy. Checklist dataset
https://doi.org/10.15468/390mei accessed via GBIF.org on 2021-03-12). Average temperature data for
this region are from 1948 to Feb 2021 acquired by the Physical Sciences Laboratory (Fan and van den
Dool, 2008); (B), Lab-grown and wild A. hierochuntica plants. Panels: (i) 40 d-old lab-grown plant.
Note the axillary inflorescence at each branch point; (ii) large mature plant from the Ovda valley
population in the Negev desert. Ruler length = 30 cm; (iii) young seedlings growing near the dead
mother plant from a Neot Smadar population in the Negev desert; (iv) a large population of A.
hierochuntica in the Ovda valley with high variation in plant size due to spatial and temporal variations

in water availability; (v) 4. hierochuntica seedling already beginning to flower after producing four
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true leaves (Neot Smadar); (vi) two tiny dead plants (white arrows) from a population near the Dead
Sea valley, having already dispersed their few seeds; (C), Transcript length distribution and A.
hierochuntica assembly descriptive statistics; (D), Assessment of reference transcriptome assembly
completeness using the Benchmarking Universal Single-Copy Orthologs (BUSCO) tool (Simao et al.,
2015). The percentages of 1,375 single-copy genes, conserved among land plants, identified in the A.

hierochuntica transcriptome are shown.

Figure 2. Phylogenomic and comparative positive selection analyses of A. hierochuntica and other
representative Brassicaceae genomes. (A), Maximum-likelihood tree topology based on supermatrix
analysis of 13,806 ortholog groups that contain an amino acid sequence from at least four taxa. All
nodes are 100% supported by 100 rapid bootstrapping repeats. Red asterisks, extremophyte species;
(B), Comparison of the number of positively selected genes among species. Positively selected genes in
each species were identified using the AGALMA-PAML pipeline; (C), Comparative GO-term
enrichment analysis of positively selected genes. The red color intensity corresponds to the number of
positively selected genes assigned with that GO term (the numbers are indicated within the cells). Cells
with a white color correspond to GO terms that were not significantly enriched. The A. thaliana
genome was used as the background gene set and significance (g-value < 0.05) of enrichment was
assessed via the Fisher’s exact test. For the full list of enriched GO-terms see Supplemental Fig. S2 and

Supplemental Tables S8 to S12).

Figure 3. Expression of positively selected genes in response to heat stress. Gene expression was
assessed by RNA-seq transcriptome analysis of 4. thaliana and A. hierochuntica plants grown under
control conditions or exposed to heat stress (see Fig. 4A for experimental design). Expression is
expressed as transcripts per kilobase million (TPM) normalized gene expression. (A), Positively
selected genes from the “all extremophyte species” and A. hierochuntica analyses that are associated
with abiotic stress responses (Table 1); (B), Positively selected A. hierochuntica genes that function in
photoperiodic flowering, regulation of meristems, and control of morphology (Table 1). Data are mean
+ S.D. (n = 3) Asterisks indicate significant difference at p < 0.05 between A. thaliana and A.
hierochuntica at the same time point and condition (Student’s t-test). CM, control morning; CN,
control afternoon; HWI1M, heat wave 1 morning; HWIN, heat wave 1 afternoon; HW2N, heat wave 2

afternoon; HW3N, heat wave 3 afternoon; R1N, day 1 recovery from heat stress afternoon; CR2N,
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control plants parallel to the R2N time point afternoon; R2N, day 2 recovery from heat stress

afternoon; Blue shading, control conditions; Pink shading, heat conditions.

Figure 4. A. thaliana and A. hierochuntica exhibit similar transcriptome adjustment to heat
stress. (A), Experimental design for A. thaliana and A. hierochuntica control and heat stress
conditions. Control plants were harvested the day before the initiation of heat stress and on the last day
of the experiment (indicated by arrows) from a parallel 23 °C control chamber. Red and blue circles
represent samples harvested 1.5 h (morning) or 7 h (afternoon) respectively, after onset of light/heat.
Each circle represents 3 independent experiments, each comprising 6 pooled plants. (B and C), Effect
of heat stress on A4. thaliana and A. hierochuntica leaf area (B) and fresh weight (C). Data are mean =+
S.D. (n = 5) and are representative of two independent experiments. Letters above bars indicate
significant difference at p < 0.05 (Tukey HSD test). Blue shading, control conditions; Pink shading,
heat conditions. (D), Principal component analysis (PCA) of A. thaliana and A. hierochuntica transcript
levels. Each point represents one biological replicate and the three replicates for each condition are
depicted with the same symbol. Symbols are explained in the legend box and refer to the experimental
design shown in (A); (E), Comparison of the abundance of 27,416 and 30,670 protein-coding A.
thaliana and A. hierochuntica transcripts, respectively. Asterisks represent significant difference at p <
0.05 (Wilcoxon rank sum test) between the treatment compared to its respective control; (F), Percent of
A. thaliana and A. hierochuntica differentially expressed genes (DEGs) in response to heat stress. In
total, 17,989 A. thaliana and 19,443 A. hierochuntica genes were differentially expressed in response to
heat stress in at least one condition (Supplemental Table S19), and % DEGs was calculated based on
27,416 and 30,670 protein-coding genes for 4. thaliana and A. hierochuntica, respectively. CM, control
morning; CN, control afternoon; HW1M, heat wave 1 morning; HWIN, heat wave 1 afternoon;
HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; RIN, day 1 recovery from heat stress
afternoon; CR2N, control plants parallel to the R2N time point afternoon; R2N, day 2 recovery from
heat stress afternoon; Union, DEGs identified under either HW1M or HWIN or HW2N or HW3N.

Figure 5. The A. hierochuntica transcriptome does not exist in a stress-ready state but exhibits a
lower basal expression and higher fold-change expression than A. thaliana in response to heat
stress. (A), Modes of expression of ortholog pairs between A. thaliana and A. hierochuntica in
response to heat stress. WGCNA followed by DESeq2 was used to assign orthologs to response modes

(Supplemental Fig. 5; Supplemental Table S13). Differences in absolute transcripts levels were
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identified by comparing TPM minimum or maximum expression values (Student’s z-test, p < 0.05).
The green (A. thaliana) and orange (A. hierochuntica) lines indicate idealized expression patterns of the
ortholog pairs in each species under control and heat conditions, compared to the A. thaliana control
(dashed line). Ctrl, control; + heat, heat stress treatment; SA, genes associated with GO-terms for
abiotic stress (see Supplemental Methods for GO-terms); (B), Transcript abundance of 17,962 A.
thaliana and A. hierochuntica ortholog pairs under control conditions. (C), Combined violin and box
plots showing absolute log, fold-changes of 4. thaliana and A. hierochuntica DEGs in response to heat
stress (Supplemental Table S19). The median log, fold-change is shown as a black square inside each
box plot; (D), Number of DEGs, median log, fold-change values and p-values for panel C. CM, control
morning; CN, control afternoon; CR2N, control plants parallel to the R2N (day 2 recovery from heat
stress afternoon) time point; HWI1M, heat wave 1 morning; HWI1N, heat wave 1 afternoon; HW2N,
heat wave 2 afternoon; HW3N, heat wave 3 afternoon; Union, DEGs identified under either HW1M or
HWIN or HW2N or HW3N. Asterisks represent significant difference at p < 0.05 (Wilcoxon rank sum

test) between A. thaliana and A. hierochuntica.

Figure 6. A. hierochuntica shared- and unique-expressed orthologs in specific functional groups
display lower basal and greater heat-mediated % change in expression than in A. thaliana. All
genes used in this analysis possess a unique AGI code (putative 4. hierochuntica orthologs were
assigned 4. thaliana AGI codes). Genes were chosen based on their association with GO terms for their
respective categories (Supplemental Table S19; Supplemental Methods). Basal expression levels were
based on CM conditions. % change in expression from basal level was calculated based on the
minimum expression levels of downregulated genes (cell cycle, photosynthesis) or maximum
expression levels of upregulated genes (abiotic stress) in response to heat stress over the three heat
waves. Basal and % change in expression values for all genes in each category are in Supplemental
Table S19. For box and whisker plots, the median (thick black line), the mean (cross below the median
line) and interquartile range (IQR) of the observed differences are shown. Whiskers indicate the
maximum/minimum range. Open circles correspond to extreme observations with values >1.5 times the
IQR. Underlined numbers above the circles indicate the number of shared or unique expressed genes.
Letters above the circles indicate significant differences at p < 0.05 (Student’s #-test). Numbers next to

boxes are median values. A.t, Arabidopsis thaliana; A.h, Anastatica hierochuntica.
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Figure 7. The A. hierochuntica early heat response transcriptome displays lower basal and
greater heat-mediated % change in expression than in A. thaliana. (A), Expression profiles of A.
thaliana (left two panels) and A. hierochuntica (right two panels) morning and afternoon early heat
response modules. These modules were assigned standard color-based names by WGCNA (e.g. Thistle,
Ivory etc.; Supplemental Fig. S5; Supplemental Tables S14-S18). Transcript levels were scaled to
visualize patterns of expression. The relative intensity of gene expression (red, upregulated; green,
downregulated) is shown in the scale bar. Gene expression in each condition represents the average of
three biological replicates. The number of genes in each module is shown under the respective module.
CM, control morning; CN, control afternoon; HW1M, heat wave 1 morning; HWIN, heat wave 1
afternoon; HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; R1N, day 1 recovery from
heat stress afternoon; CR2N, control plants parallel to the R2N time point afternoon; R2N, day 2
recovery from heat stress afternoon; Blue lines above heat map, control conditions; Pink lines, heat
conditions. (B), Non-redundant enriched GO-terms in the early heat response morning modules. The
afternoon modules were not enriched in any GO-terms; (C), Expression of orthologs associated with
abiotic stress GO terms (Supplemental Table S19; Supplemental Methods) Underlined numbers above
the circles indicate the number of shared- or unique-expressed genes. Letters above the circles indicate
significant differences at p < 0.05 (Student’s T-test). Numbers next to boxes are median values. 4.,

Arabidopsis thaliana; A.h, Anastatica hierochuntica.

Figure 8. Validation of “between species” RNA-seq analysis. (A), Top 10 expressed transcripts as a
percentage of all expressed transcripts; (B), Comparison of basal expression of control samples using
DeSeq2 rlog normalization or the between species Scale-Based Normalization (SCBN) method (Zhou
et al., 2019). Numbers next to boxes are median values. Letters above the circles indicate significant
differences at p < 0.05 (Wilcoxon rank sum test); (C), Relative QPCR expression of selected A.

2-24C1 method

thaliana and A. hierochuntica genes. Gene expression was determined according to the
(Livak and Schmittgen, 2001) using e/F'4A1 from each species as a reference gene. Expression was
normalized to the expression level in the control morning sample, which was assigned a value of 1.
Data are mean £ SD (rn = 3 to 4) and are representative of two independent experiments; (D),
Comparison of the basal (control) expression levels of CPRS estimated by RNA-seq or absolute QPCR
quantification of transcript copy number. Absolute quantification was performed using a fivefold serial
dilution of gel-purified CPRS and elF441 (reference gene) QPCR products to create a standard curve.

CM, control morning; CN, control afternoon; HW1M, heat wave 1 morning; HWIN, heat wave 1
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afternoon; HW2N, heat wave 2 afternoon; HW3N, heat wave 3 afternoon; RIN, day 1 recovery from
heat stress afternoon; CR2N, control plants parallel to the R2N time point afternoon; R2N, day 2

recovery from heat stress afternoon. Blue shading, control conditions; Pink shading, heat conditions.

A.t, Arabidopsis thaliana; A.h, Anastatica hierochuntica; TPM, transcripts per kilobase million.

Table 1. Positively selected genes”, with a potential role in adaptation to extreme environments.
Selected genes from five CODEML branch-site model analyses are indicated based on their A.
thaliana ortholog identifier. TF, Transcription Factor.

Positively
selected gene

Function

References

All extremophyte species (4. hierochuntica, E. salsugineum, S. parvula, T. arvense and A. halleri)

AKS2 (At1g05805)

ASFIB (At3g38110)

MYBS52 (At1g17950)

PHRI/UVR2
(Atlg12370)

WRKY75 (At5g13080)

TF; facilitates stomatal opening, ABA response

Histone H3/H4 chaperone; repair of UV-B-induced DNA damage, basal

and acquired thermotolerance

TF; ABA response, drought tolerance, involved in the regulation of
secondary wall formation, seed mucilage

Photolyase enzyme; repair of UV-B-induced DNA damage

TF; Pi starvation, root development, GA-mediated flowering, defense
response

Takahashi et. al. 2013

Lario et al., 2013; Nie et
al., 2014; Weng et al.,
2014

Park et al., 2011; Cassan-
Wang et al., 2013; Shi et
al., 2018

Ahmad et al., 1997,
Landry et al., 1997; Jiang
etal., 1997

Devaiah et al., 2007;
Velasco et al., 2016; Guo
et al., 2017; Zhang et al.,
2018b

A. hierochuntica

APX6 (At4g32320)

bZIPI (At5g49450)

CYP71 (At3g44600)

FASI (Atlg65470)

FBH2 (Atdg09180)

SBII/TCMTI
(At1g02100)

VIPS (Atlg61040)

Hydrogen peroxide-scavenging enzyme; alleviation of ROS damage

TF, light and nitrogen sensing, salt and drought tolerance

Cyclophilin; silencing of homeotic genes; meristem development,
interacts with FAS1 and the floral repressor LHP1

Subunit of CaF-1; organization of apical meristems, cellular
differentiation, DNA repair

TF; photoperiodic flowering

Leucine carboxylmethyltransferase; brassinosteroid signaling; flowering,

stress responses

PAF1c component; activates floral repressors and photoperiodic pathway

regulators. regulation of N uptake

46

Chen et al., 2014

Obertello et al., 2010;
Sun et al., 2012; Para et
al., 2014

Lietal., 2007; Li and
Luan, 2011

Leyser & Furner, 1992;
Kaya et al., 2001;
Hisanaga et al., 2013

Ito etal.,, 2012

Di Rubbo et al., 2011;
Wuetal, 2011;
Creighton et al., 2017

Oh et al., 2004; Yu and
Michaels, 2010; Crevillen
& Dean, 2011; Widiez et
al., 2011; Lu et al., 2017
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E. salsugineum

Alkaline ceramidase; sphingolipid homeostasis, disease resistance, salt

ATCES1/ACER
tolerance

(At4g22330)
GRXS13 (At1g03850) Glutaredoxin; Chilling and photooxidative stress tolerance

Wu et al., 2015

Laporte et al., 2012; Hu
etal., 2015

Chaper'one; regulates catalase 2 (ROS-scavenging enzyme) activity, salt, Lietal, 2015
cold, high pH stresses

Plastid-specific ribosomal protein; RNA chaperone activity, negative

NCAI (At3g54360)

PSRP2 (At3g52150) regulator of seed germination under abiotic stress Xuetal, 2013
Bao et al., 2010; Lee et
T iStional ad . emb . devel . al., 2014, Shrestha et al.,
SLK2 (At5g62090) ranscriptional adaptor; embryogenesis, organ development, repression (14
of stress-responsive gene transcription
S. parvula
Atrab28 (At1g03120) LEA protein; Li" tolerance Borrell et al., 2002
CAX11/CCX5 Cation calcium exchanger; K uptake, Na' transport in yeast Zhang et al., 2011
(At1g08960)
Peroxiredoxin; ROS scavenging, enhances primary seed dormancy Chen et al., 2020
PERI (Atlg48130)
A. thaliana
ATG6 (At3g61710) AuTophGy-related protein; autophagy, pathogen defense Patel & Dinesh-Kumar,
2008
ATL2 (ABgl16720) RING-H2 zinc-finger protein; pathogen defense Serrano & Guzméan, 2004

Nekrasov et al., 2009;

ERDJ3B (At3g62600)  ER-localized DNAJ chaperone; anther development under heat stress, Yamamoto et al., 2020

pathogen defense

Chen et al., 2005; Mang
et al., 2009; Lange et al.,
2019; Zhao et al., 2019;

XLG2 (At4g34390) Heterotrimeric G protein; pathogen defense Liang et al., 2016

RSTI (At3g27670) ARM-repeat protein; RNA exosome cofactor, vacuolar trafficking,
cuticular wax production, embryo development, pathogen defense

For log-likelihood values of the alternative and null models, log-likelihood ratio tests and p-values, see
Supplemental Tables S3 to S7.
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